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Abstract: To study the change of residual stress during heating and solidification of SiCp/Al com-
posites, a one-way FSI (Fluid Structure Interaction) model for the solidification process of the molten
material is presented. The model used process parameters to obtain the temperature distribution,
liquid and solid-state material transformation, and residual stress. The crack initiated by the thermal
stress in the recast layer was investigated, and a mathematical model of crack tip stress was proposed.
The results showed a wide range of residual stresses from 44 MPa to 404 MPa. The model is validated
using experimental data with three points on the surface layer.
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1. Introduction

SiCp/Al is a composite material made by adding silicon carbide particles with alu-
minum as a matrix and using specific technological means. This composite material has
the characteristics of both aluminum and silicon carbide particles, such as electrical con-
ductivity, low thermal expansion coefficient, low wear resistance, low corrosion resistance,
etc., so it is widely used in precision fields such as aerospace, instrumentation, and optical
components. However, due to the inhomogeneity of SiCp/Al composites, and contain-
ing a certain proportion of non-metallic particles with high strength, high hardness and
high wear resistance, it is very difficult to process such materials by traditional machining
methods. The main problems are as follows: The material processing is difficult and the
processing quality is low. Especially during machining, the rake face is affected by the
friction of the silicon carbide particles, resulting in severe tool wear, accumulation of debris,
and low machining efficiency, making it challenging to meet machining requirements.
Electrical discharge machining (EDM) relies on the spark discharge between two electrodes
to remove the material. It is not limited by the strength and hardness of the material,
and there is no physical contact between the tool and the workpiece during machining.
Therefore, EDM is suitable for the machining of SiCp/Al composite materials.

Many scholars have conducted experiments on residual stress. Li et al. [1] experi-
mented investigation on Cr12MoV Steel. The result showed that the depth of residual stress
generated is much the same with different working liquids, but the working liquid with
worse cooling capacity causes greater residual stress. Liu et al. [2] found the maximum
value of average residual stress in the subsurface instead of the top surface owing to the
high surface roughness. Pujari et al. [3] studied wire EDM parameters on residual stresses
in the machining of aluminum alloy. The results obtained showed a wide range of residual
stresses from 8.2 to 405.6 MPa. Mehmood et al. [4] found that the amount of residual
stresses is proportional to the discharge current near the surface up to the depth of 75 µm.
Ramulu et al. [5] studied the surface quality and subsequent performance of a 15% SiC
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particulate reinforced A356 Al. The results showed that the fatigue strength and residual
stress of the material were significantly reduced using the tool with good conductivity.
Batish et al. [6] analyzed the effect of parameters that induced residual stresses during
electrical discharge machining of SiCp/Al. The pulse-off time was identified as the most
significant factor in the formation of residual stresses. Additionally, better conductive elec-
trode materials used during machining cause lower residual stress. Sidhu et al. [7] studied
the influence of discharge parameters on the residual stress of the machined surface in
EDM of SiCp/Al. The result showed that the workpiece, tool material properties, and pulse
off time significantly contributed to the formation of residual stress. The concentration of
reinforced particulates and matrix conductivity also play a vital role in the development of
residual stress.

Many scholars have studied the changes of residual stress on the surface of SiCp/Al
after EDM machining by experimental means. Still, few scholars have explored the change
process of residual stress in the solidification process of molten material by both means
of simulation and experiment. This paper linked the flow field with the structural field
to simulate the change of residual stress during heating and solidification of SiCp/Al
composites. The residual stress and the crack distribution were obtained. The discharge
experiment was carried out on a self-built EDM machine to validate the simulation results,
and the residual stress was measured by PROTO LXRD 3000.

2. Analysis of Residual Stress and Crack Formation

The solidification process of molten metal and molten particles mainly occurs in three
phases. The first is that the molten material thrown into the working liquid solidifies
when the working liquid cools and forms the debris. The second is that part of the molten
material is thrown onto the corresponding electrode surface and cooled. Third, the residual
materials that have not been thrown out of the pit cooled on the bottom of the pit. When
new working liquid is introduced, a recast layer is formed on the surface, as shown in
Figure 1.
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Figure 1. The process of solidification process for molten material.

The residual stresses are generated near the surface of the pit on both the tool and
the workpiece, which mainly come from two aspects. Firstly, the heat source is the most
critical factor affecting residual stress of discharge. The heat sources in EDM come from
the discharge channels generated between the electrodes. When the heat source acts on
the surface of the two electrodes, the heat on the surface of the tool and the workpiece
promotes the melting and vaporization of the material by consuming its energy. In this
process, a small amount of heat is still transferred to the tool and the workpiece. At this
point, the physical properties of the material, such as the coefficient of expansion, will cause
the material to expand and generate thermal stress [8]. For particle reinforced metal matrix
composites, the coefficient of thermal expansion of matrix is different from that of particle.
As the temperature rises, the internal stresses are released. Due to the difference in thermal
expansion coefficient between the matrix material and the particles, the expansion of the
matrix is much larger than that of the particles. In the expansion process, the matrix and
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the particles will inhibit each other and generate compressive stress, respectively. To relieve
the stress, local microplastic deformation occurs in the material, and the stress below the
yield strength is retained inside the workpiece as residual thermal stress [9,10].

The second is the phase transition stress caused by the material phase transition during
rapid heating and cooling. As the temperature of the material decreases during cooling, the
distance between the molecules will shorten, making the volume shrink. When the material
is lower than its melting point, it will cause a phase transition from liquid to solid. The
distance between molecules will be shortened again, generating phase transition stress [11].

Due to impurities, pores, and other defects as well as heating and cooling reasons, the
workpiece will have an uneven distribution of stress during and after EDM machining.
When the stress value exceeds the yield strength limit of the material, the microcrack forms.
At this point, stress concentration occurs in the crack tip area. Although crack propagation
can alleviate local stress, the stress concentration at the crack tip will lead to further crack
propagation in both length and width, resulting in macroscopic crack formation.

3. Mathematical Model of Crack Tip Stress

When the residual stress is greater than the yield strength limit of the material, to
alleviate the stress concentration, the local microplastic deformation of the material occurs.
In this process, it is easy to promote the formation and expansion of the internal microcracks
of the material. Generally, surface cracks are in opening mode after EDM machining [12].
Therefore, a crack model was established to analyze the residual stress at the crack tip, as
shown in Figure 2.
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Figure 2. Schematic diagram of the crack model.

Select the minimum area of the pit surface. Firstly, a YOZ coordinate system was
established in the plane to analyze the crack propagation, and the crack was placed in the
negative direction of the Z-axis. Therefore, local boundary conditions on the pit surface
were determined as follows:

y = 0,−a < z < 0, σy = 0
y = 0, z→ −∞, σy → σ
y = 0, z = −a, σy → ∞

(1)

where σy is the stress in the y-direction. Functions of a complex variable are usually used
to solve the plane crack stress problem, and Westergaard is a common solution. The stress
function is selected as:

Ψ = Re
=
φI(ξ) + y Im φI(ξ) (2)

σx = ReφI(ξ)− y Im φI
′(ξ) (3)

σy = ReφI(ξ) + y Im φI
′(ξ) (4)

φI(ξ) =
σ√

1 + a
ξ

(5)
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where Re represents the real part of functions of a complex; Im represents the imaginary

part of functions of a complex; φI(ξ) is a widely used analytical function, φI(ξ) and
=
φI(ξ)

are the primary and secondary integrals, respectively; ξ = z + iy.
The origin is moved to the crack tip, and the complex number is represented by

trigonometric functions. Then, a point ξ (z, y) on the plane is transformed into η (r, ω),
so y = r·sinω, z + a = r·cosω, then use the trigonometric function to express the complex
number on the plane as follows:

η = ξ + a (6)

The radius of stress field near the tip r→ 0, therefore η = reiω → 0 , ξ = η − a→ −a .
σy and σx are expressed as follows:

σx =
σ
√

aπ√
rπ

cos
ω

2
(1− sin

ω

2
sin

3
2

ω) (7)

σy =
σ
√

aπ√
πr

cos
ω

2
(1 + sin

ω

2
sin

3
2

ω) (8)

Let KI = σ
√

πa, where KI is called the fracture intensity factor, and the expression
between stress and fracture intensity factor can be obtained as follows:

σy =
KI√
πr

cos
ω

2
(1 + sin

ω

2
sin

3
2

ω) (9)

According to the stress intensity criterion of fracture mechanics theory, when the
stress intensity factor KI reaches the material fracture toughness KIC, the material fractures.
Suppose the fracture intensity factor of Al alloy is KIC, the critical stress σycr at fracture can
be obtained as follows:

σycr =
KIC√
πr

cos
ω

2
(1 + sin

ω

2
sin

3
2

ω) (10)

4. Modeling of Melting, Throwing, and Solidification of Materials
4.1. Simulation Model of Melting and Throwing Processes

Figure 3 is the boundary conditions in the melting simulation model. The flow field
geometric model was a rectangle with the length and height of 300 µm and 330 µm, respec-
tively. The geometry models of tool, workpiece, and discharge channel were established
in the flow field. The tool and workpiece were rectangular with a height of 100 µm, and
the discharge channel height was 30 µm. To improve the calculation efficiency, a two-
dimensional axisymmetric model was adopted in the simulation, and the left side of the
flow field was set as the axisymmetric. Interface thermal resistance was selected for the
contact surface between matrix and particles. The upper and lower sides and the right side
of the flow field were set as walls. The materials and machining parameters are listed in
Table 1. The tool was red copper, the workpiece was SiCp/Al, and the deionized water
was used in the working liquid. DEFINE_PROFILE module was used to load the Gaussian
heat flux function onto the tool and workpiece surfaces. The melting and solidification
model was selected to simulate the melting and phase transition process of the material
surface. The pulse-on was 20 µs in the simulation for single discharge in EDM. Because
the simulation research focuses on the material surface temperature and the formation of
the molten pool, the discharge area was finely meshed [13,14] in the mesh section, and the
other area was coarsely meshed. The meshed model is shown in Figure 4. The generated
mesh file was imported into Fluent software, boundary conditions and material properties
were set, and after the simulation, the changes of the surface temperature and molten pool
with time were observed.
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Table 1. Simulation parameters in the melting simulation.

Parameter Description

Tool material Red copper
Workpiece material SiCp/Al

Working liquid Deionized water
Voltage U (V) 45
Current I (A) 20

Pulse-on Ton (µs) 20
Particle diameter 5 µm

Energy distribution (tool) 0.23
Energy distribution (workpiece) 0.30
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The material throwing simulation was obtained by modifying boundary conditions
based on melting results. The boundary between the lower surface of the tool and the upper
surface of the workpiece was modified to interface, and the upper and lower surfaces of the
discharge channel were set as velocity outlets. The boundary conditions in the throwing
simulation model are shown in Figure 5.
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4.2. Modeling of Solidification Processes

The material solidification model was established by extracting the geometric model
and modifying the boundary conditions based on the simulation results of the material
throwing. The approach is as follows: Extract the pit surface contour curve from the throw
simulation result file, output all points of the curve to the text file, and then import the file
into ICEM to re-fit and draw a new two-dimensional pit model, as shown in Figure 6. The
pit surface and other surfaces of the workpiece were set as the wall surface, the discharge
channel was set as the velocity outlet, and the top of the flow field was set as the pressure
outlet. Because the simulation time of the solidification process was long, a large time step
was adopted in the simulation to shorten the calculation time.
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4.3. Modeling of Residual Stress on Pit Surface

As a fluid simulation software, the latest version of Fluent is able to calculate the stress–
strain field. Still, due to its weak analysis of structural mechanics, it can only calculate the
linear stress–strain, which cannot meet the requirements of calculating the residual stress
during the solidification process. In the simulation, the method of one-way fluid-solid
coupling [15] was used to calculate the residual stress in the recast layer and the stress
distribution at the crack tip after solidification. The flow field calculation results were taken
as the initial conditions and introduced into the structural field for stress solution analysis.
First, the flow field and structure field modules in Workbench were established. The flow
field module calculated the melting, throwing, and solidification process of the material,
and the structure field module calculated the residual stress and strain in the recast layer.

To study the influence of residual stress on crack formation, it is necessary to modify
the workpiece geometry and add preset cracks on its surface, as shown in Figure 7a. The
preset crack geometry model was re-meshed to study the stress at different crack tips. In
the simulation, the main research object was the residual stress at the crack tip. To obtain
more accurate calculation results and higher calculation efficiency, the mesh at the crack tip
is locally fined in this paper. In other non-important calculation areas, the mesh was coarse,
as shown in Figure 7b. After the calculation in the flow field was completed, the results
were loaded into the structure field. The pressure field and temperature field calculation
results were read, and then they were attached to the pit surface as the initial conditions
for solving the residual stress. Transient analysis was adopted, and finally, the simulation
calculation was carried out.
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5. Simulation Results and Analysis
5.1. Analysis of Material Melting Process

Figure 8 shows the temperature field distribution on the tool and workpiece. The
calculation error is 0.1%, so the values in the figures are all rounded. In Figure 8a, the
maximum surface temperature of the workpiece at 5 µs is close to 14,100 K. This is mainly
because the high-energy plasma in the discharge channel moves towards the electrodes
at a very high speed. When it is bombarded on the surface of the electrodes, the kinetic
energy of the plasma is converted into heat energy, which instantly forms a heat source
with a small diameter and high temperature. As the heat source has a short action time,
the heat does not transfer to other areas in time, so the heat mainly concentrates near the
discharge point. However, at this time, the maximum temperature of the tool surface is
about 8900 K, which is much lower than the surface temperature of the workpiece. This
is because the presence of interface thermal resistance reduces the thermal conductivity
of SiCp/Al composite material. The thermal conductivity of copper is much higher than
that of copper, and the heat can be rapidly transferred to other locations, with less heat
accumulation and less temperature rise. Figure 8b is the temperature field at 20 µs. As the
heat transfers, the central temperature drops to 11,100 K, and the highest temperature on
the tool surface drops to 7600 K. It can be seen from the figure that as the discharge time
increases, the maximum temperature gradually decreases.

Figure 9 shows the curve of the maximum surface temperature of the tool and work-
piece with time. In general, the maximum surface temperature of SiCp/Al is higher than
that of copper electrode. From the curve, the slope of the curve becomes smaller, indicating
that with the increase of discharge time, the decrease of the temperature reduction rate
becomes slow. It is shown that the temperature changes violently at the beginning in EDM,
and then the rate of temperature change decreases gradually.
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Figure 8. Temperature field distribution on the tool and workpiece at different discharge moments.
(a) Discharge time at 5 µs; (b) Discharge time at 20 µs.
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Figure 9. Curve of the maximum temperature of red copper and SiCp/Al with time.

Figure 10a shows the molten pool at 5 µs. As can be seen from the figure, the molten
pool is formed quickly at this time, and the material in the molten pool changes from the
solid phase to liquid phase, and the radius is greater than the depth. This is because the
heat generated by the discharge channel applied to the tool surface travels faster in the
direction of a radius than in the direction of depth, so the radius of the temperature field is
greater than the depth. When the material reaches the melting point, a phase transition
occurs. The material changes from the solid phase to the liquid phase, and the metal matrix
exists in the molten state locally, forming a molten pool. The melting point of SiC is 2300 K,
which is much higher than that of Al, so when the Al matrix reaches the melting point,
part of the SiC particles are still in the solid state. It can be seen from the figure that part
of the SiC particles appears red, representing the liquid phase, while some SiC particles
are blue, representing the solid phase. The SiC particles near the center of the workpiece
surface have been completely melted, and those far away from the discharge center are still
solid. In addition, there is also a melting pool on the surface of the tool. Compared with
the melting pool of the workpiece, the volume of the melting pool on the tool is smaller
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than that of the workpiece, mainly because in the heating process, the thermal conductivity
of the tool is greater than that of aluminum carbide, and the heat can be quickly transferred
out. Hence, the local temperature is relatively low. In addition, the melting point of copper
is 1350 K, which is much higher than that of Al, so the Al matrix melts first, and the molten
pool volume is smaller than the workpiece. Figure 10b shows the molten pool at 20 µs. The
pool increases significantly in depth and radius, mainly because the heat has transferred to
the surrounding area, causing more material to melt.
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5.2. Analysis of Material Solidification and Throwing Process

Figures 11 and 12 show the temperature field and the phase transition in the solid-
ification process in the discharge area of the molten material from 500 µs to 700 µs. At
500 µs, as can be seen from Figure 11a, the surface temperature of the pit is higher than
the melting point of the matrix, and the metal mainly exists on the surface in liquid form.
Most of the molten metal with SiC particles was thrown out of the matrix, and only a small
part of the metal materials and SiC particles remain in the discharge area. This part of the
material is subjected to continuous shear stress and remains on the pit surface during the
throwing process [16]. At 600 µs, the maximum temperature of molten Al decreases, and
the solidified layer appears gradually during the phase transition from liquid to solid state.
As can be seen from Figure 12b, the solidification rate at the bottom center of the pit was
significantly faster than that of other positions. With the increase in time, the movement
speed of the SiC particles in the molten Al slows down. At 700 µs, the residual molten
Al has completely solidified, and the SiC particles are also solidified on the surface of the
workpiece. At this time, the recast layer is formed, and the material enters the cooling stage
after solidification.
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5.3. Analysis of the Residual Stress

The thermal expansion coefficient of particle and matrix is different. When the thermal
stress exceeds the yield strength of the material, microplastic deformation occurs in local
areas. Such microplastic deformation develops rapidly at the tip of the microcrack. The
residual thermal stress below the yield strength of the matrix is preserved as the residual
thermal stress. Figure 13 shows the equivalent stress field distribution after machining. It
can be seen from the figure that the stress at the crack tip is relatively concentrated. As
the temperature of the molten metal drops, the metal continues to solidify in the working
fluid, and the state changes from liquid to solid. At this time, the distance between atoms
is further shortened, and the volume of the metal is reduced. The material generates stress
due to the shrinkage. The maximum stress in the figure is 404.49 MPa. The stress is mainly
due to the phase transition stress during the transformation of the molten metal into solid
metal. The result is close to the literature [17,18].
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6. Surface Crack Observation Experiment
6.1. Experiment Setup

The experiment was carried out on a self-built EDM machine, as shown in Figure 14.
65 vol% SiCp/Al was selected as the workpiece, red copper with a diameter of 1 mm was
selected as the tool, deionized water was used as the working liquid, RC power supply was
used to provide discharge energy for EDM machining, and positive polarity machining
was adopted. In the experiment, the discharge voltage of the power supply was 45 V, the
peak current was 25 A, the discharge pulse width was 20 µs, and the discharge machining
parameters were shown in Table 2. The surface of the tool and the workpiece were polished
before machining to remove the oxide layer and other impurities. In the experiment, the
single-pulse discharge was adopted. When a spark was generated between the tool and
the workpiece, the control circuit immediately disconnected the power supply to realize a
single effective discharge.
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Figure 14. Experimental process of single pulse tip discharge and its schematic diagram. (a) Tip
discharge with single pulse; (b) Tip discharge process.

Table 2. Discharge parameters in EDM machining.

Parameter Description

Tool material Red copper
Workpiece material SiCp/Al

Working liquid Deionized water
Tool diameter (mm) 1

Voltage U (V) 45
Current I (A) 25

Pulse-on Ton (µs) 20

JSM6360-LV high pressure vacuum scanning electron microscope (HVSEM) was used
to observe the surface crack distribution of the pits after machining. The specific parameters
of SEM are shown in Table 3. To study the influence of residual stress on surface cracks,
three positions on the pit surface were selected for observation after the experiment. They
are the center position of the pit, the middle position of the pit along the radius, and the
position of the edge of the pit. The three positions A, B, C are shown in Figure 15. FV1000
electron microscope was used to take the overall photo of the pit, as shown in Figure 16.
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Table 3. The parameters of SEM.

Parameter Description

LV pressure PL (Pa) 1~270
Accelerating voltage Va (kV) 0.3~30

Specimen stage s (mm) X: 125, Y: 100, Z: 5–80
Tilt Rl (◦) −10–+90

Rotation Rt (◦) 360
Magnification n ×5–×100,000
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6.2. Experimental Result and Analysis

Figure 17 shows the distribution of cracks on the surface of the pit at different positions
observed by SEM. Figure 17a is the surface morphology at position A. As seen from the
figure, there is no visible crack in this area. This is mainly because the stress in the central
area of the pit is very small, the stress does not exceed the yield limit of the material, and
no plastic deformation occurs in this area. It is difficult for the microcracks to form visible
macroscopic cracks. Therefore, no cracks are observed here. Figure 17b is the surface
morphology at position B. Cracks can be observed in this region, and the crack inside
the square has a slender shape. This is mainly because during the heating process, the
materials constrain each other due to thermal expansion, causing local stress between the
two materials. In general, the thermal expansion coefficient of the metal matrix is large,
but particles are much smaller. The difference of thermal expansion coefficient results in
thermal mismatch stress, which leads to microplastic deformation of the material. This
plastic deformation develops rapidly at the tip of the microcrack, and then promotes the
initiation and propagation of the microcrack. Figure 17c is the surface morphology at
position C. The crack in the block is obvious and has a slender shape. This is because the
stress concentration here is larger than the yield strength limit of the material itself, and
the plastic deformation is larger than that at position B, so the crack is further expanded in
length and width [19].
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The main reason for crack propagation in Figure 17b,c is that extremely high tem-
perature is generated instantly on the tool and workpiece surface during EDM, and the
temperature decreases rapidly after discharge, which causes the material to expand and
contract in a short period and be subjected to the thermal shock of this cycle. Thermal stress
and thermal fatigue occur inside the material. Due to defects such as pores, impurities and
microcracks, the stress concentration at the microcrack tip easily results in the formation of
macroscopic cracks when subjected to thermal impact. In the simulation, the tip stresses at
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position B and position C on the surface of the pit are larger. In the experiment, large cracks
appear at position B and position C, indicating that a large residual stress is generated
inside the pit and is greater than the yield strength of the material, resulting in microscopic
plastic deformation in the material. The crack location and size in the experiment can
indirectly verify the distribution of residual stress obtained in the simulation, which verifies
the correctness of the simulation results.

In the experiment, the X-ray diffractometer can only measure the surface of the
workpiece. Proto LXRD 3000 was used to measure the residual stress of the three points A,
B, and C. The maximum stress exists on Position B, which is 164 MPa. The second largest
stress is on position C, 131 MPa. The minimum stress is 86 MPa, which is on position A.
The largest stress normally appears at the crack tip. In the simulation, a small area for
each position is selected, and the average value is calculated. The simulation result at
position A is 90.25 MPa, the result at position B is 168.06 MPa, and the result at position C
is 110.63 MPa. The results are close to those results in literature [6,7]. Compared with the
simulation results, the experimental results are similar to the simulation results and verify
the distribution of the cracks on the surface of the pit. The simulation and experimental
results are shown in Figure 18.
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Figure 18. Residual stress at different positions.

After machining, to explore the elements on the surface, the spectrum analysis exper-
iment was conducted. The impurities of the workpiece were removed by an ultrasonic
cleaning machine. The types and contents of elements are shown in Table 4. The surface
contains five elements, namely carbon, oxygen, aluminum, silicon, and copper. Oxygen
comes from surface pollutants, while copper comes from the tool. When a discharge
channel is established between the two electrodes, the electrode surface melts. Under the
disturbance of working liquid, part of copper metal solidifies on the pit surface. There are
complex chemical and physical changes in the discharge process, and new substances are
produced. Some of these substances are free in the working fluid, and some are solidified
on the surface of the pits to form a new recast layer.

Table 4. Elements and weights.

Elements C O Al Si Cu

Contents (%) 6.25 18.08 14.13 16.58 44.96

7. Conclusions

In this paper, the one-way fluid-solid coupling method was adopted to establish the
process of material melting, throwing, and solidification in the flow field. The residual
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material stress model in the recast layer was established in the structural field. The surface
micromorphology and crack distribution state of the residual material after solidification
were explored. The conclusions are as follows:

(1) At the initial moment of discharge, the largest temperature of the tool is 13,532 K and
the largest temperature of the workpiece is 15,896 K. With the increase of discharge
time, the maximum surface temperatures of the two electrodes present a downward
trend, and the molten pool areas continue to expand. As the solidification process
progresses, a new recast layer is formed on the surface of the pit.

(2) With the increase of time, the temperature of molten liquid on the surface of the pit
decreases slowly. At 700 µs, the residual molten Al on the surface of the pit completed
solidified. Meanwhile, the stress at the crack tip also decreases slowly. Micro-plastic
deformation occurs in the material, and the residual stress is relaxed.

(3) In the surface crack observation experiment, the crack grows gradually from the center
of the pit to the edge, indicating that the stress increases gradually along the radius
direction, promoting the initiation and further expansion of microscopic cracks and
the formation of macroscopic cracks.

(4) The smallest residual stress is 86 MPa and lies on the center of the pit. The highest
stress is 164 MPa and lies in the middle of the bottom center to the edge of the pit,
which is close to the simulation results.

In the modeling, the study conducted a one-way coupling fluid structure interaction
method. In fact, during solidification, residual stresses are generated synchronously. In the
future, the two-way coupling method will be considered in the simulation to improve the
accuracy of the results.
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