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Abstract: A new S/D trimming process was proposed to significantly reduce the parasitic RC of gate-
all-around (GAA) nanosheet transistors (NS-FETs) while retaining the channel stress from epitaxy
S/D stressors at most. With optimized S/D trimming, the 7-stage ring oscillator (RO) gained up to
27.8% improvement of delay with the same power consumption, for a 3-layer stacked GAA NS-FETs.
Furthermore, the proposed S/D trimming technology could enable more than 4-layer vertical stacking
of nanosheets for GAA technology extension beyond 3 nm CMOS technology.

Keywords: gate-all-around (GAA); nanosheet (NS); S/D stressor; channel stress enhancement

1. Introduction

Gate-All-Around (GAA) Nanosheet (NS) transistor is the most promising candidate
for 3 nm node and beyond, owing to its superior electrostatics compared to FinFET [1]. For
GAA NS-FETs technology, vertical stacking architecture with multiple parallel channels is
the key to boost drive current capability at a given footprint [2]. However, GAA technology
faces some critical fabrication challenges such as channel release, formation of inner-spacer,
and epitaxy growth of source/drain (S/D) SiGe stressor. The channel release and inner-
spacer require ultra-high selective SiGe etching to retain stacked Si channels integrity [3],
and advanced ALD low-k dielectric deposition and precision etch to control inner-spacer
thickness and uniformity [4]. In addition, for GAA, the main transport surface orientation
changes from (110) to (100), which has higher electron mobility but lower hole mobility.
Therefore, the epitaxy growth of S/D SiGe stressor becomes extremely important and
challenging to achieve N/P current matching. Furthermore, the S/D parasitic RC would
be a bottleneck for drive current boost due to normally large epitaxy S/D volume required
for channel stress engineering [5]. However, how to balance the channel stress and S/D RC
optimization, and its impacts on GAA NS-FETs have not been systematically investigation.

In this work, we present a new integration scheme of a self-align S/D trimming
process to solve the trade-off between channel stress engineering and S/D RC optimization.
Based on device and system TCAD studies, the proposed S/D trimming scheme offers
superior switching performance with almost no sacrificing of transistor DC performance.
Furthermore, this new integration scheme may provide a potential path for continuing
track-height scaling and enable more vertical stacking of nanosheets.
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2. S/D Epi Growth and Impact on GAA NS-FETS
2.1. Simulation Methodology

To evaluate realistic S/D process impact on GAA NS-FETs, a three-layer vertical
stacking Si GAA nanosheets structure is selected for TCAD simulation. Key parameters of
the assumed structure, including gate length of 12 nm, NS width of 20 nm, gate pitch of
44 nm, nanosheet thickness of 5 nm, spacing between nanosheets of 12 nm, and contact
poly pitch of 44 nm, were adopted referring to the IRDS roadmap for 3 nm node.

3D full flow process simulation, from SiGe/Si super-lattice growth to M0 contact
formation, is carried out by the Sentaurus Process simulator. The compressive Si0.7Ge0.3
sacrificial layers with initial in-plane biaxial stress of −2 GPa were assumed. Lattice Kinetic
Monte Carlo (LKMC) model is employed to accurately simulate the epitaxial Si0.6Ge0.4
(p-FETs) S/D stressor growth.

Both drift–diffusion transport model and quantum potential model are employed
in Sentaurus SDevice for DC performance simulation after structure generation. Low
field ballistic mobility, auto-orientation inversion, accumulation layer mobility, and high
field saturation velocity were also included to account for the electrical characteristics of
the nanoscale device. The multi-valley electron and hole mobility model was enabled to
calculate strain effects. The physical parameters of the baseline GAA Si NS-FET simulation
models were carefully calibrated using experimental data [1]. The electrical behavior of
simulated NS-FETs is modeled with the Primarius BSIMplus module. Inverter and Ring
Oscillator (RO) are constructed for AC performance evaluation.

2.2. Stress Requirements and S/D RC Concern for NS-FETs

The majority of the surface area in FinFET is lateral (110)/<110>, while for NS-FET, the
main transport surface becomes (100)/<110>. Because (100)/<110> orientation has higher
electron mobility but lower hole mobility, it is much more difficult to achieve N/P current
matching for 3 nm GAA NS-FETs technology. One of the most effective methods would
be channel stress engineering by an epitaxial S/D stressor to boost carrier mobility. In
order to investigate the stress engineering requirement for NS-FETs N/P current matching,
transistor drive current Ion versus channel stress was simulated and plotted in Figure 1a
for both n-FETs and p-FETs.

Figure 1. (a) Idsat response curve versus Channel stress for NS-FETs, with n-FET @ 1.0 GPa and
p-FET @ 2.5 GPa, good N/P current matching is achieved; (b) capacitance versus stress for different
S/D EPI sizes. The high stress EPI volume comes with capacitance penalty.
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As clearly seen in Figure 1a, p-FET Idsat is only around half of n-FET Idsat without
channel stress, but p-FET has much higher stress sensitivity than n-FET. As reported in
Ref. [6], the channel would inherit 450–950 MPa tensile stress from the release of the
sacrificial SiGe layer due to stress transfer. This favors n-FET and makes it very crucial
to have higher channel stress in p-FET. As shown in the inset of Figure 1a, good N/P
current matching could be realized with n-FET @ 1 GPa tensile stress and p-FET @ 2.5 GPa
compressive stress, indicating it is extremely important to engineer the channel stress well,
especially for p-FET.

As well known, S/D SiGe EPI volume strongly influences channel stress; therefore,
LKMC EPI process simulation is performed to investigate the S/D SiGe EPI evolution and
its effect on p-FET channel stress. As shown in Figure 1b, three selected points during
S/D SiGe epitaxy growth are presented with a cut-away structure diagram to illustrate
the S/D shape evolution, with corresponding stress and Cgg capacitance. Initially, the EPI
growth was started on three small regions and evolve to a merged ‘Square’ shaped S/D,
where the channel stress reaches around 1.6 GPa. As the epitaxy growth continues, the S/D
shape finally becomes the characteristic ‘Diamond’ shape with the desired 2.5 GPa channel
stress for p-FET to realize N/P current matching. However, this comes with a penalty of
a 58% increase of Cgg, which raises a concern for the AC performance. As a result, the
engineering between channel stress and parasitic RC would be critical to unlock the full
potential of GAA NS-FETs technology.

3. Self-Align S/D Trim Scheme
3.1. S/D Trimming Process Flow

To address the abovementioned trade-off issue between channel stress and parasitic
RC, a new self-aligned S/D trimming integration scheme is proposed. This self-aligned
trimming process after S/D EPI consists of (1) dielectric fill and pull back recess to expose
the top of the S/D, (2) the exposed S/D parts undergo selective TiN deposition to form a
self-aligned cap [7], (3) dielectric etch back, and (4) use the TiN as a hard-mask to trim off the
side tips of ‘Diamond’ S/D structure [8]. The proposed integration flow is implemented and
demonstrated in Sentaurus SProcess, as shown in Figure 2a, and the impact of trimming
on NS-FETs channel stress and Cgg were evaluated as in Figure 2b. In the region of
Ymax > 25 nm, the channel stress loss is almost negligible (<3%), even when Ymax∼15 nm,
the channel stress loss is within 10%. At Ymax∼15 nm, which is approximately the same
width of as-grown “Square” structure, the stress can retain to 2.18 GPa compared to 1.6 GPa
for the as-grown one, while the parasitic capacitance can be reduced by 37%.

Figure 2. (a) Process details of self-aligned S/D trimming scheme and its relative position in the main
flow with step by step process simulation animation; (b) average p-FET nanosheet channel stress and
its corresponding capacitance as a function of its max width after trim.
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3.2. The Impact of S/D Trimming on Electrical Behavior

Besides the suppression of parasitic capacitance, meanwhile, the S/D trimming process
could potentially improve the S/D parasitic resistance. In advanced nodes, S/D access
resistance plays an important role in device performance, which accounts for more than
30% of the total resistance [9]. For the 3 nm node, with an estimated cell height of 115.5 nm
and N/P separate distance 20.5 nm [10], the maximum width of M0A contact is limited
to 47.5 nm. As shown in Figure 3a, limited by the width of M0A contact (Wct), for large
diamond shaped S/D, the contact can only land on the top of S/D, which causes large
access resistance, especially for the bottom nanosheet channel. With the S/D trimming,
wrap-around-contact (WAC) technology would be feasible and can make all the stacked
nanosheets electrically equivalent as illustrated in Figure 3a. The quantitative impact has
been simulated as in Figure 3b, showing for S/D trimming to Ymax∼20 nm, the transistor
driving current can be boosted by 31% and 24% for p-FET and n-FET, respectively. With
trimming to Ymax∼15 nm, n-FET drive current gains an additional ∼3% due to further
reduction of access resistance. Meanwhile, p-FET drive current almost remains unchanged,
mainly due to the small loss of channel stress.

Figure 3. (a) Current from bottom NS of trimmed S/D and WAC has much a shorter distance to
contact compared to an un-trimmed case, resulting in a more equally distributed current between all
three nanosheets and better efficiency; (b) ion performance and extracted Rsd at varied S/D trimming
position; (c) switch delay of an inverter on a fixed load of 1fF. Both Tr and Tf of NS-FETs reduce with
S/D trimming; (d) power–delay curve of a constructed 7-stage ring oscillator.
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To examine the AC performance with S/D trimming, inverter and 7-stage ring oscil-
lator (RO) [11] are evaluated by plugging in the device’s model generated by Primarius
BSIMplus [10] . The inverter switch behavior is shown in Figure 3c, showing rising/falling
time (Tr/Tf) improved by 49% and 53%, respectively. The IDDA-Delay plot of the 7-stage
RO in Figure 3d demonstrates that the S/D trimming scheme could save up to 25 percent
of power or 27.8 percent of delay. All these are attributed to the reduction of parasitic S/D
RC and preservation of device drive current.

3.3. More Vertical Stacking of Nanosheets

One of the most promising advantages of GAA NS-FETs technology is the vertical
scalability [2]. However, as the stacking layers increase, the epitaxy S/D also becomes
bigger. This will cause even higher access resistance and bigger parasitic capacitance,
degrading the device performance [12]. As shown in Figure 4a, with the proposed S/D
trimming scheme, the capacitance increase with more stacking NS becomes much slower,
and the S/D after trimming can be adjusted to embrace the WAC, thus further reducing
the S/D parasitic Resistance. As demonstrated in Figure 4b, as the number of stacked
nanosheets increases, more benefits could be gained from the S/D trimming regarding the
inverter delay. This may provide a very promising solution for S/D parasitic suppression
and GAA technology extension beyond the 3 nm node.

Figure 4. (a) NS-FETs vertical scaling challenge: under the same EPI growth condition, the size of
S/D increases to accommodate more stacking layers, resulting in worse parasitic RC performance.
(b) Inverter delay reduction percentage is calculated based on the corresponding un-trimmed case.
Higher stacking NS benefits more by implementing the S/D trimming process.

4. Conclusions

By applying the proposed self-aligned S/D trimming process, the parasitic S/D RC
has been significantly reduced while retaining the channel stress at most. As a result, the
AC performance of inverter and RO is greatly improved. Furthermore, it enables more
stacking of nanosheets for higher density and performance, which could be a key factor for
GAA NS-FETs technology.
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