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Abstract: Subsurface damage of fused silica optics is one of the major factors restricting the perfor-
mance of optical systems. The densification-affected deformation and fracture in fused silica under a
sliding contact are investigated in this study, via three-dimensional finite element analysis (FEA). The
finite element models of scratching with 70.3◦ conical and Berkovich indenters are established. A re-
fined elliptical constitutive model is used to consider the influence of densification. The finite element
models are experimentally verified by elastic recovery, and theoretically verified by hardness ratio.
Results of densification and plastic deformation distributions indicate that the accuracy of existent
sliding stress field models may be improved if the spherical/cylindrical yield region is replaced by an
ellipsoid/cylindroid, and the embedding of the yield region is considered. The initiation sequence,
and the locations and stages of radial, median, and lateral cracks are discussed by analyzing the
predicted sliding stress fields. Median and radial cracks along the sliding direction tend to be the
first cracks that emerge in the sliding and unloading stages, respectively. They coalesce to form a big
median–radial crack that penetrates through the entire yield region. The fracture behavior of fused
silica revealed in this study is essential in the low-damage machining of fused silica optics.

Keywords: sliding contact; fused silica; densification; finite element analysis; cracks

1. Introduction

Fused silica, or silica-rich glass optics, are widely used in laser nuclear fusion de-
vices [1], large astronomical telescopes [2], semiconductor technology [3,4], and consumer
electronics. Subsurface damage has plenty of negative effects on the performance of optics,
e.g., increasing optical scatter, reducing mechanical strength, and increasing laser-induced
damage (LID). For instance, the subsurface damage is one of the precursors resulting in LID.
The LID of fused silica optics is one of the key factors restricting the output power and a key
challenge for the long-term and stable operation of high-power laser facilities [5]. Therefore,
an in-depth understanding of the material removal and damage formation mechanisms of
fused silica subjected to machining is essential to fabricate damage-free optics.
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Fused silica optics are generally fabricated by abrasive grain-based methods, e.g.,
grinding and polishing. Therefore, indentation/scratching mechanics are widely used to
study the fracture of fused silica subjected to machining [6,7]. In addition to the contact
pressure between the indenter and the sample, the indentation stress field also results
from a misfit between the plastic zone beneath the indentation and the surrounding elastic
matrix. Therefore, the elastic indentation models, e.g., the classical Boussinesq solution and
Hertzian field [8] for elastic contact, are insufficient. Later on, Hill et al. [9] developed a
model for the wedge indentation of the rigid–perfectly-plastic materials. However, this
model is not suitable for indentation with blunt indenters, or with materials with a low
ratio of Young’s modulus to yield stress. To this end, Johnson et al. [10] proposed the
expanding-cavity model that treats the indentation-induced plastic zone as an expanding
zone. This model was successfully used by Lawn et al. [11] to analyze the indentation
damage in ceramics.

Different from most materials, fused silica suffered from significant permanent volume
contraction under high hydrostatic pressure. This phenomenon is known as densifica-
tion [12]. The aforementioned indentation stress field models ignore the influence of
densification, which limits the accuracy for fused silica. In order to solve this problem,
Yoffe [13] proposed the Blister stress field model, which, for the first time, integrates the
material densification. Li et al. [14] modified the ECD model to make it suitable for materi-
als with densification. Compared with the Yoffe model, the modified ECD model considers
the distribution characteristics of the contact pressure between the indenter and the sample.
In addition, the center of the plastic zone is not restricted in the sample surface.

The grinding and polishing processes are more analogous to successive scratching
compared with indentations. The studies on analytical sliding stress fields are rather limited.
Hamilton and Goodman [15] proposed an elastic model for sliding contact. Ahn et al. [16]
developed the sliding blister stress field model by extending the Yoffe model to scratching,
in which the plastic deformation and material densification were considered. Similar
models were used to analyze the cracking behavior of BK7 glass [17], fused silica [17],
and silicon [18] subjected to scratching. However, these models assume that the indenter
is conical and the center of plastic zone locates in the sample surface, which limits the
prediction accuracy.

The finite element method is a powerful tool to investigate the deformation, fric-
tion [19], wear [20], and fracture [21] of brittle materials subjected to scratching. It should
be noted, however, that in these studies the constitutive models used were either purely
elastic or von Mises [22], and that the effects of material densification were neglected.
Imaoka et al. [23] and Gadelrab et al. [24] developed the positive linear models to consider
densification. The mean hydrostatic stress is linear with the equivalent shear stress in these
models. Xin et al. [25] proposed a negative linear model to explain the unique features of
fused silica during grinding and polishing. Kermouche et al. [26] proposed an elliptical
constitutive model to consider the shear-assisted densification. This model considers the
hardening of yield pressure with densification, which is neglected in the linear models. The
elliptical model is widely used to investigate the indentation deformation and fracture in
fused silica [12,27]. Later on, the elliptical constitutive model was refined by Li et al. [28],
to consider the influence of densification on elastic properties and the saturation of densi-
fication with hydrostatic pressure. This refined elliptical model was successfully used to
study the indentation mechanisms [28,29] and sliding friction behavior [30].

This paper aims to establish three-dimensional finite element models for conical and
Berkovich scratching using the refined elliptical model. Finite element simulations are
performed to investigate the densification and deformation in fused silica subjected to
scratching to reveal the stress field more precisely. The influence of friction on indentation
and scratching hardness is investigated, and the cracking behavior of fused silica under
scratching explored.
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2. Scratching Tests

As shown in Figure 1, fused silica samples (Corning UV 7980, Corning Corp., Corning,
NY, USA) were scratched by an edge-forward Berkovich tip on a nanoindentation machine
(TI-950 TriboIndenter, Hysitron Inc., Eden Prairie, MN, USA). The samples were carefully
polished to achieve a surface roughness small than 2 nm. Scratching tests were performed
under constant normal loads of 1 mN, 2 mN, 4 mN, 200 mN, 400 mN, 600 mN, 1 N, and
1.2 N. The sliding length was 250 µm, which is significantly greater than the scratching
depth. The scratching process consists of the approaching stage A©, the preliminary profiling
stage B© (to obtain the original surface profile), the indentation stage C©, the scratching stage
D©, the unloading stage E©, and the postmortem profiling stage F© (to obtain the residual
surface profile). The variations of normal load, normal displacement, lateral load, and
lateral displacement with time were recorded during scratching.
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Figure 1. (a) Schematic diagram of edge-forward Berkovich scratching, (b) the applied normal force
and lateral displacement for the normal load of 200 mN, and (c) the resulting normal displacement
and lateral force.

After scratching, the samples were measured by an atomic force microscope (AFM)
(Innova, Veeco, Plainview, NY, USA) to obtain the three-dimensional topography of the
impression. After etching by the buffered HF solution to open the surface cracks [31],
the morphology of the cracks was characterized by a scanning electron microscope (SEM)
(SU3500, Hitachi, Japan).

3. Finite Element Modeling

The finite element analysis of scratching with an edge-forward Berkovich indenter
and a conical indenter was performed on a commercial finite element code ABAQUS.
A modified elliptical constitutive model [28,30] was used to consider the influence of
densification on the deformation in fused silica:

f
(
σij
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=
( q

d

)2
+
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where q is equivalent shear stress; p is hydrostatic pressure; d is the von Mises yield
stress under pure shear; and pb is the hydrostatic yield stress for pure compression. The
relationship between hydrostatic pressure p and the densification ζ is modeled by:

ζ =
ζmax

1 + e−k(p−p0)
(2)
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where ζmax (%) is the saturated densification under compression, and p0 (GPa) is the
hydrostatic pressure under which a densification of ζmax/2 is produced. The parameters of
the modified elliptical model used in this study are taken from the ref. [28].

In the finite element model, an infinitely sharp Berkovich edge-forward indenter slides
along the x-axis on the top surface of a deformable parallelepiped with a dimension of
W × W × (l + 2W), as shown in Figure 2. The diamond indenter is assumed to be rigid
because its Young’s modulus [32] and hardness [33] are much higher than those of the
fused silica samples [14]. An eight-node linear brick element with reduced integration
and hourglass control is used. Refined FE mesh with an element size of le is used in a
parallelepiped with a dimension of a × a × (l + 2W), and graded FE mesh is used in the
residual region. For conical scratching, the semi-included angle α of the conical indenter is
set as 70.3◦, to ensure that the projected area-to-indentation depth function is the same as
the commonly used Vickers and Berkovich indenters. A = 2.79 hmax is the nominal contact
radius for 70.3◦ conical scratching.
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Figure 2. The finite element model of scratching with a Berkovich indenter.

As shown in Figures 2 and 3, the sliding process is divided into three stages, i.e.,
the indentation stage 1©, the sliding stage 2©, and the unloading stage 3©. The scratching
depth, length, and speed are denoted as hmax, l, and v, respectively. The Coulomb friction
model is used to model the adhesion friction behavior between the indenter and the sample.
The coefficient of adhesion friction f was determined to be 0.04, by comparing FEA and
scratching tests.
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The single-variable method is used to optimize the cross-section dimension W, sliding
length l, and element size le. The appropriate parameters result in stable and convergent
normal and tangential loads, and apparent coefficient of friction in the sliding stage. hmax
is assumed to be 1 µm. Results show that a cross-section dimension of 5a × 5a, a sliding
length of 10 hmax, and a mesh size of 1/8 hmax are appropriate for the simulations.

4. Verification of Finite Element Models
4.1. Experimental Verification of Elastic Recovery

The elastic recovery ratio fe for scratching reflects the extent of elastic deformation
relative to the whole deformation. In addition, fe can be conveniently measured by AFM.
Therefore, fe is used to verify the finite element model in this study.

As shown in Figure 4, the leading end of the impression induced by scratching with
an edge-forward Berkovich indenter is measured by AFM to obtain its three-dimensional
topography. Pile-up is obvious on the lateral sides of the impression. Figure 4 also indicates
that the residual depth hf (see Figure 5) slightly decreases with the distance d to the
unloading position of indenter tip. The profile shown in Figure 5 is obtained by averaging
five equally spaced cross-section profiles of the middle part of the impression. The residual
scratch depth hf after elastic recovery, determined from Figure 5, is 668 nm.
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In order to determine the scratching depth directly from the displacement curve, the
normal displacement of the indenter (see Figure 1c) during the scratching process was
corrected by the original profile of the sample surface. The corrected normal displacement
in the scratching stage D© was calculated by subtracting the uncorrected displacement
from t2 to t1 in the stage B© from the uncorrected displacement from t3 to t4. Similarly, the
corrected normal displacement in the postmortem profiling stage F© was calculated by
subtracting the uncorrected displacement from t1 to t2 from the uncorrected displacement
from t5 to t6. The evolution of the corrected normal displacement with time is shown in
Figure 6. The maximum scratching depth and residual depth are 1063 nm and 479 nm,
respectively. It is worth noting that this value of residual depth is smaller than that measure
by AFM (i.e., hf = 668 nm). This is possibly because the indenter did not strictly follow the
scratching path in stage F©, due to the movement of the sample or the motion error of the
indentation test in the lateral direction. By contrast, the AFM probe accurately detects the
lowest positions of the residual scratching profiles for two reasons. First, the tip radius
of the AFM probe is much smaller than that of the Berkovich indenter. Second, the AFM
probe is scanning across the impression. Using the AFM-measured hf, the elastic recovery
ratio is calculated to be fe = 1−hf/hamx = 37.2%. Ba analyzing the FEA-predicted profiles of
the scratching impression at the fully-loaded and fully-unloaded states shown in Figure 7,
the value of fe predicted by FEA is 37%, which is very close to the experimental value.
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4.2. Theoretical Verification of Hardness Ratio

As shown in Figure 8, FEA predicts that the hardness ratio kp
H = Hp

T/Hp
s is slightly

larger than utility, and nearly independent of the sharpness of the indenter, where Hp
T and

Hp
s are the ploughing hardness along the sliding and vertical directions, respectively. This

is consistent with theoretical analysis, as detailed below.
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For an infinitesimal contact area dA, the contact force is normal to dA. Therefore,
the forces along the sliding and vertical directions, i.e., dFT and dFN, have the following
relationship:

dFT
dApl

=
dFN
dApv

= p(h,β) (3)

where Apl and Apv are the laterally and vertically projected contact areas, respectively; p(h,β)
is the contact pressure at the point (h,β) on the indenter surface; and β and h are the phase
and the height measured from the indenter tip, respectively. According to the definition of
hardness, the ploughing hardness can be expressed by:

Hp
s =

∫
p(h, β)dApv

Apv
(4)

and

Hp
T =

∫
p(h, β)dApl

Apl
(5)

The contours of the contact stress induced by conical scratching and Berkovich scratch-
ing resemble concentric circles and triangles, respectively [30]. Therefore, p(h,β) is nearly
independent of β. As the geometries of the conical and Berkovich indenters are self-similar,
the vertically and laterally projected areas of the contact zone with a height from h to h + dh,
i.e., dApl,h∼h+∆h and dApv,h∼h+∆h have the following relationship:

dApl,h∼h+∆h

dApv,h∼h+∆h
≈

Apl

Apv
(6)

Therefore, the hardness ratio:

kp
H =

Hp
T

Hp
s
=

∫ hc
h=0 p(h)dApl,h∼h+∆h∫ hc
h=0 p(h)dApv,h∼h+∆h

·
Apv

Apl
≈ 1 (7)
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By combining Equations (3), (12) and (18) in ref. [30], the following expression can be
obtained for a conical indenter:

kH

kp
H

≈ 1 +
f

µ0 sin α
(8)

where kH = HT/Hs is the ratio of tangential hardness and scratching hardness; and µ0 is the
friction coefficient induced by ploughing. As kp

H ≈ 1, we can conclude from Equation (8)
that kH > 1 when friction exists, i.e., HT > Hs. This is consistent with the scratching tests [34].
It is worth noting that the above analysis considers the non-uniform distribution of the
contact pressure. This is more accurate than the widely adopted assumption that the contact
pressure is uniformly distributed [35].

5. Deformation and Fracture in Fused Silica under Scratching
5.1. Scratching Hardness

Scratching hardness is widely used to model the scratching load that is a key factor
determining the fracture behavior. Although it is reported that friction only plays a small
role in indentation hardness for blunt indenters [36], Figure 9 shows that the indentation
hardness Hi (the hardness at the end of stage 1©) for edge-leading Berkovich scratching
is slightly increased with the rise in friction. By contrast, the scratching hardness (the
hardness in the right red box) is nearly independent of friction.
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Figure 9. The variation of hardness with time at various values of adhesion friction coefficient f for
edge-leading Berkovich scratching.

In order to understand the above phenomena, the evolutions of the contact area and
normal force with time are plotted in Figure 10a,b, respectively. During the transition
from indentation to sliding, i.e., in the stage 2©-1, the contact area is considerably reduced
because the support for the indenter rear is removed. If no elastic recovery occurs, the
rear face of the indenter is entirely separated from the sample surface, and the contact area
decreases to two-thirds. However, Figure 10a shows that the contact area during the steady
sliding stage (in the right red box) is significantly bigger than two-thirds of that during
indentation (in the left red box). This is due to elastic recovery.

The moving direction of the indenter relative to the sample determines the influence of
friction on the contact area. The contact area during static indentation is slightly decreased
by friction, because the friction-induced downward shear stress applied to the sample
surface results in a decrease in the contact area, as shown in Figure 10a. By contrast, friction
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leads to an increase in the contact area during the steady sliding stage because the friction-
induced shear stress on the sample surface is upward. The indentation hardness increases
with friction, while the contact area decreases with friction. Therefore, the normal force
during indentation is nearly independent of friction, as shown in Figure 10b. During the
steady sliding stage, the scratching hardness is nearly independent of friction because the
friction increases both the contact area and the normal force.
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Although the scratching hardness Hs for Berkovich indenter is independent of f, Hs for
conical indenter is linearly decreased with f, as demonstrated in Figure 11. The scratching
hardness induced by ploughing, i.e., Hp

s , remains nearly unchanged when f increases from
0 to 0.2.
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with a 70.3◦ conical indenter. The value pairs of (Hs, f ) is fitted to obtain the dash line.

5.2. Plastic Deformation

It is reported that the stress and deformation are relieved by densification [13,25]. The
stress distribution is significantly influenced by the geometry and location of the elastic–
plastic boundary [14,37]. In the analytical models of sliding stress fields, e.g., the Ahn
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model [16] and the Wang model [17], the plastic region is assumed to be a sphere with the
center on the sample surface.

As shown in Figure 12, the maximum densification locates in the region that the
indenter tip passes. The maximum value of densification predicted by FEA, i.e., 22.6%, is
close to the measured saturated densification, i.e., 21% [38]. By comparing the densification
contours in the top surface and the xz-cross-section shown in Figure 12, it is found that
the contours in the yz-cross-sections are flat ellipses. Figure 12 also indicates that the
densification in fused silica caused by scratching is bigger than that caused by indentation.
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conical indenter in (a) the top surface and (b) xz-cross-section.

Figure 13a shows that the elastic–plastic boundary in fused silica induced by scratching
deviates from a circle. By contrast, Figure 13b demonstrates that the boundary can be tightly
fitted by an ellipse. Figures 13 and 14 indicate that the yield region is an ellipsoid in the
front of the indenter (x/hmax > 10), and a cylindroid at the rear of the indenter (x/hmax ≤ 10).

Micromachines 2022, 13, x FOR PEER REVIEW 11 of 17 
 

 

  

(a) (b) 

Figure 13. The elastic–plastic boundaries defined by a von Mises equivalent plastic strain of 10−2 in 
the yz-cross-section at the fully unloaded state for 70.3° conical scratching. The simulated 
boundaries are fitted by (a) a circular arc and (b) an elliptical arc. 

 

(a) 

 
(b) 

Figure 14. The contours of von Mises equivalent plastic strain in the xz-cross-section (a) at the fully 
loaded and (b) fully unloaded states. 

As shown in Figure 13b, the shape of the elastic–plastic boundary is characterized by 
the length m of the semi-major axis, the length n of the semi-minor axis, and the depth ξ 
of the elastic–plastic boundary center. The semi-major and semi-minor axes are along the 
lateral and vertical directions, respectively. These parameters can be determined by fitting 
the elastic–plastic boundary by the following formula: 

2 2

1y z
m n

       
     

(9)

The fitted results are shown in Figure 15. The real contact radius ar predicted by FEA 
equals 2.24 hmax. Figure 15a shows that m is bigger than a, while n is smaller than a. After 
unloading, m remains nearly unchanged, but n in the cross-section close to point B 
increases, due to the significant elastic recovery. m is significantly larger than n in the 

Figure 13. The elastic–plastic boundaries defined by a von Mises equivalent plastic strain of 10−2 in
the yz-cross-section at the fully unloaded state for 70.3◦ conical scratching. The simulated boundaries
are fitted by (a) a circular arc and (b) an elliptical arc.
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Figure 14. The contours of von Mises equivalent plastic strain in the xz-cross-section (a) at the fully
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As shown in Figure 13b, the shape of the elastic–plastic boundary is characterized by
the length m of the semi-major axis, the length n of the semi-minor axis, and the depth ξ
of the elastic–plastic boundary center. The semi-major and semi-minor axes are along the
lateral and vertical directions, respectively. These parameters can be determined by fitting
the elastic–plastic boundary by the following formula:

( y
m

)2
+

(
z − ξ

n

)2
= 1 (9)

The fitted results are shown in Figure 15. The real contact radius ar predicted by
FEA equals 2.24 hmax. Figure 15a shows that m is bigger than a, while n is smaller than
a. After unloading, m remains nearly unchanged, but n in the cross-section close to point
B increases, due to the significant elastic recovery. m is significantly larger than n in the
steady sliding stage. Therefore, the prediction accuracy of the existent sliding stress field
models may be greatly improved if the spherical/cylindrical yield region is replaced by
an ellipsoid/cylindroid. Figure 15b shows that the depth of the elastic–plastic boundary
center in the yz-cross-section behind the indenter decreases rapidly when the indenter
moves far away from it. ξ for scratching is much bigger than that for indentation (close to ξ
at lB = 9.5 hmax) at both the fully loaded and the fully unloaded states. This indicates that
the Ahn and Wang models should be refined to allow for the embedding of the center of
the plastic zone.
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Figure 15. The fitted (a) dimension and (b) depth of the elastic–plastic boundary normalized by hmax.
The indenter moves from the point C to the point B in the scratching stage (see Figure 2).

5.3. Stress Fields and Cracking Behavior
5.3.1. In the Sliding Stage

The scratching-induced stress contours under a conical indenter at the end of the
sliding stage 2© are shown in Figure 16. In the front of the indenter tip, i.e., in the region
x ≥ 0, the shape of the contour lines induced by scratching is similar to those induced by
indentation [29]. By contrast, at the back of the indenter tip, the contours are flattened, due
to the plastic deformation left by the sliding indenter.
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stage. The maximal σz increases from 0.087H to 0.137H during the unloading process. This 
indicates that the lateral crack emerges more easily in the unloading stage compared with 
the sliding stage. 

  

Figure 16. The contours of (a) σx/H, (b) σy/H, and (c) σz/H at the end of the sliding stage 2© in
the xz-cross-section, where ar = 2.24 hmax is the real contact radius evaluated by FEA, and H is the
hardness measured by indentation tests. The indenter moves along the positive direction of the
x-axis.

The maximal values of σx and σy are identified in the regions below the indenter tip
just outside the elastic–plastic boundary, i.e., the regions R1 and R2 shown in Figure 16,
respectively. They are the driving forces of median cracks. As the maximal σy is higher
than the maximal σx, the median crack along the sliding direction tends to initiate prior
to that along the lateral direction. The maximal value of σz locates at the far rear of the
indenter (region R3), which is the driving force of lateral cracks. In the sliding stage, the
driving force of median cracks is higher than that of lateral cracks.

5.3.2. At the Fully-Unloaded State

After unloading, as shown in Figure 17a, the stress contours predict a high σy on the
sample surface at the front of the indenter (region R4), which is the driving force of radial
cracks along the sliding direction, i.e., the radial crack 1 in Figure 18a. σy at the bottom
of the yield region remains nearly unchanged after unloading. Therefore, median cracks
along the sliding direction remain open in the unloading stage if they initiate in the sliding
stage. The maximal σz increases from 0.087H to 0.137H during the unloading process. This
indicates that the lateral crack emerges more easily in the unloading stage compared with
the sliding stage.
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5.3.3. Maximum Principal Stress

The contours of σ1/H shown in Figure 19 indicate that the median crack along the
sliding direction tends to be the first crack to appear during the sliding stage. It initiates
below the yield region at the rear of the indenter, i.e., in the region R2. Once initiated in the
xz-cross-section, the median crack propagates along the sliding direction during scratching.
As the value of σ1 in region R3 is smaller than that in region R2, the initiation load of
median crack under indentation is higher than that under scratching. This is consistent
with experimental observations. Though median crack is absent during indentation tests
under the normal load of 40 N [39], it is observed during scratching tests under the normal
load of 600 mN, as shown in Figure 18b. During the unloading stage, radial cracks may
initiate from the sample surface at the front of the indenter, i.e., region R4, as shown in
Figure 18a. As σy in region R4 is small before unloading, and significantly increases during
the unloading process, radial cracks tend to emerge in the unloading stage. If both radial
and median cracks form, they coalesce to form a big median–radial crack that penetrates
through the entire yield region, as verified by the experiments (see Figure 18).
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6. Conclusions

This study developed three-dimensional finite element models of scratching on fused
silica with 70.3◦ conical and Berkovich indenters. A refined elliptical model was used to
consider the influence of densification on elastic properties and the saturation of densifi-
cation with hydrostatic pressure. By analyzing the predicted scratching hardness, plastic
deformation, and stress fields, the following conclusions are obtained:

(1) The tangential hardness is slightly larger than the scratching hardness, and their
ratio linearly increases with the adhesion friction coefficient f. The scratching hardness
for an edge-leading Berkovich indenter is nearly independent of f, because the friction
increases both the contact area and the normal force. By contrast, the scratching hardness
for a conical indenter linearly decreases with f. These findings are helpful to model the
friction-affected forces induced by scratching;

(2) The densification effect should not be ignored if one aims for a damage-free process
in fabrication. It is found that the material’s densification under scratching is bigger than
that under indentation. This indicates that the prediction accuracy of the sliding stress
analyses can be improved if the material’s densification is properly integrated into the mod-
elling, e.g., replacing the spherical/cylindrical plastic zone with an ellipsoid/cylindroid,
and considering the embedding of the plastic zone center;

(3) Median cracks along the sliding direction tend to be the first cracks that emerge in
the sliding stage. Radial cracks may initiate under a smaller load in the sample surface at
the front of the indenter during the unloading stage. Radial and median cracks coalesce to
form a big median–radial crack that penetrates through the entire yield region.
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