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Abstract: In recent years, microbubbles have been widely used in the field of microrobots due to
their unique properties. Microbubbles can be easily produced and used as power sources or tools of
microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles
can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation
tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon
particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex
microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of
bubble applications in microrobotics including propulsion, micromanipulation, and microassembly.
First, we introduce the diverse bubble generation and control methods. Then, we review and discuss
how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and
assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss
the prospects of microbubbles in microrobotics.

Keywords: microbubbles; microrobots; micromanipulation; microassembly

1. Introduction

Bubbles are attractive, magical, multifunctional, and ubiquitous in industrial produc-
tion and our daily life. They have a variety of physical properties including large specific
surface area, low density, and surface hydrophobicity. Applications based on bubbles
have received extensive attention and research in recent decades [1,2]. Depending on
their sizes, bubbles can be categorized into macrobubbles, microbubbles, and nanobub-
bles. Macrobubbles are 2–5 mm in diameter. At the microscopic scale, bubbles can be
classified into microbubbles (diameters of 1–100 µm) and nanobubbles (diameters be-
low 1 µm) [3]. Following the development of microfluidics and microrobotics in recent
years, micro/nanoscale bubbles have been seen as an emerging tool for solving numerous
challenges in various lab-on-a-chip (LOC) applications, and they are gaining increasing
attention from researchers.

In the micro/nano research field, bubble-based applications have attracted increasing
attention because of their simplicity, controllability, and biocompatibility. They can be
flexibly integrated with different microfluidic devices or microrobots. For example, in mi-
crofluidics, bubbles can be remotely excited by an acoustic field to act as micromixers [4,5],
micropumps [6,7], or microvalves [8,9], and they can operate upon particles and cells [10,11].
In addition, in microrobotics, bubbles can act as the manipulating or transmission com-
ponents of microrobots [12,13], and the bubbles themselves can act as microrobots [14].
However, the bubble generation methods and their applications in the microrobotics field
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(e.g., propulsion, micromanipulation, and microassembly) have not been classified and
summarized in detail.

In this review, we introduce and discuss the propulsion, manipulation, and assembly
capabilities of bubbles in microrobotics. We demonstrate the importance, flexibility, and
versatility of bubbles, as described in typical research papers. A schematic diagram of the
generation and control methods of bubbles and their roles in microrobotics is shown in
Figure 1. In Section 2, we introduce the methods of bubble generation (chemical reaction,
direct acquisition, and optothermal effect) and control (acoustic oscillation, optothermal
effect, and electrowetting-on-dielectric (EWOD) technology). In Section 3, we discuss how
bubbles can be used as propulsion mechanisms for microrobots (e.g., tubular micromo-
tors, Janus particles, and self-propelled micromachines). In Section 4, we demonstrate
how bubbles act as the tools of microrobots and can be used for micromanipulation or
transmission. In Section 5, we introduce bubbles as microrobots to achieve micromanip-
ulation and microassembly in two-dimensional (2D) and three-dimensional (3D) spaces.
Finally, we summarize the current limitations of bubbles in microrobotics and discuss
future developments.
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2. Generation and Control of Bubbles

There are many methods to produce and control bubbles. In this section, we review
several of them. The bubble generation methods include chemical reactions, direct acqui-
sition, and the optothermal effect. Bubble control methods include acoustic oscillation,
optothermal effect, and EWOD technology. These methods can be effectively combined to
develop diverse applications based on bubbles. For example, the direct acquisition of air to
generate bubbles can be combined with acoustic oscillation to fabricate microswimmers via
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facile production processes; these offer good propulsion performances. The combination
of EWOD technology and acoustic excitation can realize the movement and operational
abilities of bubble microrobots.

2.1. Chemical Reaction

Here, the principle of bubble formation via chemical reactions and its application
in self-propelled microrobots are introduced. Many chemical reactions produce gas; fur-
thermore, when the chemical reaction occurs in a liquid environment, gas agglomerates
can form gas bubbles. Among the bubble-generating chemical reactions, three types are
effective and widely applied: the decomposition of hydrogen peroxide (H2O2), water (H2O)
electrolysis, and metal oxidation. For example, H2O2 decomposition generates oxygen (O2)
to form bubbles via

H2O2
catalyst→ H2O + O2 ↑ . (1)

H2O2 decomposes slowly; hence, gold (Au), platinum (Pt), and titanium dioxide (TiO2)
are usually used as catalysts [15,16]. This reaction is often used to drive the movement
of tubular micromotors and bimetal nanorods [17]. For example, in one study, the H2O2
solution was pumped into the front of a catalytic microtubular jet engine, and bubbles were
generated at the other end of the larger opening, pushing the tube unidirectionally upon
leaving (Figure 2a) [18].

Electrolytic water produces microbubbles of hydrogen (H2) and O2:

2H2O
electricity→ H2 ↑ +O2 ↑ . (2)

The location, shrinkage, and parameters of the bubbles generated via water electrolysis
can be easily controlled, and the reaction environment is non-toxic; hence, bubbles can
be generated easily with high efficiency [19]. For example, programmable patterns of H2
and O2 bubbles can be electrochemically generated as required on the gold and copper
electrodes of a complementary metal-oxide-semiconductor (CMOS) chip, which consists of
100 × 100 electronically addressable pixels. The size of the bubble can be determined via
the electrolysis produced by the controlled current at each pixel (Figure 2b) [20].

Moreover, metal oxidation produces bubbles. Ideal Janus particles can be prepared by
splitting water into hydrogen bubbles using biocompatible and environmentally friendly
active metals such as magnesium (Mg), aluminum (Al), iron (Fe), zinc (Zn), and so on [21,22].
A transient self-destroyed micromotor fabricated from Mg/zinc oxide (ZnO) can achieve
rapid propulsion via the reaction between Mg and water (Figure 2c) [23]. The three types
of chemical reaction methods exhibit unique characteristics: electrolytic water methods
can produce relatively long-life bubbles with low energy consumption, which makes them
suitable in microfluidics roles; however, the equipment required is complex. In applications
based on the other two chemical reactions, the service life of the bubbles is not a problem.
Instead, these continuous bubbles realize the promotion of tubular micromotors and Janus
particles. Bubble propulsion micro/nanomotors based on these two reactions have become
the most popular because of their fast and highly dynamic movement, as a result, they
have been the subject of extensive research.
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Figure 2. (a) Actuation of the tubular micromotor via bubbles generated from the H2O2 reaction.
Adapted from Solovev et al. [18] with permission from John Wiley and Sons, Copyright 2009. (b) The
electrochemical generation of programmable on-demand H2 and O2 bubbles at the gold and copper
electrodes. Adapted from Ma et al. [20] with permission under the terms of the CC BY 4.0 License,
Copyright 2020. (c) Janus micromotor propelled by bubbles generated via the chemical reaction of
Mg with water. Adapted from Chen et al. [23] with permission from the American Chemical Society,
Copyright 2016.

2.2. Direct Acquisition

The direct acquisition method uses the incompatibility of air (or other gases) with
liquids to form bubbles directly [24]. These methods can be divided into active and passive
methods. The active method, also known as the injection method, involves injecting an
appropriate amount of nitrogen into the liquid of a microfluidic device to generate bubbles
directly therein (Figure 3a) [25]. Passive trapping involves the use of hydrophobic materials
to trap bubbles. Multiphase fluid systems tend to minimize their total surface energy, and
higher contact angles and lower wettability are conducive to air trapping [26]. Therefore,
hydrophobic surfaces can be used to capture bubbles floating nearby with relatively low
surface tension [27], and realize controlled and directional bubble transport [28,29]. When
grooves or other cavity structures are present inside the micropipe, air will be trapped
because of the surface tension after water or other liquids are poured into the pipe and
forced to become bubbles [30–32]. In addition, the hydrophobicity of the material facilitates
the formation of bubbles in the cavity after a semi-enclosed cavity structure is placed in
water (Figure 3b) [33,34]. Active and passive methods have their own advantages and
disadvantages, respectively. The injection method can flexibly control the generation
position and sizes of the bubbles as needed. However, due to the influence of manual
control and environmental variables, it is difficult to obtain batch bubbles of the same size.
The passive method can quickly and conveniently produce a large number of bubbles
with specifications corresponding to the shape and size of the cavity. In general, direct
acquisition represents a simple and low-cost bubble generation method.
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2.3. Optothermal Effect

In daily life, air bubbles occur in cold water during heating because the solubility of
air decreases when the temperature increases, and gases originally dissolved in the water
are released. This principle can also be used to generate bubbles at the micro/nanoscale
levels. Bubbles can be generated and controlled optically via the optothermal effect, which
converts light energy into heat energy. Due to the thermal flow, optothermal bubbles have
an adsorptive capacity and can be directly used to manipulate micro-objects. The generation
and application of optothermal bubbles can be classified into two types: (1) Microbubbles
are generated on the solid surface of heat-absorbing materials, which are often described
as micromanipulation microrobots and are introduced in this subsection. (2) Micro or
nanobubbles generated at the interface of the colloidal suspension and at a plasmonic
substrate via plasmon-enhanced photothermal effects; this can pattern colloidal particles
on substrates, referred to as bubble-pen lithography (BPL). Zheng et al. proved that
nanoparticles could be written directly onto Ag films using optothermally generated
surface bubbles (OGSB), and they realized single particle modes and particle combinations
with different resolutions and structures [35]. This technology has attracted extensive
attention from scholars in recent years, and the readers are invited to refer to the following
references for more detailed discussions on this topic [36–42].

The optothermal effect is usually used to convert light energy into heat energy, and
microbubbles are generated at the interface between heat-absorbing materials (e.g., metal,
amorphous silicon, indium tin oxide, or their combination) and liquids [14]. The experi-
mental device and movement of the optothermal bubble are shown in Figure 4a. Due to the
different types of heat-absorbing materials, the applicable laser wavelength types also differ,
primarily including near-infrared and ultraviolet light. The generation and size control of
optothermal bubbles are related to the light absorptivity and laser spot density, and the
light absorptivity is closely related to the material and thickness of the absorption layer as
well as the laser wavelength. Because the irradiation range of the laser after focusing is very
small, bubbles can be generated and controlled using the thermal gradient field generated
by the heat-absorbing material after light energy absorption. Therefore, the optothermal
method can accurately control the generation positions of bubbles; furthermore, when the
position of the spot changes, the bubbles follow the spot [43].
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The laser light exposed onto the endothermic layer (after passing through the optical
appendix and focusing objective) is circular with a Gaussian power density distribution,
and the input thermal energy Q across the endothermic layer in unit time is [44,45]

Q =
PηAηT

2πR2 exp
(
− r2

2R2

)
, (3)

where P is the input power of the laser; R is the radius of the spot; r is the distance from
the center of the spot; ηA is the laser’s photothermal efficiency; and ηT is its optothermal
conversion efficiency. When a laser beam irradiates the chip, the heat-absorbing layer
converts the light energy into heat energy; this is transferred through the chip and into
the water solution. When the laser is temporarily turned off, the temperature decreases
accordingly. In the fluid and solid regions, the temperature distribution can be determined
using Fourier’s law [46,47], expressed as:

ρCp
∂T
∂t

+∇ · (−kT∇T) + ρCpu · ∇T = Q, (4)

where ρ is the density; Cp is the heat capacity; T is the temperature; t is the time; kT is the
coefficient of heat conduction; u is the liquid velocity; and Q is the input power density.
Temperature is the main factor affecting the generation of microbubbles. In the fluid and
bubble areas, heat transfer causes flow, and the flow velocity can be described by the
Navier–Stokes equations [48,49], as:

ρ
∂u
∂t

+ ρ(u · ∇) = ∇ ·
[
−pI + µ

(
∇u + (∇u)T

)]
+ ρg, (5)

ρ∇ · u = 0, (6)

where p is the pressure; I is the identity matrix; u is the viscosity; and g is the gravitational
acceleration. A temperature gradient and convection flow pattern can be formed around the
optothermal bubbles (Figure 4b) [50]. The temperature decreases along the radial direction
via convective cooling along the top and bottom surfaces. This temperature gradient causes
a corresponding convective flow that forms a clockwise flow pattern near the bubble–liquid
interface. This microscale circulation is caused by the Marangoni effect [51,52]. The velocity
field between the liquid layers (caused by the thermal Marangoni effect) can be described
as [53]

η

(
∂µ

∂n

)
= γT

(
∂T
∂t

)
, (7)

where η is the dynamic viscosity; µ is the tangential component of the fluid velocity vector
at the liquid–air interface; and n and t are the unit vectors of the normal and tangential
directions of the interface, respectively. γT = ∂γ/∂T is the derivative of the surface tension
γ with respect to temperature. The Marangoni convection and surface tension of the
optothermal bubble exert forces on the particles suspended in solution to achieve particle
manipulation [54], cell deformations [55], cell perforation, and lysis [56,57]. Optothermal
bubbles can be generated and moved flexibly to any position on the surface of a 2D
chip. Their size can be easily controlled, and they can attract and operate micro-objects
without the assistance of other physical fields. However, the operation and applications of
optothermal bubbles are limited by the 2D plane. Realizing multiple optothermal bubble
clusters requires complex and expensive equipment; however, the application value must
be further developed.
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2.4. Acoustic Oscillation

The bubbles excited by acoustic waves and the bubble-oscillating mechanism used
in operation and propulsion are described in this section. Microbubbles can be used in
large-scale propulsion and operation because they resonate under the action of acoustic
waves and oscillate the gas–liquid interface, which changes the flow direction and speed
of the microfluids. Oscillating bubbles include inertial and non-inertial cavitation [58].
Inertial cavitation occurs when the oscillation amplitude of a bubble is sufficiently high
and exceeds a certain threshold; then, the bubble expands and shrinks sharply or even
collapses. This reaction can be used in biological applications such as cell sorting and
cell lysis [59,60]. Most oscillating bubbles in microfluids are stable, non-inertial cavitated
bubbles. Oscillating bubbles have natural frequencies, and when they have the same
frequency as the excitation acoustic field, they reach a maximum vibration amplitude [1],
expressed as

f0 =
1

2π

√
1
ρ

[
3κ

(
P0 +

2σ

R
− PV

)
−
(

2σ

R
− PV +

4µ2

ρR0

)]
1

R0
, (8)

where µ is the dynamic viscosity of the liquid; R0 and R are the initial and instantaneous
radii of the bubbles, respectively; P0 is the constant far-field pressure; σ is the surface
tension at the gas–liquid interface of the bubble; PV is the vapor pressure; and κ is the
polytropic index. In addition, the f0 of the bubbles in the tube or microchannel is

f0 =
1

2π

√
κP0

ρL0LB
, (9)
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where L0 and LB are the lengths of the liquid in the tube and the bubble column, respectively.
Acoustically vibrating bubbles usually exhibit two typical oscillation modes: (1) volumetric
or (2) reciprocal along the axis [61,62]. Under the excitation of acoustic waves, the particles
close to the bubbles are primarily affected by the acoustic streaming force (estimated by
Stokes drag force), that is, the viscous resistance caused by the streamline direction of the
micro flow field, and the secondary acoustic radiation force (also known as the Bjerknes
force) caused by the scattering effect of the bubble on the incident acoustic wave. The
dominant force can be calculated by the ratio of magnitudes [63–65]. Acoustic bubbles can
not only be used to manipulate particles, cells, and other objects but also to manipulate
fluid flows within microfluidic devices. For example, Ahmed et al. reported that using
ultrasound to oscillate bubbles trapped in a “horse-shoe” structure inside microtubules
could affect fluid flow (Figure 5a) [66]. Under the action of acoustic waves, the contact
surface between the microbubbles and surrounding liquid vibrates, which triggers mi-
crostreaming [67,68]. In addition, medical microbubble contrast agents driven by ultrasonic
pulse can be used for treatment delivery and monitoring [69].
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In addition, Dijkink et al. reported that a semi-closed tube immersed in a liquid
can be filled with a certain amount of gas. Under the action of acoustic waves, the gas
is alternately discharged and pulled into the liquid through the open end of the tube
(Figure 5b) [70]. The liquid leaves the pipe as a jet and enters the pipe simultaneously
from the entire available stereo angle, forming a net momentum source that can drive
this “acoustic scallop.” Therefore, the combination of acoustic bubbles with microtubules,
microcavities, and various microstructures can generate forces for driving microrobots. In
general, acoustic oscillation technology offers the selective excitation of bubbles, a wide
range of action, simple equipment, easy implementation, and more.

2.5. Electrowetting-On-Dielectric (EWOD)

This section introduces the mechanism of the electrowetting method for bubble con-
trol. EWOD technology can change the contact angle between the droplets and dielectric
layer; it can be used to manipulate the generation, transportation, mixing, and splitting
of droplets [71,72]. When an electric voltage V is applied between the aqueous sessile
droplet and electrode, the droplet spontaneously spreads out on the dielectric surface. The
contact angle θ is modulated by the applied voltage according to the Lippmann–Young
equation [73]:

cos θ = cos θ0 +
εε0

2γ1gt
V2, (10)
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where θ0 denotes the permittivity of the vacuum; ε is the dielectric constant of the dielectric
layer; γ1g is the gas-to-liquid interfacial tension; t is the thickness of the dielectric layer; V
is the electric potential; and θ0 is the initial contact angle at V = 0 V.

Similar to droplet operation, Zhao et al. realized bubble transportation in any direction
on a 2D surface using the EWOD principle [73]. The position of the bubble was controlled by
the switching state of the electrodes underneath the hydrophobic dielectric layer. Activating
the electrode on the left caused the bubble to move one step to the right. Likewise, the
sequential activation of the subsequent electrodes produced continuous motion of the
bubble. Subsequently, Chung et al. (of the same research group) combined the EWOD
technology with acoustic oscillation to generate cavitation microstreaming around the
bubble, and they realized the capture, transportation, and release of glass microbeads,
fish eggs, and Daphnia via the moving bubble (Figure 6) [74,75]. EWOD and acoustic-
based microbubbles are effective and noninvasive tools for processing micro-objects. The
limitation of the EWOD method is that it can only be used to control the bubble’s position
in the 2D plane. Therefore, it must be combined with other technologies (e.g., electrolytic
water) to generate bubbles alongside the acoustic waves to excite the bubbles and strengthen
the control thereof.
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3. Bubbles Serving as Propulsion System

Bubbles can form an integral component in microrobots and provide their driving force.
In this section, we review the micro/nanomotors that are propelled by bubbles generated
via chemical reactions, and microswimmers propelled by bubbles driven by acoustic waves.
Note that researchers in various fields refer to artificially prepared, cableless, movable, and
controllable microstructures differently, using terms such as microrobots, micromotors,
micromachines, and microswimmers; these were all classified as microrobots in this article.

3.1. Propulsion by Catalytic Reaction Generated Bubbles

In the past few decades, researchers have developed many different methods to drive
and control micro/nanomotors. The propulsion mechanisms mainly include chemical



Micromachines 2022, 13, 1068 10 of 31

propulsion (concentration-gradient propulsion, self-electrophoresis propulsion, and bubble-
propelled), external-physical-fields driving (light field, magnetic field, and ultrasound),
and hybrid propulsion [76–78]. Micro/nanomotors can be controlled by magnetic field,
electric field, acoustic field, and other methods [79,80], and they have broad applications in
biomedical [81] and water environments [82]. Among these, the micro/nanomotors that
use catalytic reactions to produce bubbles and self-propel via the bubble recoil mechanism
represent successful cases. This section describes the bubble-based propulsion of hollow
tubular micromotors, Janus particles, and micromachines.

3.1.1. Self-Propelled Tubular Micromotors

Tubular micromotors represent the most common self-propelled machines because of
their simple structure, ease of manufacture, and multifunctionality [83]. Hollow tubular
engines are typically manufactured by rolled-up nanotechnology [84] and template elec-
trodeposition [85,86]; they consist of multiple layers of different metal curls. The research
team led by Oliver first prepared hollow tubular nanomotors propelled by bubbles, which
reduced the weight of the microrobot and improved its driving efficiency [87,88]. Bubble
propulsion is the result of three phenomena: capillarity, bubble growth, and bubble extru-
sion [89–92]. In most tubular micromotors, the Pt layer acts as a catalyst to decompose the
fuel in the solution (e.g., H2O2) and produce bubbles. The bubbles diffused and eventually
broke or separated from the open end of the tubular micro/nanomotor. Once the bubble
was ejected from one open end of the tube, the tube began to move in the opposite direc-
tion [93]. The Au interlayer was used to connect the Pt and Fe layers, whilst the outermost
titanium (Ti) layer improved the mechanical strength of the micromotor [94]. The less
expensive silver (Ag) catalyst can also be used for bubble propulsion [95]. Methods such as
adding ferromagnetic layers of Fe, cobalt (Co), and nickel (Ni); optical control [96,97]; and
ultrasound [98] can be used to control the direction or speed of the micromotor.

Bubble-based functionalized tubular micromotors are widely used in biomedicine [99,100].
For example, tubular micromotors loaded with biomolecules and particles can move to the
required position and realize cargo collection and delivery. Wu et al. [96] modified the inner wall
of a tubular micro/nanomotor using a thermally sensitive gelatin hydrogel layer containing
Au nanoparticles and drugs. Near-infrared light produced considerable heat around the Au
nanoparticles; this induced deformation of the hydrogel and led to rapid release of the drug.
Zhang et al. [101] proposed a chemically powered jellyfish-like micromotor that could be
propelled to a speed exceeding 209 µm/s via oxygen bubbles generated by catalase in 1.5%
H2O2 fuel. Luo et al. [102] prepared a tubular micromotor containing an inner catalytic Pt layer,
intermediate magnetic Ni layer, and outer cationic branched polyethyleneimine (PEI) layer. The
micromotor was guided by a magnetic field and propelled by bubbles to extract nucleic acids
efficiently. The fast movement of the bubble-propelled functional tubular micro/nanomotors
means that they can also quickly sense and detect biomaterials. For example, a reduced
graphene-oxide (rGO)/Pt double-layer tubular micromotor with a large number of active
sites on the rGO surface can realize the rapid quantitative analysis of molecular concentration
according to the fluorescence signal; this was used for the fluorescence detection of ricin [103].
In addition, functionalized tubular micromotors can also capture and collect molecules and
particles whilst moving rapidly in solution, which can be applied to the fields of environmental
purification, environmental monitoring, and pollutant degradation [104].

Clustering represents a future development direction for tubular micromotors [105].
Lu et al. [106] proposed dandelion-like microswarms assembled using catalytic tubular mi-
cromotors. Under ultrasonic excitation, the tubular manganese dioxide (MnO2) micromotor
individuals were powered by the oxygen bubbles generated at their heads to swim rapidly
in H2O2 solutions. When a large bubble core, generated via the fusion of multiple microbub-
bles, was excited and oscillated by ultrasound, these micromotor individuals gathered to it
due to the locally intense acoustic field, to realize the dynamic assembly and cooperation
of micromotors in a dandelion formation. Recently, Lu et al. [107] controlled the release
and collection of tubular micromotor swarms. Hydrogen bubbles were produced at the
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tip of the charged electrode. When the bubbles oscillated driven by the acoustic field, they
produced intensified vortexes, which spontaneously dispersed the tubular micromotors
into the surrounding environment. By removing the attached bubbles, the sonoelectrode
worked at a higher ultrasonic frequency to collect the micromotors on a large-scale via
acoustic streaming (Figure 7a). Research into the precise control methods for individuals
and clusters represents the inevitable development direction of bubble-propelled tubular
micromotors. Meanwhile, developing non-toxic and biodegradable materials to replace the
components and fuels of bubble-propelled tubular micromotors also represents a difficult
problem that must be overcome in in vivo applications.

3.1.2. Self-Propelled Janus Particles

Janus particles can be divided into three categories according to their structures
and dimensions. These three categories are one-dimensional (1D) cylinders, 2D disc-
shaped particles, and 3D spherical Janus particles. The lack of central symmetry is an
inherent feature shared by these particles [108–110]. In 2004, two research teams from
Pennsylvania State [111,112] and the University of Toronto [113] independently proposed
that bimetallic nanorods be used as nanocatalytic motors in H2O2 solutions. At one end of
the micromotor, self-propulsion was realized by catalyzing the decomposition of the H2O2
solution to produce oxygen bubbles. This cylindrical micromotor was only a few hundred
nanometers in diameter, making it a real nanomotor. Micromotors propelled by bubbles
generated by the asymmetric position can overcome the limitations of the “scallop theorem”
and realize non-cyclic movement on a small-scale. Therefore, this driving method has
attracted the attention of researchers, and self-propelled microrobots of various shapes have
emerged. Howse, Gibbs, and Walther successively prepared asymmetric and flexible Janus
spheres [114–116]. When the diameter of the Janus microspheres was less than 5–10 µm,
they were self-propelled by the self-diffusion phoresis mechanism. When the diameter was
10 µm above the surface, the oxygen produced via decomposition nucleated and gathered
to form bubbles. In this case, the self-driving motion was realized by the microbubbles [117].
H2O2 is currently the most popular fuel for chemical propulsion [118,119]. Au- [120,121],
Pt- [122,123], Fe- [124,125], Ag- [126], Mg- [127], and other metal-based micro/nanorobots
can also decompose H2O2 to generate bubbles. The rebound force generated by the bubbles
can promote the movement of micro/nanorobots. The speed of the catalytic reaction can be
controlled by changing the concentration of H2O2 to adjust the speed of the nanomotor.
The moving direction can be controlled using a magnetic field or other methods [128,129],
and drug-triggered delivery can be realized by combining it with a light field [130,131].

Due to their efficient propulsion, cargo traction, accurate motion control, and design
versatility, these chemically powered micromotors have been proven capable of perform-
ing various biomedical tasks. Diez et al. [132] designed an innovative multifunctional
gated Pt-mesoporous silica nanomotor, which used Pt as the propulsion element, meso-
porous silica nanoparticles as the drug-loading element, and a disulfide-containing oligo
(ethylene glycol) chain (S−S−PEG) as a gating system. Under bubble propulsion via the
catalytic reduction of H2O2, it could move directionally and release drugs to kill cancer
cells. Micro/nanomotors driven by hydrogen bubbles can perform medical tasks in acidic
environments (e.g., the stomach) using the chemical reaction of Mg or Zn in acid [133,134].
Karshalev et al. [135] prepared a microrobot with Mg/TiO2 as the core; this could be pro-
pelled in a gastric acid environment and could transport Fe and selenium (Se) to treat iron
deficiency anemia. Lin et al. [136] prepared a bubble-propelled Janus gallium (GA)/Zn
microrobot. This microrobot can be propelled at a speed of 383 µm/s in a simulated gastric
acid (pH = 0.5) environment via hydrogen bubbles generated by the Zn-acid reaction. It of-
fers good biocompatibility and biodegradability and can be used for the targeted treatment
of gastrointestinal bacteria such as H. pylori (Figure 7b). However, hydrogen peroxide
solution is harmful to the human body. The micro/nanomotors based on this chemical
fuel have poor biocompatibility and cannot be truly applied to the biological environment.
Undoubtedly, bubble micromotors driven by chemical reactions in the human physiological
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environment have high biocompatibility and good development potential. For example,
the micromotor based on the Mg/Zn-acid reaction is more likely to work in the human
gastrointestinal tract.

3.1.3. Self-Propelled Micromachines

In 2002, the research team led by Whitesides manufactured a motor driven by an
asymmetric chemical reaction [137]. We describe this groundbreaking work in this section
because it is irregularly shaped and bears a closer resemblance to a miniature machine. The
self-driving machine consisted of a thin plate made of polydimethylsiloxane (PDMS) and a
porous glass filter connected by a stainless-steel pin. Pt-coated glass can catalyze the de-
composition of H2O2 to produce bubbles, which can be used as a motor to drive the PDMS
plate. Zhu et al. [138] fabricated free-swimming microfish composed of poly(ethylene
glycol) diacrylate (PEGDA)-based hydrogels and functional nanoparticles using a rapid 3D
printing technology called microscale continuous optical printing (µCOP). The catalytic Pt
nanoparticles were polymerized in the tail of the microfish so that the fish could achieve
self-propulsion by decomposing the H2O2 solution; this achieved a speed of 780 µm s−1 in
a 15% peroxide solution. Magnetic Fe3O4 nanoparticles were polymerized at the head of
the microfish, which facilitated alignment and guidance of the fish using a remote magnet.
In addition, other functional toxin-neutralizing nanoparticles could be incorporated into
the hydrogel matrix of the fish body to explore their detoxification applications. The motion
of a structure composed of multiple parts (connected by joints) can imitate the motion of
a biological system. In 2017, Yoshizumi et al. [139] connected two Au/Pt micromotors
using a polymer tube as a joint formed by stacking cationic poly(allylamine hydrochloride)
(PAH) and anionic poly (acrylic acid) (PAA) by layer-by-layer technology. The stiffness of
the polymer joint could be accurately controlled by adjusting the thickness of the polymer
layer, and the equilibrium bending angle between the two motors could be adjusted by
heat or chemical treatment. They realized bending and rotation of the Pt/Au–Au/Pt and
Pt/Au–Pt/Au structures, respectively.

Recently, Li et al. [140] used a two-photon absorption-based direct laser writing
technique to prepare a fish-shaped microrobot with a serrated tail and used sputtering
deposition technology to coat a Ni layer with a thickness of 200 nm and a Pt layer with
a thickness of 100 nm onto the vertical structure on the substrate. The Ni and Pt layers
were responsible for the external magnetic response and chemical catalysis, respectively.
Therefore, the microrobot could achieve high-speed motion and magnetic steering con-
trol in an H2O2 solution. More reaction channels mean that the number of propulsion
bubbles and the speed of the microrobot increase. Therefore, the multi-channel and nano
interface on the serrated tail can considerably increase the catalytic reaction and allow
the microrobot to move at a high speed (Figure 7c). These micromachines have unique
structures, which expand our range of possibilities and may inspire researchers to design
microrobots with diverse architectures and efficient motion performances to explore the
further applications of bubble-propelled microrobots based on catalytic reactions. Fur-
thermore, intelligent micromotors integrating induction, judgments, and responses have
become new development trends.

Although bubbles are not a part of these microrobots, they provide power to them. In
another bubble driving method, the bubble is a component of the microrobot body and
generates a driving force through vibration of the gas–liquid interface under the excitation
of an acoustic field, as presented in Section 3.2.
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3.2. Propulsion by Acoustic Oscillating Bubbles

Microswimmers have considerable potential for various biomedical applications in-
cluding targeted drug delivery [141], microsurgery [142,143], and medical innovations [144].
When considering the propulsion and control of microswimmers in actual biomedical
environments, various propulsion principles have been studied including biofuel [145],
chemical fuel [146], and magnetic drive [147]. However, their practical applications are
limited. Acoustic actuation is promising and attractive because it is noninvasive and bio-
compatible [148,149]. In an acoustic bubble-driven microrobot, the bubble itself, as an
“engine,” generates a driving force under the action of an acoustic field and becomes an
indispensable part of the robot body [150]. The speed of microswimmers can be easily
controlled using acoustic waves with different ultrasonic frequencies. In 2011, Won et al.
first prepared a micron/milli-sized open box using an Al film and verified that when the
acoustic wave propagated to the bubbles on the surface of the box in the liquid medium,
those bubbles oscillated and generated cavitation microstreaming, which could be used to
promote small floating objects [151]. In 2015, Ahmed et al. [152] demonstrated the use of
oscillating bubbles to drive microswimmers. They used micro electro mechanical system
(MEMS) technology to create a microstructure with a semi-closed pipe. The bubbles in
the microchannel were excited by the acoustic field to generate thrust at the gas–liquid
interface vibration. The microrobot could realize straight-line, turning, and other motions
by selectively exciting bubbles in different positions. Subsequently, they prepared a type of
soft microswimmer polymerized with a superparamagnetic particle chain, which could
move under the action of acoustic bubbles; they controlled its direction using a magnetic
field [153] (Figure 8a). The microrobot could push and pull particles and cells. Compared
with chemical driving, microrobots driven by acoustic bubbles require no fuel and reduce
the requirements of the liquid environment, which makes them more suitable for use in
organisms [154,155].
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Subsequently, an increasing number of researchers have designed a variety of mi-
croswimmers. Feng et al. [156] designed and fabricated a 1D parylene microchannel with a
single end opening using microphotolithography technology. The bubbles trapped in the
microchannel were oscillated by the external acoustic field, and they periodically generated
an inlet/exhaust microstreaming flow through the opening of the microchannel. Under
an increase in the Reynolds number, the difference between the intake and exhaust flow
increased and finally produced a net flow to drive the microchannel devices. Subsequently,
they designed a 2D microswimmer with bi-directional (linear and rotational) propulsion
steering based upon acoustic oscillation bubbles alone [157]. To realize 3D movement of
the microswimmer, they combined microtubules of different lengths and used acoustic
waves of different directions and frequencies to excite the bubbles. However, the size of the
microrobot body increased significantly [158] (Figure 8b).

To prolong the service lives of microbubbles, Bertin et al. [159] prepared armored mi-
crobubbles (AMB), which ensured that the microbubbles could produce contactless acoustic
propulsive flows for several hours under stable conditions. Subsequently, they produced
double and triple propulsors based on armored bubbles [160], and more recently studied
the multi-directional streaming flows generated by AMBs with multiple surface holes
under ultrasound excitation [161]. Louf et al. designed a hovercraft-mimicking microswim-
mer with only one bubble, which could hover on a base and move [162]. Ren et al. [33]
designed a microswimmer based on a bubble half-capsule shape, which was controlled by
acoustic and magnetic fields. The secondary Bjerknes force and locally generated acoustic
streaming propulsive force affected the microswimmer. The combined force of the two
forces enabled it to swim independently under the guidance of a magnetic field in a 3D
space. By changing the shape of the microrobot and introducing the design of “fin”, the
movement direction of the microrobot could be controlled, and climbing in the pipeline
could be realized (Figure 8c) [163]. Subsequently, Aghakhani et al. manufactured an
acoustic bubble capsule microrobot that could be propelled at a high shear rate. They
demonstrated the effective propulsion of this microrobot in various biological fluids and
conducted in vitro navigation through the mucus layer on the biological 3D surface [164].
Recently, Luo et al. [34] designed a microswimmer based on two different bubbles, which
could be completely promoted and manipulated via an ultrasonic transducer and exhibited
boundary-following characteristics similar to biological swimmers; this may improve the
current technologies for targeted drug delivery (Figure 8d).

In addition, rotational micro-propellers can be manufactured using the driving force
of acoustically actuated bubbles. In 2018, Jang et al. proposed a novel acoustic energy
harvesting technique using periodically vibrating piezoelectric cantilever beams (driven by
synthetic jets induced by acoustic oscillation bubbles) to generate electrical energy [165].
Subsequently, Dincel et al. developed an acoustic frequency driven microbubble motor
(AFMO) device and achieved high-speed rotation [166]. Recently, Mohanty [167] manufac-
tured a magneto-acoustically actuated micro-propeller, which could be used not only as a
mobile microfluidic mixer, but also as an automatic propulsion microrobot for directional
operation (Figure 8e).

In recent years, bionic bubble microrobots have become a popular research topic.
Mohanty et al. [168] fabricated an unconstrained microrobot called CeFlowBots, which
contained a set of acoustic resonance bubbles that pumped liquid through its body to
improve propulsion. The CeFlowBots were manipulated under the combined influence of
magnetic and acoustic fields to grasp and release objects in the workspace. CeFlowBots
can be navigated in a remote environment and can perform directional operations for drug
delivery (Figure 8f). Acoustic bubble microrobots with smaller sizes, enhanced motion
capabilities, improved control performance, and wider application ranges represent the
future development directions. For microrobots driven by multiple bubbles of different
sizes, coupling resonance may occur between bubbles under excitation of the acoustic
field; this usually prevents the microrobots from being accurately located. Therefore, the
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combination of acoustic and magnetic fields is necessary, particularly for microrobots
applied inside the human body.

Micromachines 2022, 13, x FOR PEER REVIEW 15 of 31 
 

 

field; this usually prevents the microrobots from being accurately located. Therefore, the 
combination of acoustic and magnetic fields is necessary, particularly for microrobots ap-
plied inside the human body. 

 
Figure 8. (a) A schematic of the acousto-magnetic soft microswimmers fabrication setup, the mag-
netic particles and cavity inside the microswimmer. Adapted from Ahmed et al. [153] with permis-
sion from John Wiley and Sons, Copyright 2017. (b) 1D microtube, 2D microswimmer, and 3D mi-
crodrone powered by acoustic microbubbles. Adapted from Liu et al. [158] with permission from 
The Royal Society of Chemistry, Copyright 2021. (c) Fabrication of the microrobot and schematics 
of the microrobot propulsion. Adapted from Aghakhani et al. [163] with permission under the terms 
of CC BY-NC-ND 4.0 License, Copyright 2020. (d) Microswimmer powered and steered by an ul-
trasound transducer in a fluid environment as well as its swimming trajectory. Adapted from Luo 
et al. [34] with permission from Royal Society of Chemistry, Copyright 2021. (e) Acoustic actuation 
test-bed, two types of propellers, and time-lapse images of the propeller. Adapted from Mohanty et 
al. [167] with permission under the terms of the CC BY License, Copyright 2021. (f) Streaming pat-
tern and resultant flow of the magneto-acoustic-actuated CeFlowBots. Adapted from Mohanty et al. 
[168] with permission under the terms of the CC BY License, Copyright 2021. 

4. Bubbles Serving as Micromanipulators 
Bubbles may not form the main body of microrobots but do play an irreplaceable 

manipulation role. In this section, we review the bubbles that serve as operators in com-
bination with 3D motion machines such as micropipettes and microrobots, and bubbles 
that serve as generators and transmission components to realize energy conversion. 

4.1. Bubble Operators 
Bubbles can adsorb and release micro-objects under the excitation of an acoustic field; 

thus, it can function as a manipulator for microrobots. Bubbles can be attached to the sur-
face of the microrobot to perform operations. Chung et al. placed an acoustically excited 

Figure 8. (a) A schematic of the acousto-magnetic soft microswimmers fabrication setup, the magnetic
particles and cavity inside the microswimmer. Adapted from Ahmed et al. [153] with permission
from John Wiley and Sons, Copyright 2017. (b) 1D microtube, 2D microswimmer, and 3D microdrone
powered by acoustic microbubbles. Adapted from Liu et al. [158] with permission from The Royal
Society of Chemistry, Copyright 2021. (c) Fabrication of the microrobot and schematics of the
microrobot propulsion. Adapted from Aghakhani et al. [163] with permission under the terms of CC
BY-NC-ND 4.0 License, Copyright 2020. (d) Microswimmer powered and steered by an ultrasound
transducer in a fluid environment as well as its swimming trajectory. Adapted from Luo et al. [34]
with permission from Royal Society of Chemistry, Copyright 2021. (e) Acoustic actuation test-bed,
two types of propellers, and time-lapse images of the propeller. Adapted from Mohanty et al. [167]
with permission under the terms of the CC BY License, Copyright 2021. (f) Streaming pattern and
resultant flow of the magneto-acoustic-actuated CeFlowBots. Adapted from Mohanty et al. [168]
with permission under the terms of the CC BY License, Copyright 2021.

4. Bubbles Serving as Micromanipulators

Bubbles may not form the main body of microrobots but do play an irreplaceable
manipulation role. In this section, we review the bubbles that serve as operators in combi-
nation with 3D motion machines such as micropipettes and microrobots, and bubbles that
serve as generators and transmission components to realize energy conversion.

4.1. Bubble Operators

Bubbles can adsorb and release micro-objects under the excitation of an acoustic field;
thus, it can function as a manipulator for microrobots. Bubbles can be attached to the
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surface of the microrobot to perform operations. Chung et al. placed an acoustically excited
oscillating bubble at a hydrophobic micro-rod top to realize the adsorption and movement
of particles in a 3D space [169]. Lee et al. [170] generated bubbles on a microfabricated
chip composed of tip-shaped electrodes by controlling the applied voltage and time of
electrochemical methods. Subsequently, two bubbles were successively transferred to the
tip of the U-shaped rod coated with a hydrophobic layer, and the fish eggs and glass beads
were manipulated under the excitation of the acoustic field. In 2016, Ahmed et al. realized
the rotation of particles based on the torque induced by the hydrodynamic flow field
generated by the acoustic bubble microstreaming. Inspired by this, the bubble operators
further realized 3D rotation and graph reconstruction of the particles and cells. Recently,
Li et al. contained a microbubble at the top of a micropipette, and generated secondary
radiation force and microstreaming to capture and rotate microbeads in an aqueous medium
via acoustic vibrating microbubble near its resonant frequency [171]. Using the same
principle, Zhou et al. [172] generated a bubble at the tip of the micropipette of a 3D gripper,
and the bubble volume was controlled by adjusting the pressure in the micropipette. By
replacing the micropipette with different needle tip sizes, bubbles with diameters of 20 µm
to 1 mm were obtained. Due to the secondary acoustic radiation force, the neighboring
microparticles were attracted to the gas–liquid interface and transported to the desired
position by the micropipette. When the transducer was turned off, the objects were released
(Figure 9a).

For a microrobot moved and steered by a magnetic field, the bubble can be attached to
its surface or contained in its interior. Kwon et al. realized the wireless control of bubbles
using a magnetic control microrobot instead of a micro-rod [173]. They used the injection
method to adsorb a bubble at the bottom of the magnetic plate, and the magnetic field
generated by three pairs of electric coils could wirelessly control the robot and bubble in
3D space. The acoustic oscillating bubble could grasp and move the microbeads or cells
to a designated position; then, the objects could be released by turning off the ultrasound.
Park et al. [174,175] proposed a microrobot that primarily consisted of a compressible
bubble (that functioned as a gripping tool) and a pair of permanent magnets. Using
an external magnetic controller to control the 2D motion of the microrobot, the acoustic
oscillation bubble on the microrobot could carry out cell enucleation. Giltinan et al. [12]
designed a magnetic microgripper using the bubble capillary force. The microgripper was
composed of a cuboid containing at least one cavity and the bubbles thereby captured. The
bubbles bore the capillary force and maintained the grip of the parts during movement
of the microgripper, which was controlled by a magnetic field. When the microrobot
sizes are further reduced to the millimeter level, they are expected to be able to enter
blood vessels or other biological pipelines to complete specific tasks [176,177]. Kwon
et al. further realized micro-object manipulation in a microfabricated channel using an
electromagnetically driven microrobot with an acoustically oscillating bubble. The acoustic
oscillating bubble allowed the microrobot to realize more flexible, accurate, noninvasive,
and harmless micromanipulation, which has great application value in the analysis of
living cells and biological samples.

4.2. Bubble Generator and Transmission Components

Bubbles actuated by acoustic waves can be used as a source of mechanical energy for
“generators.” Jeon et al. [178] suspended a bubble on a flexible piezocantilever. When the
bubble was excited by acoustic waves near its resonance frequency, it oscillated and gen-
erated cavitation microstreaming around it. The microstreaming bent the piezocantilever
with fine vibrations, which caused the piezocantilever to generate electric power (Figure 9b).
The generated voltage mainly depended on the frequency of the applied acoustic field and
the size of the bubble, and it was inversely proportional to the distance between the bubble
and piezoelectric actuator [179]. They also discovered that the electrical output could be
improved by increasing the number of bubbles.
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Using the light-induced thermal convection and the bubble’s surface tension, bubbles
can be used as “transmission parts” in microrobots or microcomponents to provide the
required force. Villangca et al. [13] proposed an optical driven micro-tool to realize a
syringe function. They fabricated the “chassis” and “wheels” of the micromachine via two-
photon-polymerization and deposited metal layers inside the micromachine via electron
beam physical vapor deposition. The motion of the machine was manipulated using the
four captured beams. When light shone on the inner metal layer, a bubble was generated,
and the resulting thermal convection could be used to load and unload cargo (Figure 9c).
In addition, Jiang et al. realized the reversible connection between SU-8 components using
a directional jet and the surface tension of bubbles generated via a laser [180].
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Figure 9. (a) The rotation and transportation motion of an acoustic bubble-based noninvasive
microgripper. Adapted from Zhou et al. [172] with permission from John Wiley and Sons, Copyright
2021. (b) Upper: energy harvesting mechanism based on an acoustically oscillating bubble. Lower:
still images of the oscillating bubble. Adapted from Jeon et al. [178] with permission from Springer
Nature, Copyright 2021. (c) Upper: fabrication of micro-tools for material transport. Lower: collection
of polystyrene beads next to the micro-tool used as a tiny pump. Adapted from Villangca et al. [13]
with permission under the terms of the CC BY-NC-ND 4.0 License, Copyright 2016. (d) Acoustic
bubble-based drug delivery technology: drug carrying, releasing, and penetrating. Adapted from
Jeong et al. [181] with permission from Elsevier, Copyright 2020.

Bubbles can also act as the “controllable switch” of microrobots to undertake the tasks
of drug delivery, drug release, and drug penetration promotion in the body (Figure 9d) [181].
The drug was stored in a long tube of a double tubular microrobot, sealed between two
bubbles of different volumes. The most giant bubble was placed inside the short tube, and
the tail was a magnetic component used for driving and navigation. Driven by acoustic
waves of different frequencies, the inner bubble in the long cavity released the outer bubble
and drugs through oscillation; then, the largest bubble in the short tube oscillated to
accelerate the diffusion of drugs. In these microrobots, bubbles represent the medium of
energy conversion including the conversion of acoustic, light, and heat energy into kinetic
energy; hence, these microrobots can complete a variety of functions.
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5. Bubbles Serving as Microrobots

Bubbles can be used as microrobots to manipulate and assemble particles, cells, and
microstructures. In this section, we review the bubble microrobots that can perform
dexterous and complex microassembly tasks in 2D and 3D spaces.

5.1. Bubble Microrobots Used in 2D Manipulation and Assembly

Whether driven by EWOD or optically, bubbles can move across the surface of the
chip. Moreover, both methods can be combined with an acoustic field to vibrate the bubble
and realize the grasping and movement of micro-objects, although these operations are
only on the 2D scale. This section describes the EWOD-driven, optothermal, and bubble
microrobots combining light and acoustic fields.

5.1.1. EWOD-Driven Bubble Microrobots

Researchers at the University of Pittsburgh have applied EWOD technology to manip-
ulate bubbles. When the electrodes are energized in turn, bubbles can move on the electrode
surface (Figure 10a) [182], and the mixing and splitting of bubbles can also be realized [73].
Alternating current-EWOD (AC-EWOD)-driven bubbles can be used to enhance fluid mix-
ing in microfluidic chips and perform micromanipulation and particle separation [183,184].
In 2012, Lee et al. used bubbles in EWOD to promote the mixing of microfluidics [184].
Subsequently, they realized the driving of two bubbles in the EWOD [185]. To improve
the controllability of the manipulation, double bubbles were used to form a flow field
with a fixed direction; this could be used to realize the directional transport of fish eggs.
Recently, Yan et al. induced the escape, coalescence, and departure of bubbles activated by
an electric field by using a simple EWOD device [186]. When the copper electrode wire
(inserted into deionized water) was placed on one side of the bubbles, the bubbles escaped
from their initial positions with the opening of the voltage. The pin-on-one-side EWOD
device could continuously push bubbles out of their initial position under a low-frequency
voltage, without the need for a complex patterned electrode array channel design. Sun
et al. [187] observed standing waves on a millimeter-sized bubble surface on the substrate of
an EWOD device and discovered that the amplitudes of these waves varied with frequency,
which could identify three formants. However, the limitation of EWOD technology in
operating bubbles is that, although it can control the positions of bubbles, MEMS chips
with electrodes must be designed and manufactured in advance, and the route of bubble
movement is limited by the arrangement of electrodes and is restricted to the 2D plane. In
addition, bubbles must be excited by acoustic waves to have a strong adsorption capacity
for manipulating micro-objects.

5.1.2. Optothermal Bubble Microrobots

Compared to the EWOD method, the bubbles generated and controlled by the op-
tothermal method can move freely on the chip under movement of the laser spot and do
not require ultrasonic excitation to manipulate micro-objects. In 2007, Ohta et al. first
demonstrated the movement of optothermal bubbles formed via laser absorption on an
amorphous silicon substrate [14]. Hu et al. [51] showed that optothermally generated
bubbles could move and arrange multiple triangular SU-8 photoresist microstructures.
Subsequently, they used a laser-induced bubble to drive a disc-shaped PEGDA hydrogel
microrobot with a conical groove at the bottom [54]. One or a pair of cooperative bubble
microrobots could assemble 20 µm-diameter polystyrene beads, operate individual yeast
cells, and assemble a square agarose microgel encapsulated with cells into a 3 × 4 array.
They also designed a T-shaped bubble-driven light-absorbing microrobot [188]. In 2014,
Zhao proposed that under the synergistic action of Marangoni convection and the surface
tension of an optothermal bubble microrobot, an adsorption force could be applied to the
particles suspended in a solution. When the bubble moves on the solid–liquid interface, it
can pull the microparticles to move with it (Figure 10b) [44].
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In terms of cell operation, optothermal bubble microrobots can realize cell movement
and deformation [189], perforation, and lysis [190]. In 2013, Hu et al. [55] proposed an
opto-thermocapillary micromanipulator (OTMm). Intermittent laser irradiation was used
to induce a bubble to quickly separate from the substrate and float upward, forming a light
thermocapillary convection around it to move the cells at a certain distance. When a fixed-
frequency laser was used to irradiate the chip, an endless stream of bubble microrobots
could drive the cells to move continuously. This non-contact operation method caused al-
most no damage to the cells. Later, Fan et al. of the same research group used the oscillation
of microbubble size (caused by the opening and closing cycle of a laser pulse) to generate
shear stress on the nearby cell membrane to realize cell perforation [56]. The perforation
efficiency was further improved by generating microbubbles with size oscillations directly
below the target cell [191]. Subsequently, they integrated a single-cell analysis platform
for cell perforation, lysis, and manipulation (Figure 10c) [190]. Yuan et al. [192] studied
the cell membrane deformation and biological effects caused by the jet flow generated by
laser-induced tandem bubbles (TBS) at the single-cell level. In addition, Fujii et al. [193]
demonstrated that optothermal bubbles could manipulate a single DNA nanowire and
cross-wire formation, which means that optothermal bubbles can manipulate other bio-
logical macromolecules. Visible-light thermal bubble microrobots have broad application
prospects in biomedicine and assembly engineering [194,195]. Multiple bubble microrobots
can have a synergistic effect [196,197]. Rahman et al. generated and manipulated multiple
opto-thermocapillary flow-addressed bubble (OFB) microrobots at the same time by using
the spatial light modulator (SLM) to realize independent and cooperative operation tasks
(Figure 10d) [198,199]. They realized the controllable movement of micromodules and glass
beads and improved the operation efficiency of bubble microrobots.

5.1.3. Bubble Microrobots Combining Light and Acoustic Fields

The high temperature on the surfaces of optothermal bubbles has benefits and draw-
backs. It is conducive to cell perforation and lysis but causes severe damage when directly
operating cells. To avoid possible thermal damage and improve the biocompatibility of
optothermal bubbles, Xie et al. proposed optoacoustic tweeters [200]. They used the
optothermal effect to generate bubbles of appropriate sizes at the designated position of
the chip; then, they turned off the laser and used acoustic waves to induce the surface
bubbles to oscillate at the resonant frequency. Thus, the particles/cells were captured
locally around each bubble. Subsequently, they used acoustic microstreaming around
the oscillating bubble to measure the deformation ability of the cell (Figure 10e) [48]. In
addition to the non-destructive operation of cells, researchers have discovered that bubble
microrobots combined with light and acoustic fields also have other characteristics includ-
ing the simultaneous collection or dispersion of batch objects as well as the classification of
particles of different sizes. In 2017, Dai et al. [201] proposed a method for the simultaneous
operation and transmission of multitarget objects in an unclosed chip. The laser was turned
off and the piezoelectric actuator turned on at a certain position, and the objects gathered
to the vibrating laser-generated bubble. When the laser was turned on again, the increas-
ing volume and broken bubbles produced dispersion of the collected small objects. The
above steps were repeated at another location to realize the transfer of the object groups.
Shin et al. [202] observed that when a bubble oscillated around its resonance frequency
under acoustic excitation, it attracted large particles and repelled small particles due to the
competition between the secondary acoustic radiation force and drag force to classify the
particles. We anticipate more applications of microrobots based on light and acoustic fields
in particle and microstructure operations.
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5.2. Bubble Microrobots Used in 3D Manipulation and Assembly

Whether using EWOD technology or laser to drive and control bubbles, bubble mi-
crorobots can only be used for the 2D operation and assembly of microparticles, cells,
or microstructures. When microbubbles are blown into the liquid via an air injector, the
microflow floats the micromodule and contributes to the 3D assembly of the hydrogel
modules. Fukuda et al. used the flow field generated by bubble motions to perform a
3D operation upon cell-laden hydrogel micromodules to manufacture biological tissue
in vitro [203,204]. An air injector was used to blow microbubbles into the solution to make
the prepared micromodule float up. Simultaneously, another holding pipette was used to
collect the micromodules. When the holding pipette connected the blown micromodules in
series, the posture of each module had to be adjusted to align it. The flow caused by the bub-
ble movement can also play a role in the arrangement of micromodules (Figure 10f) [205].
Although the micromodules can realize 3D movement under the action of the flow field,
the controllability of the bubbles and micromodules is limited. This micromodule operation
and assembly method requires two actuators to control the syringe and collector. Moreover,
the technology places certain requirements upon the shape of the micromodules, and there
must be holes in the center to allow it to be picked up, collected, and aligned.

To solve these problems, Dai et al. used a 2D optothermal bubble microrobot to realize
the 3D operation and assembly of micromodules, which provided more opportunities for
the construction of biological tissues in vitro (Figure 10g) [43]. When a bubble microrobot
was generated at the bottom of the micromodule, the micromodule could be lifted and
turned over. The 3D gesture of the micromodule could be adjusted by changing the genera-
tion position and movement direction of the bubble. For example, the circular structure of a
hydrogel module could be assembled into a 3D tubular structure with the shape characteris-
tics of vascular tissue. Two annular modules of different sizes could also be nested together
to provide a possible method for analyzing the roles of cells at different positions in blood
vessels as well as the cross-vascular transmission of substances. On this basis, they used the
3D operation abilities of microbubbles to assemble micromodules with different interfaces
into an interconnected whole, referred to as an integrated assembly (Figure 10h) [206].
Multiple bubble microrobots cooperated to lift, put down, fix, and move the micromodule
to thereby realize the assembly of tenon and mortise, gear, chain, car, and various other
microstructures. Integrated assembly technology based on microbubbles provides a new
solution for the manufacturing, assembly, and development of micro/nanostructures. Re-
cently, Ge et al. used these bubble microrobots to manipulate cell-loaded microstructures
fabricated using a digital micromirror device (DMD)-based optical projection lithography
system to form peritoneal tissue, which was similar to the biological peritoneum in terms of
the mechanical properties, surface morphology, and internal microstructure [207]. The 3D
operation and assembly method proposed by Dai et al. have excellent application prospects
for in vitro biological tissue construction, microassembly factories, and more.
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Figure 10. (a) A: Schematic of a bubble-based manipulator with three operations: creation, trans-
portation, and elimination. B: Manipulation of micron-sized particles using the bubble transported
by EWOD. Adapted from Chung et al. [182] with permission from the Institute of Physics Publishing,
Copyright 2008. (b) A: Illustration of the particle manipulation process. B: Collecting and manipulat-
ing randomly distributed polystyrene particles to trace the letters “P”, “S”, and “U”. Adapted from
Zhao et al. [50] with permission from The Royal Society of Chemistry, Copyright 2014. (c) A: The
3D structure of the microfluidic chamber to culture and lyse cells. B: Brightfield and fluorescent
images before and after the adherent single-cell lysis. Adapted from Fan et al. [190] with permission
under the terms of the CC BY 4.0 License, Copyright 2017. (d) A: A single laser beam shaped by a
spatial light modulator to create dynamic optical patterns that facilitate the simultaneous control
of multiple OFB microrobots. B: Manipulation of a microstructure using a pair of OFB microrobots.
Adapted from Rahman et al. [199] with permission under the terms of the CC BY 4.0 License, Copy-
right 2017. (e) A: Schematic for the configuration of a microfluidic chamber and piezo transducer.
B: Schematic for cell stretching around an acoustically activated oscillating bubble as well as images
of a stretched spherical-shaped suspended cell. Adapted from Xie et al. [48] with permission from
John Wiley and Sons, Copyright 2016. (f) A: Schematic of the sequential pickup of micromodules
based on microbubble injection. B: Pickup of cell-laden micromodules with the hexagonal structure
from the solution. Adapted from Wang et al. [205] with permission from The American Chemical
Society, Copyright 2017. (g) A: Schematic of the system setup used to achieve the 3D manipulation
of the microstructures via optothermal bubbles. B: The 3D manipulation and nested assembly of
square ring microstructures. Adapted from Dai et al. [43] with permission from John Wiley and
Sons, Copyright 2019. (h) A: Schematic of the integrated assembly process of two microparts using
multifunctional optothermal bubble microrobots. B: The transmission of two gears and movement of
the snake-shaped structure after assembly. Adapted from Dai et al. [206] with permission from The
American Chemical Society, Copyright 2020.
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6. Summary and Outlook

Micro/nanobubbles have become a general and diversified tool preferred by an in-
creasing number of researchers as they have broad research prospects. Microrobot tech-
nology, in which bubbles play an irreplaceable and pivotal role, has developed rapidly.
This paper reviewed the recent research results for bubbles combined with microrobots.
First, the methods for generating and controlling bubbles were introduced; these are an
important theoretical basis and prerequisite for manufacturing bubble-based microrobots.
Then, the three functions of bubbles in the microrobot field—propulsion, manipulation, and
assembly—were introduced. Based on their roles in the field of microrobots, bubbles were
divided into bubble-driven microrobots, bubble operators combined with microrobots, and
bubble microrobots. The mechanisms related to these three roles are listed in Table 1. In
addition, the bubbles’ production methods and service lives as well as the advantages,
limits, and applications of each mechanism, were summarized.

Microbubbles have opened up a novel path for the development of microrobot tech-
nology and are playing a more important role in microrobotics; however, bubble-based
microrobots still suffer from some problems including short bubble service lives, reduced
controllability of bubbles (because of time offsets), simple functions, lack of intelligence,
and so on. To solve these problems, several simple methods have been proposed such
as applying chemical hydrophobic surface modification [163] or designing special cavi-
ties of microstructures [164] to enhance the stability of bubbles and prolong their service
lives, combining multiple fields to expand the functions of microrobots, and introducing
control algorithms to improve their intelligence. The challenges and possible directions
for the future development of bubbles in the field of micro/nanorobots are discussed in
detail below.

• Multi-field combination of bubble microrobots

Aside from the optothermal effect, it is difficult to drive and control a bubble micro-
robot relying only upon a single physical field. For example, microswimmers must rely
on bubbles excited by an acoustic field (to provide a driving force) and magnetic field (to
control the motion trajectory) [34]. Recently, the combination of bubble propulsion based
on chemical reactions with acoustic [107] or magnetic fields [140] has become a research
hotspot. The combination of multiple physical fields not only satisfies more complex and
multifunctional applications, but also solves the problems and limitations of a single physi-
cal field. For example, to avoid the influence of high temperature in the laser area of an
optothermal bubble microrobot on cells, non-contact operation was realized by combining
it with an acoustic field [200]. The compatibility of multiple physical fields may form the
basis for the integrated functionalization of bubble microrobots in the future. We hope
that bubble microrobots can achieve richer capabilities and perform more comprehensive
functions through the combination of multiple fields.

• Research and application of bionic microrobots based on bubbles

In recent years, functional bionic robots have become a focus of scientific research.
When a jellyfish swims in seawater, the umbrella shrinks and relaxes constantly, and the
water pressure in the umbrella cavity is pushed out of the body, allowing it to swim slowly
in the opposite direction. Other marine creatures such as octopuses and squid also swim
by spraying seawater, which is similar to the microrobot driven by the jet flow generated
via acoustically actuated bubbles. Hence, several bubble-driven bionic microrobots and
microswimmers based on acoustic and magnetic fields have been manufactured, and
their movement and operation abilities have been demonstrated in fluids [168]. However,
in addition to imitating the motion characteristics of organisms, bubble-based bionic
microrobots can combine real-time monitoring and imaging, intelligent motion control,
image processing, and other technologies, making them more intelligent and further
expanding their practical applicability in microfluidics.
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Table 1. The role of bubbles in the field of microrobots.

Role/Mechanism Production Service Life Advantage Limit Application Ref.

Propulsion/
chemical reaction

generated
bubbles

Chemical reaction

Short, bubbles are
generated and

quickly separated
from the

microrobot

Fast driving
speed

The generation of
bubbles and the

movement
performance of
microrobot is

affected by the
consumption of

chemical fuel; low
biocompatibility

Biomedicine,
biological
detection,

environmental
purification

[107,136,140]

Propulsion/
acoustically

excited bubbles
Direct acquisition

Related to the
shape and

hydrophobic
properties of the

bubble-
containing

structures and
acoustic

excitation
parameters

Simple and
biocompatible

equipment

Under long-time
acoustic

excitation, the
change of bubble
volume leads to a

change of
resonance

frequency, which
affects the motion

performance of
the microrobots

Targeted drug
delivery,

microsurgery,
manipulation

[34,153,158,163,
167,168]

Manipulator/
manipulator

based on acoustic
bubble

Direct acquisition

Related to the
acoustic

excitation
parameters

Adsorbable,
removable,

noninvasive, and
flexible

Combined with
manipulator,

acoustic field, or
magnetic field;

complex structure

Analysis of living
cells and
biological
samples,

manipulation

[172]

Manipulator/
bubble engine

and transmission
component

Direct acquisition,
optothermal

effect

For acoustic
bubbles, service
life relates to the
structural design

and acoustic
excitation

parameters. For
optothermal
bubbles, it

depends on the
opening and
closing of the

laser

Energy
conversion,

simple structure,
and strong

controllability

Weak change of
flow field caused

by bubble
generation,

oscillation or
rupture; limited

energy
conversion

Energy
conversion, cargo

transportation,
drug delivery

[13,178,181]

Microrobot/EWOD
technology (2D)

Direct acquisition,
chemical reaction

Related to the
size of generated

bubbles and
acoustic

excitation
parameters

Controllable
movement and

low energy
consumption

Limited
movement of

bubbles due to
the electrode

arrangement on
the chip

Fluid mixing,
micro-object

manipulation
[182]

Microrobot/
combining light

field and acoustic
field (2D)

Optothermal
effect

Related to the
opening and
closing of the

laser and acoustic
excitation

parameters

Improves the
biocompatibility
of optothermal

bubbles

Narrow
application range

Manipulation,
particle

classification
[48]

Microrobot/
optothermal

effect (2D/3D)

Optothermal
effect

Depends on the
opening and
closing of the

laser

Controllable and
flexible bubble
position and

volume

Limited
biomedical

applications
because of the

high temperature
around bubbles

Fluid control, cell
lysis,

manipulation,
and assembly

[43,50,190,199,
206]

• In vivo microrobots based on bubbles

The ultimate goal of microrobots is to enter the human body and improve human
health. Countless researchers are tackling the key technical problems. We can put forward
a bold vision for the future development of bubble-based microrobots: clustered bubble
microrobots are injected into the human body [208]; under excitation of the acoustic field
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and control of the magnetic field [164], or using ultrasound for in vivo micromanipula-
tion [209], these bubble microrobots can access specific parts of the body; under the action
of different excitation frequencies or external fields, they can perform drug delivery or sur-
gical tasks [179]; meanwhile, several bubble-based microrobots simultaneously complete
real-time volumetric optoacoustic tomography imaging and monitoring [210]; finally, these
bubble microrobots collapse or dissolve in the body. A variety of artificial intelligence (AI)
strategies can be combined to make them more intelligent and autonomous [150].

Microrobotics is a highly interdisciplinary field involving physics, chemistry, biology,
and medicine. From theoretical exploration to practical application, innovative ideas
and a thorough exploration by numerous researchers from different backgrounds are
also required. Micro/nanobubbles have played a variety of functions and roles and are
bringing more surprises to researchers. We expect that micro/nanobubbles will realize
more important and diverse applications in the future.
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