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Abstract: The specification of power amplifiers (PA) is closely related to humidity variation, and few
reports on the humidity properties of PA are available in the literature. Therefore, an experimental
study of PA specifications was conducted under different humidity conditions to elucidate the
relationship between the degradation of PA specifications and humidity conditions. This paper
studies and provides results of the degradation of a PA subjected to different humidity levels. The
experimental results show that the S21 and output power decrease with the increase in humidity.
The main cause of this degradation is the decrease in oxide capacitance and increase in threshold
voltage with increasing humidity, resulting in a reduction of transconductance and an increase in
on-resistance. The results of this study can guide designers in designing compensation circuits to
achieve some degree of compensation for the degradation of PA specifications.

Keywords: class-A; CMOS; humidity; performance degradation; power amplifier (PA)

1. Introduction

With the rapid expansion in the wireless industry [1,2], the power amplifiers (PAs),
which play critical roles in developing wireless devices and establishing communication [3–5],
are in high demand. For long-distance transmission, the antennas are driven mainly by
the PAs [6–8]. The PAs employed in such applications are exposed to environmental
conditions [9,10] and sometimes extreme working conditions such as rapid changes in
temperature and humidity [11–14]. According to the literature, humidity caused 10% of
equipment failures at US coastal bases [15]. The performance of the PA can be affected by
the humidity conditions that may result in system failures [16,17]. A failure is an event
that ends the life of a particular product [18,19]. However, we never use PA in existing
communication systems until its end of life. Before reaching the end of a PA’s lifetime, that
PA’s performance has already begun to degrade and cannot meet the required specifications
of the designed systems [20,21].

From a systems point of view, the system cannot tolerate a drop in PA’s specification,
such as gain, bandwidth, etc. [19]. Once the performance of the PA is degraded, even
if the magnitude of performance degradation is very small, it can lead to catastrophic
damage to the overall system [22–24]. This means that when the performance of the PA
degrades below a predetermined threshold, even if the degradation is minor, the PA is
incapable of meeting the design specification [20,21]. Therefore, figuring out the PA’s
degradation concerning humidity variations becomes crucial to ensure the proper system
operation. Unfortunately, the characteristics of gallium nitride (GaN)-based PAs in a humid
environment have limited studies in the literature [20], while studies of Complementary
Metal Oxide Semiconductor (CMOS)-based PAs exposed to varied humidity conditions are
entirely lacking.

Micromachines 2022, 13, 1162. https://doi.org/10.3390/mi13081162 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13081162
https://doi.org/10.3390/mi13081162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-3292-9511
https://orcid.org/0000-0003-4361-8946
https://doi.org/10.3390/mi13081162
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13081162?type=check_update&version=2


Micromachines 2022, 13, 1162 2 of 10

This paper uses a CMOS Class-A PA to systematically investigate the PA’s specifi-
cations degradation under different humidity levels from an experimental point of view.
The PA’s specifications degrade as humidity rises. Furthermore, the PA’s degradation
mechanism under high humidity conditions is elucidated. This paper aims to help PA
designers consider the humidity effect of PA in advance in the design process.

2. Designed PA and Experimental Setup

The 0.1–1.2 GHz CMOS broadband PA is a technological achievement result of the
national science and technology project. The project requires the design of a broadband
PA that can be used in industry-specific networks, and the study of the temperature and
humidity characteristics of the PA is required to lay the foundation for future product
finalization. Therefore, we conducted the humidity characteristics study with this PA in
this context. The PA was processed in Global Foundry 1P6M 180 nm CMOS (The Foundry
Company, Sunnyvale, CA, USA) with a chip area of 0.414 mm2 [25], as shown in Figure 1.
As you can see from Figure 1, there are ten pads in the chip, five of which are ground pads,
three are power pads, and two are input and output pads. The supply voltage of Vdd1,
Vdd2, and Vdd3 is 3.3 V. Special attention should be paid to the fact that the chip ground
(GND) pad must be connected to the real earth; otherwise, it will cause the test to fail, or
the test result will be abnormal.
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Figure 1. The chip microphotograph of the CMOS PA.

As shown in the circuit diagram of Figure 2, a PA with a three-stage single-ended struc-
ture was used for the experiments, and the first and second stages of the PA were cascaded
to increase the gain of the PA. In the third stage, a common source amplifier + resistive neg-
ative feedback structure is used to achieve high power output. The PA uses a 3.3 V powered
thick oxide N-channel metal-oxide semiconductor (NMOS) transistor in a 0.18 µm CMOS
process to increase output power, with a minimum gate length of 0.35 µm.
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This experiment must be performed in a Solar Climatic Test Cabinet (SC3 1000 MHG)
(Vötsch Industrietechnik Gmbh, Balingen, Germany) (Figure 3). Unfortunately, the existing
on-chip test platform does not support humidity experiments. Therefore, the chip to be
tested can only be packaged on a printed circuit board (PCB) board (as shown in Figure 1)
and then placed in the environmental test chamber for measurement. The PCB board used
in this experiment is Rogers 4350 (Rogers, Killingly, CT, USA). According to the datasheet
of the Murata inductor and capacitor (Murata, Nagaokakyō, Japan) and Rogers 4350, the
performance of the inductor, capacitor, and PCB can be considered constant. Therefore, the
PA’s specifications degradation in this experiment can be mainly caused by the changes in
the transistors in the PA. This way, the transistors’ measurement in a humidity-changing
environment is achieved indirectly.
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To study the humidity characteristics of individual transistors, existing on-chip test
benches can also fail to provide a humidity measurement environment. Therefore, indi-
vidual transistors are packaged on a PCB and measured in an environmental test chamber.
However, the transistor’s input/output impedance is not the typical 50 Ω of the standard
test system. Therefore, measuring a single transistor’s performance under humidity vari-
ation is impossible using the standard test environment. Therefore, this paper does not
discuss the characteristics of transistors in different humidity environments by directly
measuring them.

The R&S HMP4040 (R&S, Munich, Germany) was used to provide DC bias, an attenu-
ator (Rosenberger, Tittmoning, Germany) was used to reduce the power at the spectrum
analyzer’s input, and the R&S ZVA40 (R&S, Munich, Germany) and FSV30 (R&S, Munich,
Germany) were used to record the experimental output results. Since the humidity range
that the environmental test chamber can measure is 10% to 90% Relative Humidity (RH),
this paper reports the variation of the S21 and output power in the humidity range of 10%
to 90% RH only.

3. Results and Discussions
3.1. The S21

The measured S21 is as in Figure 4. The measured S21 is not only the function of
frequencies but also varies according to different humidity conditions. For example, at
500 MHz, the gain difference between 10% to 90% RH is 0.21 dB, but at 900 MHz, the
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difference is 0.32 dB. The differences in gain for the same humidity conditions will be
different at different operating frequencies.
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Figure 4. Measured small-signal gain with frequency variations.

Figure 5 gives the details of the humidity dependence of S21. In this figure, we
took 433 MHz and 900 MHz as examples based on two common communication meth-
ods: interphone and public mobile phone. If we take S21 at 20% RH as a typical value
and 0.25 dB drop as an acceptable criterion, the maximum operating humidity is around
70% RH. This means that the gain of the power amplifier can meet the requirements below
70% RH. However, as shown in the introduction, if the S21 of the PA degrades is below
18.25 dB (e.g., the degradation is minor), the S21 of the PA will not be able to meet the
demand at this time.
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As shown in Figures 4 and 5, S21 of PA decreases with the increase of humidity. What
is the cause of the degradation of S21 of PA with humidity? Next, this paper will discuss and
analyze it in detail. For Class A, the PA operates at bias points Vgs-M8 = 1.7 V, Vds-M8 = 3.3 V,
and Ids-M8 = 60 mA. Therefore, the PA works in the saturation region.

In the saturation region, we obtain [26–28]:

Ids =
WgµnCox

2Lg
(Vgs − Vth)

2 (1)

where Wg is the gate width, µn is the carrier mobility, Cox is the gate oxide capacitance
per unit area, Lg is the gate length, Vgs is the gate voltage, Vth is the threshold Vds is
drain voltage.

The gate oxide capacitance per unit area is found to be [26–28]:

Cox =
εox

tox
(2)

where εox is the permittivity of the oxide, and tox is the thickness of the oxide.
As reported in the literature [29,30], the accumulation of water diffusion through

the polysilicon sidewalls at the oxide/silicon interface near the edge of the source/drain
junction will increase the thickness of the oxide. Therefore, the drain current and gate
oxide capacitance per unit area will decrease with increasing oxide thickness according to
Equations (1) and (2).

In addition to the possible reasons mentioned above, another reason for the decrease
of the drain current is the increase of the threshold voltage with the rise in the humidity.
This experimental work’s finding aligns with the literature’s theoretical confirmation [31].

The transconductance of a MOSFET is defined as the change in drain current concern-
ing the corresponding change in gate voltage [26–28]

gm =
∂Ids
∂Vgs

(3)

Therefore, according to Equation (3), the transconductance of the saturation region
is [26–28]

gms =
WgµnCox

Lg
(Vgs − Vth) (4)

It is already known from the previous discussion that the oxide capacitance (Cox)
decreases, and the threshold voltage increases as humidity rises. Therefore, according
to Equation (4), it is known that the transconductance will decrease with the increase of
humidity. And the transconductance is generally considered to be S21. Therefore, it can be
observed that S21 decreases with the rise in humidity.

In summary, there are two reasons for the degradation of S21. The first reason is the
increase in threshold voltage with increasing humidity. The second reason is that Cox
decreases with increasing humidity. It may be noted that these reasons were not observed
directly by the experiment earlier.

In addition, we also fitted the relationship between S21 and humidity variation at
433 MHz and 900 MHz (as shown in Figure 5) based on the quadratic polynomial model,
and the expressions are:

S21–433MHz = 1.7765 × 10−5RH2 − 4.6327 × 10−3RH + 18.2375 (5)

S21–900MHz = 2.2451 × 10−5RH2 − 6.4763 × 10−3RH + 18.6023 (6)

where RH is the humidity.
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From Equations (5) and (6), the expressions of S21 with the temperature at 433 MHz
and 900 MHz are formally the same, and both are quadratic functions of RH. Only the
coefficients are different.

3.2. The PA’s Output Power

We studied the characteristics of the output power of the power amplifier at 433 MHz,
as this is a typical radio frequency for different humidity levels. The humidity charac-
teristics of the output power as shown in Figure 6. It can be seen from it that output
power decrease with increasing humidity. And when the humidity changes the same,
the magnitude of the degradation of output power at different input power is not the
same. As discussed in sub-Section 3.1, it is already known that the decrease in Cox and the
increase in threshold voltage cause the drain current to decrease with increasing humidity.
Therefore, the following analysis focuses on the causes of the decrease in output power
with increasing humidity.
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In the following, we will discuss and analyze specifically the causes of the decrease in
output power with increasing humidity. The on-resistance is [32]:

Ron = R0 +
kTα∣∣Vgs − Vth

∣∣β
(7)

Here, k is a constant, and R0 represents the initial value of the resistance. The coefficients α
and β are 1.5 and 0.2, respectively.

According to Equation (7), the on-resistance will increase with an increasing threshold
voltage. As known from the discussion in 3.1, it has been demonstrated experimentally
and in the literature that the threshold voltage increases with increasing humidity. This
means that the on-resistance will increase with increasing humidity. The results of our
experimental analysis are the same as in the literature [31]. Therefore, an increase in the
on-resistance will lead to a decrease in the output power.

Figure 7 gives the relationship between saturation output power and humidity at
433 MHz, from which the saturation output power decreases with the increase of humidity.
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At the same time, we fit the relationship of saturation output power with humidity based
on the quadratic polynomial model, and the expression is:

Pout(sat) = 8.7944 × 10−5RH2 − 1.5564 × 10−2RH + 18.5010 (8)
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From Equation (8), the saturation output power (Pout(sat)) with humidity is similar to
the expression of S21 with humidity, and both are related to quadratic humidity. Only the
specific coefficients are different.

Since we only measured the output power at 433 MHz during the previous measure-
ments, the output power at 900 MHz is not provided.

3.3. The Power Added Efficiency

The relationship between the power added efficiency (PAE) and humidity at 433 MHz
is shown in Figure 8, from which PAE decreases with the increase of humidity. According
to the definition of PAE, PAE is proportional to the output power; i.e., PAE decreases as
output power decreases. The reason for the change of output power with the humidity
has been discussed in sub-Section 3.2, so the reason for the reduction of PAE with the
increase of humidity is the same as the reason for the decrease of output power with the
rise in humidity.
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It should be noted that considering that the curves of S21 and output power changing
with humidity in Figures 4 and 6 are too dense, only PAE under four humidities are given
in Figure 8 to observe the relationship between PAE and humidity change more clearly.
Figure 9 shows the relationship between the maximum PAE and humidity at 433 MHz. At
the same time, the relationship between the maximum PAE and humidity is fitted, and its
expression is as follows

PAEmax = −9.0780 × 10−3RH + 18.0699 (9)
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According to Equation (9), the maximum PAE is linear with the change of humidity,
which is different from the relationship between S21 and saturated output power with
humidity change.

4. Conclusions

This paper investigates PA specifications’ characteristics at different humidity levels
from an experimental point of view. This paper study and provide results of the degradation
by the humidity of only one PA. It is found that the S21 and output power degrades with
the increase of humidity. The main reason for this degradation is that the Cox decreases,
and the threshold voltage increases as humidity rises.

However, no common pattern for the degradation of the two specifications, S21, and the
output power, was found during the study. This indicates that the specification degradation
experiments must be continued at this stage for many PAs to extract sufficient experimental
data. This will guide the extraction of common patterns of specification degradation for
the prediction of specification degradation and compensation of specification degradation.
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