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Abstract: A dynamic model of a Conjugate-Surface Flexure Hinge (CSFH) has been proposed as a
component for MEMS/NEMS Technology-based devices with lumped compliance. However, impacts
between the conjugate surfaces have not been studied yet and, therefore, this paper attempts to fill
this gap by proposing a detailed multibody system (MBS) model that includes not only rigid-body
dynamics but also elastic forces, friction, and impacts. Two models based on the Lankarani-Nikravesh
constitutive law are first recalled and a new model based on the contact of cylinders is proposed. All
three models are complemented by the friction model proposed by Ambrosìo. Then, the non-smooth
Moreau time-stepping scheme with Coulomb friction is described. The four models are compared in
different scenarios and the results confirm that the proposed model outcomes comply with the most
reliable models.

Keywords: multibody systems; CSFH; event-driven scheme; non-smooth contact; LN-model; Moreau
time-stepping scheme

1. Introduction

During the last decades, the development of both MEMS (micro electro-mechanical
systems) and NEMS (nano electro-mechanical systems) technology-based devices encoun-
tered several technological issues [1]. As far as the mechanical structure is concerned, the
micromachining methods and the available materials inevitably restricted the mobility of
most micro/nanosystems mobility to a plane motion with a few degrees of freedom (DoF),
when not even down to a single DoF only.

The appearance of flexure hinges, together with lumped compliant structure, disclosed
new ways to design. As a consequence, several new devices, obtained by means of micro-
machining, were proposed in the literature. For example, biosensing acoustic wave based
devices [2], CMOS-MEMS resonators [3], microgrippers [4], drug delivery micropumps [5],
surgery [6], micromirror platforms [7], and more generally actuators [8,9] and sensors [10].

A peculiar hinge, called Conjugate-Surface Flexure Hinge (CSFH), has been success-
fully proposed as a component for MEMS/NEMS Technology-based devices with lumped
compliance [11,12] and the next section will be dedicated to some important details on CSFHs.

Although several aspects of CSFH equipped microsystems have been already studied,
such as, adaptability to precision mechanism [13], kinetostatics [14], operational in aqueous
environment [15], vibrations [16] and technological issues [17], the dynamical behavior
of a CSFH still remains unexplored. For example, the impacts and their consequences on
dynamics have not been studied yet. Contact is an inherent feature of the CSFH but can
yield wear [18].

The contact in mechanical joints with clearance has been largely discussed in the
literature [19]. Since the CSFH conjugate surfaces can be described as a journal-bearing,
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here, we refer only to this class of joint. The two most commonly used approaches to
describe the phenomenon of impact see a continuous regularized approach [20–22] versus
a non-smooth approach [23,24]. The regularized approach derives the contact laws using
geometric and material parameters of the contacting surfaces, the non-smooth approach
does not require impact laws and the impact is instantaneous. Although both approaches
are valid, the dynamics of impact can be quite different, especially in the presence of
external forces capable of amplifying the small differences coming from different contact
dynamic responses.

For this reason, we will attempt to fill this gap by proposing a detailed multibody
system (MBS) model that includes rigid-body dynamics, elastic forces, friction, and impacts.
This complex mathematical tool must be flexible and provide reliable results. Motivated
by this reason, starting from models widely employed in multibody systems with im-
pacts and experimentally validated such as those reported in [20–22], we propose a novel
model in which the generalized stiffness obtained considering the impact of two cylinders
and not two spheres. Results will demonstrate that our model is consistent with other
experimentally verified models.

In Section 3, the circular beam flexure hinge is described and the generalized elastic
forces to include in the dynamic model are obtained. Section 4 introduces continuous
impact models based on regularized approaches. Hertz contact theory is first recalled, then
the Lankarani-Nikravesh model and its modified version with a non-constant generalized
contact stiffness are described. Starting from the classic Lankarani-Nikravesh constitutive
law, a novel method based on the contact of two cylindrical surfaces is presented. All
three continuous impact models are complemented with the friction model proposed by
Ambrosìo. In Section 5, the non-smooth Moreau time-stepping scheme with Coulomb
friction is described. Section 6 compares the methods of the previous sections considering
different impact scenarios. First, a central and an asymmetrical impact are described. Then,
a complete CSFH dynamics is simulated. Section 7 deals with the influence of model
parameters on system dynamics. Finally, Sections 8 and 9 summarize the final comments,
future developments and conclusions.

2. Motivations and Contributions

The main motivations that guided the study are listed below:

1. absence of a complete dynamic model of a CSFH,
2. create a specific impact model for CSFH that is a valid alternative to those most

commonly used in the literature,
3. provide some guidelines for proper CSFH modeling and design.

These motivations have led to the following main contributions:

1. developing a detailed multibody model of a CSFH including rigid-body dynamics,
elastic forces, friction, and impacts,

2. developing a novel event-driven model considering impacts between cylinders,
3. conducting a parametric analysis to understand the influence of each parameter on

the CSFH dynamics.

3. Flexure Description

The Conjugate-Surface Flexure Hinge (CSFH) is composed of two parts: a flexure
beam connecting two bodies and a conjugate-surface area where the two bodies can either
slide or collide. The curved beam leads to nonlinear motion characteristics [25]. While the
kineto-static analysis of CSFH has been already described in detail [26], this paragraph
recalls some relevant outlines that will be useful for the sake of the present investigation.

3.1. Kinematics

The basic layout illustrated in Figure 1 will be the reference model for the dynamic anal-
ysis. Accordingly, the flexure hinge is connected to a rigid body, where both undeformed
and deformed configurations have been displayed.
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Figure 1. Layout of a CSFH.

Kinetostatic analysis will be herein introduced through the vector

r0 = f− c + d− s0 (1)

that defines the mass-center position of the rigid body in the undeformed configuration, where:

• f stands for the position of the beam root,
• c and d, respectively, denote the vectors from the center of the circular hinge to the

endpoints of the curved beam,
• s0 is the vector connecting the mass-center to the body-hinge attachment point in the

undeformed configuration.

Being ρ and β the flexure radius and opening angle, respectively, the vector h = d− c,
can be expressed as

h = ρ

[
c(β− π

2 )
1 + s(β− π

2 )

]
(2)

where the compact notation s ≡ sin and c ≡ cos has been employed. Vector s0 connects
two rigid-body points and can be expressed considering the rotation matrix A of the body
in its undeformed configuration and the vector s̄ relative to the body-frame (x, y), i.e.

s0 = A(θ0)s̄⇒
[

s0x
s0y

]
=

[
c(θ0) −s(θ0)
s(θ0) c(θ0)

][
s̄x
s̄y

]
(3)

where θ is the angle between the axes x and X. If θ0 = 0, it follows that s0 ≡ s̄. The
expression of r0 becomes[

r0x
r0y

]
=

[
fx + ρc(β− π

2 )− s̄x
fy + ρ + ρs(β− π

2 )− s̄y

]
(4)

being fx and fy the components of f in the reference frame.
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Consider the deformed configuration and taking p = r + As̄ as the positioning vector
of the body-hinge attachment point, the displacement ∆p is simply expressed as

∆p = p− p0 ≡ r + As̄− r0 − s0 ≡ ∆r + (A− 1)s̄ (5)

in which ∆r is the mass-center displacement. As it can be observed in Figure 1, the rotation
∆φ of the attachment section is equal to θ. The standard stiffness model for this case [26] has
been obtained by considering the local frame (n, t), respectively, composed of the vectors
normal and tangent to the attachment cross-section. This frame moves with the body and
has a constant orientation with respect to the body-frame (x, y). The rotation matrix R
expressing this constant orientation has the following expression

R =

[
c(ψ) −s(ψ)
s(ψ) c(ψ)

]
, ψ = 2π − β (6)

Composing R and A is possible to pass from the local frame (n, t) to the global frame
(X, Y). In the following, the steps necessary to find the generalized elastic force vector are
detailed.

3.2. Elastic Force

The above-mentioned stiffness model can be summarized through the following expression:[
∆p̄
∆φ

]
= Ĉ

[
F̂e
Me

]
(7)

where Ĉ is the compliance matrix [26]. The force vector F̂e contains the normal and
tangential forces expressed in the frame (n, t) and applied at the attachment section while
Me is the moment. These components can be gathered into the generalized vector ŵ =
[F̂T

e , Me]T .
Given the generic configuration of the rigid body expressed through the three-elements

array q = [rT , θ]T the following procedure will be used.

1. find ∆p using Equation (5),
2. find the vector we = [FT

e , Me]T defined in (X, Y):

we = K∆p, K = ARK̂RTAT (8)

where K is the stiffness matrix expressed in the reference frame (X, Y) and K̂ ≡ Ĉ−1

is the local stiffness matrix in (n, t),
3. transport the vector we to the mass-centre point G to find the generalized force vector

Qe = [F̂′
T
e , M′e]T , defined as

Qe = Tewe ≡
[

1 0
sT 1̄ 1

][
Fe
Me

]
, 1̄ =

[
0 1
−1 0

]
(9)

where Te is the 3× 3 rigid-body transformation matrix needed to transport we and 1̄
is necessary to consider the cross-product in the planar case [27].

4. Event-Driven Scheme with Regularized Approach

We first describe an event-driven scheme with a contact detection algorithm. These
schemes integrate the equations of motion until a slip-stick transition or an impact is detected.

4.1. Contact Kinematics

The CSFH limits the hinge deformation by introducing two conjugate surfaces where
the two bodies can collide. This solution has positive effects on motion accuracy and
improves resistance to yielding as well. Figure 2 shows the undeformed and deformed
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CSFH. The conjugate surfaces, represented through two circles of radii R1 and R2, are
separated by a radial clearance δ = R2 − R1 in the undeformed configuration. The local
vector s̄1 denotes the position of the center O1 with respect to the body frame. During
motion, the hinge deforms and the bodies collide at one point C. Observing the Figure 2,
the following closure equation can be written

c1 = c2 ⇒ r1 + As̄1 − R1nc = r2 − R2nc (10)

where point C is thought to belong to the two bodies. Here, the second body is fixed for
convenience. Equation (10) provides the unit vector nc normal to the conjugate surfaces at
point C, i.e.,

nC = − e
‖e‖ e = r1 + As̄1 − r2 (11)

where e is the eccentricity vector expressing the position of O1 with respect to O2. The
tangent unit vector tc is calculated rotating nc 90◦ counter-clockwise. Time-differentiating
the expression of c1, the velocity ċ1 is obtained as

ċ1 = ṙ1 + Ω(s1 − R1nc) (12)

being Ω the angular-velocity matrix of the first body. The expression of ċ1 is required to
calculate the tangent velocity, that is the component of ċ1 along tc.

Figure 2. Undeformed CSFH (left). Deformed CSFH with impact (right).

4.2. Contact Model with Friction

In this subsection, different Hertzian contact models are first described. Then, the
static friction force model of Ambrósio is recalled.

4.2.1. Impact Models

The regularized approach to contact starts from the work by Hertz on the theory of
elasticity [28,29]. Hertz introduced a non-linear law between the normal contact force FN
and the indentation $, i.e.,

FN = K$n (13)

where K is the generalized stiffness parameter and n is the nonlinear exponent factor. The
stiffness K is evaluated following Hertz contact theory. Considering two spheres, the
following expression is obtained

K =
4

3(σ1 + σ2)

√
R1R2

R2 + R1
(14)
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where σi, i = 1, 2, are material parameters expressed in terms of Young’s modulus E and
Poisson’s ratio η, defined by

σi =
1− ν2

i
Ei

, i = 1, 2 (15)

Considering two cylinders of length L with parallel axes, we have a contact on a
rectangular area. In this case, Hertz proposed to use

K =
π

4
E∗ (16)

where E∗ is an equivalent Elastic modulus, defined as

1
E∗

=
1− ν2

1
E1

+
1− ν2

2
E2

(17)

The ESDU-78035 Tribology Series [30] proposed to use the following implicit law
instead

$ = FN

(
σ1 + σ2

L

)[
ln
(

4L(Ri − Rj)

FN(σ1 + σ2)

)
+ 1
]

(18)

In this case, the stiffness K is not constant and can be obtained numerically from the
derivative of the force-indentation curve.

Hertz law does not include energy dissipation due to internal damping. Therefore,
following the work by Kelvin and Voigt, [31], different viscoelastic models have been
proposed in the literature, [32]. The generic viscoelastic model has the following form

FN = K$n + D$m$̇ (19)

where D is the damping coefficient representing the dissipative term proportional to the relative
normal contact velocity $̇ and m is a non-linear coefficient making the dissipation dependent on
the indentation. The coefficient m can be empirical or based on dissipation models.

Hunt and Crossley [33] proposed a dissipative contact force model adding a non-linear
viscoelastic term to Hertz law, thus coming to the following force-penetration law

FN = K$n + D$̇ (20)

Hunt and Crossley law can be written in terms of the coefficient of restitution cr, i.e.

FN = K$n
[

1 +
3(1− cr)

2
$̇

$̇(−)

]
(21)

being $̇(−) the initial contact velocity. Following Hunt and Crossley law, Lankarani-
Nikravesh proposed an impact model to be applied in multibody systems [20]. The normal
force is written as

FN = K$n
[

1 +
3(1− c2

r )

4
$̇

$̇(−)

]
(22)

Since the Lankarani-Nikravesh model applies to stiff materials with the coefficient of
restitution greater than 0.9, Flores et al. proposed an equivalent model for soft materials [34], i.e.,

FN = K$n
[

1 +
8(1− cr)

5cr

$̇

$̇(−)

]
(23)

In this case, the impact law considers different energy dissipation between compres-
sion and restitution of the contact phases.

In [22] the authors proposed to use a constitutive law of type

FN = K$n + DLN
KESDU

K
$̇ (24)
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to describe the journal-bearing contact. While K follows from Equation (14), KESDU is
derived from the ESDU law in Equation (18). Finally, DLN is the damping obtained using
the Lankarani-Nikravesh (LN) model (22), i.e.,

DLN =
3K(1− c2

r )

4$̇(−)
(25)

This model hereafter referred to as the LNA-ESDU, has been experimentally verified
for a slider-crank mechanism involving contact events at low or moderate impact velocities.
Compared to the classic LN model, LNA-ESDU provides lower impact forces and is capable
to accurately reproduce the experimental results probably because the actual impact forces
are distributed on an wider area due to the plasticity deformation of the bristles.

Considering this literature, in this work we broaden the classic LN model of Equation (22)
to also include the generalized stiffness obtained by the contact of two cylinders as in
Equation (16).

In the numerical part, this model will be compared to the other LNA-based models
for validation.

4.2.2. Friction Model

Static friction force models start with the work of Coulomb [35]. Modified Coulomb’s
laws such as those proposed by Threlfall [36] or Bo and Pavelescu [37] included the Stribeck
effect, i.e., the transition from static to dynamic friction.

In most of these static models, the friction force can have a discontinuity at zero
velocity. To solve this issue, Karnopp [38], Leine et al. [39], Bengisu and Akay [40] proposed
static models with finite slope at zero velocity.

Nevertheless, in stick conditions, the relative tangent velocity should be zero but it
does not occur due to numerical issues. Rather, it maintains close to zero and switches its
sign with high frequency introducing numerical instability in the system’s response. To
prevent this unwanted behavior, the Ambrósio static friction model put the friction force to
zero for low velocities [41]. The friction force becomes

FT =


0 |vT | ≤ v0

− |vT |−v0
v1−v0

fdFNsgn(vT) v0 < |vT | < v1

− fdFNsgn(vT) |vT | ≥ v1

(26)

in which fd is the kinetic coefficient of friction, v0 is the stiction velocity, v1 is the slip
velocity [38], and vT = (tT

c v)tc and vT are the relative tangential velocity and its module,
respectively. In this case, v ≡ ċ1 reported in Equation (12).

For its stability, the Ambrósio static friction model is often used in multibody systems
with frictional joints. Many other friction models could be coupled to the impact law and
several empirical models have been presented in the literature. We refer to [42,43] for
further details.

4.3. Equations of Motion

During the motion, the first body B1 is subject to different generalized forces: the
generalized elastic force Qe, the gravitational force Qg, and the generalized contact force
Qc. The latter is present only if the contact is triggered. Therefore, the undamped equations
of motion are

Mq̈ = Q (27)

where the generalized force Q changes its expression according to the contact condition
‖e‖ ≥ δ, i.e.,

Q = Qe + Qg, free motion (28a)

Q = Qe + Qg + Qc, contact (28b)
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The generalized gravitational force is given by Qg = [m1gT , 0]T , being m1 the mass of
B1 and g the gravity acceleration vector.

The contact is triggered when ‖e‖ ≥ δ. If this condition is met, a contact force Fc is
generated in the contact area. This force has two components along nc and tc, respectively, i.e.,

Fc = FNnc + FTtc (29)

where FN is the normal force and FT is the friction force calculated following contact and
friction models presented in the previous subsection. When carried to the mass center
position G1, the contact force Fc yields a moment Mc, thus the 3-dimensional generalized
contact force Qc can be expressed as

Qc ≡
[

Fc
Mc

]
=

[
1

sT
1 1̄

]
Fc (30)

In Figure 3 the flowchart of procedure for dynamic analysis including impact is
shown, [21,32]. When an impact condition is fulfilled, trying to get closer to the instant
of the impact, a maximum tolerance δtol activates the bisection of the time interval. The
generalized force applied to the system changes according to Equation (28).

Figure 3. Flowchart of the event-driven scheme.

5. Time-Stepping Method: Moreau’s Scheme

In contrast to the previous method, time-stepping methods do not require the de-
tection of impact points and the consequent change of state. Rather, a discrete state is
determined and held over the entire time step. These methods are less accurate than
the previous event-driven schemes but are more robust and easy-to-implement. Here,
Moreau’s scheme with the midpoint rule has been implemented [23,24]. Readers interested
to time-stepping methods are referred to specialized bibliography [44–46]. In Moreau’s
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scheme, the equations of dynamics (27) are written as an index-2 DAE (differential algebraic
equation) system, i.e., 

Mu̇−Qe −Qg −DTλ = 0

u = q̇

−γ ≡ −Du ∈ NA(λ)

. (31)

where u is the generalized velocity vector, D is the Jacobian matrix, λ is the vector of
Lagrangian multipliers, γ is the time-derivative of the unilateral constraints, and NA is the
cone of inclusion defined on the set A. The third equation is a set-valued law on velocity
level that can be activated or not depending on a geometric gap function able to trigger the
unilateral contact. Here, the gap function g can be defined as

g(q) = δ−
√

eTe (32)

where e has been defined in Equation (11). If g(q) ≤ 0 the unilateral contact is active and
the normal force modulus is

FN = λ1, λ1 ∈ R+
0 ≡ A1 (33)

Now, the normal contact is defined at position level and not at velocity level, as required by
Moreau’s time-stepping scheme. The time-derivative of the unilateral constraint g(q) = 0 yields

γ1 =
[

nT
c nT

c 1̄s1
]
q̇ (34)

where γ1 = dg(q)/dt.
The same gap function g activates also the tangential or friction force FT . Once the

impact has been triggered, the friction force can be either in impressed or constrained mode.
In impressed mode there is slip between the surfaces in contact and FT is defined as

FT = − fdλ1
vT
vT

(35)

Notice that here FT is not following the smooth transition provided by Equation (26).
In constrained mode there is stiction and FT belongs to the interval

FT ∈ [− faλ1,+ faλ1] (36)

The same expression can be written in terms of the law of inclusion using the relative
tangential velocity module vT , i.e.,

− vT ∈ NA2(λ2), A2 = {λ2 ∈ R | |λ2| ≤ faλ1} (37)

The latter expression allows defining a kinematic set-valued law in which γ2 ≡ vT ,
i.e.,

γ2 =
[

tT
c tT

c 1̄(s1 − R1nc)
]
q̇⇒ γ2 =

[
tT
c tT

c 1̄s1
]
q̇ (38)

Combining the Equations (34) and (38), we write

γ ≡ Du, D =

[
nT

c nT
c 1̄s1

tT
c tT

c 1̄s1

]
(39)

in which D is the 2× 3 Jacobian matrix of system (31).

6. Numerical Simulations

The proposed formulation has been tested considering the CSFH displayed in Figure 4.
Without any loss of meaning, we suppose that the mass centers G1 and G2 are, respectively,
located at the geometric centers O1 and O2 of the conjugate cylindrical surfaces. Geometrical
and structural parameters are reported in Table 1. Even if impact and friction follow
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different models, some parameters such as the restitution coefficient cr, and the dynamic
friction coefficient fd are common to both event-driven and time-stepping models.

Figure 4. Layout of the CSFH used in the numerical simulations. Initial undeformed configuration.

Table 1. Common geometric, inertial, and structural parameters of the CSFH used in the numerical
simulations.

Notation Description Value Unit

β hinge opening angle 300 (◦)
ρ hinge radius 0.144 (m)
−→
OF hinge center coordinates [0.22, 0.1]T (m)
−−→
G1C1 hinge attachment point to body 1 [0.2920,−0.02471](1)

T
(m)

−−→
OC2 hinge attachment point to body 2 [0.364, 0.1]T (m)

h cross-section height of the hinge 0.005 (m)
b cross-section width of the hinge 0.025 (m)

R1 body 1 radius 0.18 (m)
R2 body 2 radius 0.20 (m)
νh hinge Poisson’s ratio 0.3 (-)
Eh hinge Young’s modulus 100 (GPa)
m1 body 1 mass 10 (kg)
I1 body 1 moment of inertia 0.1617 (kg m2)

ν1, ν2 body 1, 2 Poisson’s ratio 0.3 (-)
E1, E2 body 1, 2 Young’s modulus 100 (GPa)

fa adherence coefficient 0.11 (-)
fd dynamic friction coefficient 0.055 (-)
cr restitution coefficient 0.9 (-)
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In the following, four models will be compared:

• the classic Lankarani-Nikravesh impact model with generalized stiffness K as in
Equation (14) + the modified Ambrósio friction model (LNA K spheres),

• the novel Lankarani-Nikravesh impact model with generalized stiffness K as in
Equation (16) + the modified Ambrósio friction model (LNA K cylinders) proposed in
this paper,

• the Lankarani-Nikravesh/ESDU impact model [22] + the modified Ambrósio friction
model (LNA-ESDU),

• the Moreau time-stepping scheme.

As recalled, the first model is the classic LN impact model described in [20]. The second
one is a modified version proposed in this paper that takes into account the contact of two
cylinders modifying the generalized stiffness K through Equation (16). The LNA-ESDU has
been validated experimentally for a journal-bearing contact with clearance of a slider-crank
mechanism in [22]. Finally, the fourth model is the Moreau time-stepping scheme. It is
noteworthy that the first three models are continuous models with event-driven schemes
while the fourth is a time-stepping method. This article offers a first numerical comparison
to understand if the proposed method is valid and comparable with methods widely
accepted by the scientific community. The choice of using three models for comparison is
linked to their importance in the multibody field. In fact, the LN model and the Moreau
model are the most popular models, each for its own category. The ESDU model is more
recent and does not have the same notoriety as the previous methods; however, it proved
to be very reliable from an experimental point of view.

The parameters used in the three continuous models are reported in Tables 2 and 3.
It can be observed that the generalized stiffness parameter used for the classic LN impact
model, i.e., considering the contact of two spheres, is one order of magnitude stiffer than
that employed in our modified version in which the contact of two cylinders is considered.
The same feature can be observed in Figure 5 for the LNA-ESDU where the generalized
stiffness parameter is not constant but grows with the indentation [22]. The dynamic
simulation has been performed using the explicit Runge-Kutta 4th-order method. The
initial time step has been set to h0 = 2 × 10−4 (s) while the tolerance of the event-driven
scheme is δtol = 1 × 10−4 (m).

The Moreau model employs the parameters reported in Table 1. The time-stepping
method is based on the midpoint rule with a fixed time step h0 = 1× 10−5 (s).

Table 2. Lankarani-Nikravesh impact model [20].

Notation Description Value Unit

K (spheres) generalized stiffness parameter for Equation (14) 47.35 (GPa)
K (cylinders) generalized stiffness parameter for Equation (16) 2.27 (GPa)

n nonlinear exponent factor 1.5 (-)

Table 3. Modified Ambrósio friction model [41].

Notation Description Value Unit

v0 lower tolerance for the tangential velocity 1 × 10−4 (m/s)
v1 upper tolerance for the tangential velocity 1 × 10−2 (m/s)
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Figure 5. Generalized stiffness evaluated using the Lankarani–Nikravesh/ESDU impact model [22].

6.1. Central Impact

First, we considered the simplest case of a central impact on the two conjugate surfaces.
In this particular scenario, the friction force is zero making it possible to evaluate the
differences between the four models in the impact process only. The initial state of body 1
is q0 = [0, 0.01, 0]T . The results of the simulation are displayed in Figure 6 where the vertical
displacement of body 1 and the impact force are plotted. It can be observed that, after free-
flying, body 1 impacts at the same instant for the four models, and the bounce height gradually
decreases in time due to the dissipative effects. Since the Moreau model is non-smooth, its
contact is impulsive and the impact force is the highest among the four models. The three
smooth continuous models have the common feature that the impact is spread over a finite,
albeit very small, time interval, therefore reducing the contact force peaks. Moreover, it can be
observed that the dissipated energy is lower than in the Moreau model and that the sequence
of impacts is dilated. Comparing the three continuous LNA-based models, we realize that the
LNA (K cylinders) is the most rigid model with lower indentation. The remaining two models
have similar characteristics with lower contact forces and greater penetration depths. From
this simple experiment, we understand that although some common parameters employed
in the models are the same, the comparison of the results shows dynamics that gradually
become different. The discrepancies between regularized smooth LNA-based methods and
non-smooth methods should not be surprising as they are inherent in different formulations.
The contact in the LNA-based models is divided into two phases, the impact and the restitution
phase while in the Moreau scheme the contact is non-smooth and impulsive and the rebound
height is predominantly influenced by the restitution coefficient, here considered equal for all
models. The discrepancies between the models are reduced when the materials are sufficiently
rigid since the contact phase is reduced, tending to the limit case of impulsive contact.

To better understand the differences between the three continuous models, let’s ana-
lyze the first contact. Figure 7 shows the indentation curves and the hysteresis cycles. It
can be observed that the three models have maximum indentation decreasing with the
generalized stiffness. The LNA-ESDU is the model with a wider curve and with a flatter
hysteresis cycle while the classic LNA model is the most rigid one. Finally, the LNA model
with K calculated for two cylinders in contact is placed between the two. It should also
be observed that the longer duration of the contact for the LNA-ESDU entails a greater
computational burden that gradually decreases up to the classic LNA model.
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Figure 6. Model comparison considering a central impact: (a) y-coordinate of G1, (b) impact force FN .

Figure 7. Model comparison considering an asymmetrical impact: from the top to the bottom:
indentation vs. number of steps; hysteresis cycles.

6.2. Asymmetrical Impact

Let us now consider an asymmetrical collision where the friction force also comes into
play. In this second scenario the initial state vector is q0 = [0.01, 0.01, 0]T .

Observing Figure 8, many of the conclusions of the previous case are also valid in
this scenario. The Moreau model is confirmed as the most rigid while the models LNA (K
cylinders) and LNA-ESDU are those with less stiffness. While the three continuous models
show similar dynamics, the non-smooth Moreau model presents evident differences not
only in terms of contact forces but also in terms of gross motion quantities such as position
and rotation. This is due to the friction force that amplifies the contact law differences
leading to a chaotic behavior that is difficult to predict.
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Figure 8. Model comparison considering an asymmetrical impact: from the top to the bottom: x-
coordinate of G1, y-coordinate of G1, rotation angle θ of body 1, normal contact force FN , tangential
friction force FT .

To better understand the influence of friction on the dynamics, in Figure 9 the relative
tangential velocity vT and the friction force FT are displayed in terms of the time steps for
the LNA-based models. Since the number of steps depends on contact duration, stiffer
models produce a lower number of iterations and are computationally less expensive.
It can be observed that most of the computational time is spent during contact phases
since the event-driven scheme reduces the time step, therefore leading to a higher number
of steps. Vice-versa, the algorithm increases the time step when no contact is detected.
Observing the friction force FT , the plots are similar but the peaks grow proportionally to
the stiffness of the model. Furthermore, the proposed LNA (K cylinders) generates friction
forces compared to the LNA-ESDU. This feature is promising as the LNA (K cylinders) has
lower complexity than LNA-ESDU while providing similar results.

Figure 10 reports the trajectories of the center G1 of body 1 for the four models. Due to
the presence of contacts, all trajectories are inside the circle of clearance, i.e., a circular region
with a radius equal to δ = R2 − R1. Points inside this region are subject only to gravity and
inertia forces. Points on the boundary or outside are subject also to impact forces.

It can be noted that the less rigid models, namely LNA (K cylinders) and LNA-ESDU,
have greater impact depths, highlighted by the points outside the circle of clearance.
Besides, LNA (K cylinders) confirms to be closer to LNA-ESDU than to LNA (K spheres).
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Figure 9. Relative tangential velocity vT and friction force FT in terms of the number of time steps.

Figure 10. Trajectory of the body–center G1 for the four models considering the asymmetrical impact.
Starting point at q0 = [0.01, 0.01, 0]T .

6.3. CSFH Simulation

Finally, the complete simulation of a CSFH is presented. Figure 11 reports some
relevant results of the numerical simulations. As for the previous case, the models start
with similar dynamics from the state q0 = [0.01, 0.01, 0]T . Comparing the x-coordinate of G1
in Figures 8 and 11, we can distinguish the influence of the flexure hinge on the horizontal
dynamics of the circular flexure pushes the body 1 towards the center G2 of body 2. The
first impact generates different contact forces and the trajectories rapidly change amplified
by the influence of the circular flexure beam. Furthermore, the friction force affects both
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the translational and the rotational motion. In turn, this modifies the status of the body and
therefore the flexure’s response.

Figure 11. CSFH simulation—comparison of the four models: from the top to the bottom: x-coordinate
of G1, y-coordinate of G1, rotation angle θ of body 1, normal contact force FN , tangential friction force FT.

Finally, Figure 12 reports the trajectories of the center G1 of body 1 for the four models.
As already pointed out, the elastic force pulls body 1 towards the center deviating the
vertical fall that is observed in Figure 10. It can be seen that, from the first impact, the
trajectories of the models begin to deviate and the dynamics are chaotic. Even for this case,
the less rigid models, namely LNA (K cylinders) and LNA-ESDU, have greater impact
depths, highlighted by the points outside the circle of clearance.
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Figure 12. Trajectory of the body–center G1 for the four models. Starting point at q0 = [0.01, 0.01, 0]T .

7. Parametric Analysis

To understand how the parameters of the models influence the CSFH dynamic re-
sponse we conducted a parametric analysis by varying all the parameters of the model
one at a time. The results for the event-driven models are reported in Table 4 where the
nominal values are those of Table 1. We have grouped all three event-driven models into
a single table because the behavior is similar. The analysis is qualitative and the number
of arrows, increasing from one to three, indicates the degree of influence of a parameter
on an output variable. Low influence (one arrow) means that the changes in the dynamic
response are limited. Medium influence (two arrows) means that the differences gradually
amplify as the simulation proceeds. Finally, high influence (three arrows) implies that
the differences appear already in the early stages of the simulation generating completely
different dynamics.

Table 4. Parametric analysis for the event-driven models. One arrow (low influence), two arrows
(medium influence), three arrows (high influence).

x y θ FN FT

R1 ± 1 (mm) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ ↑
m1 ± 0.1 (kg) ↑ ↑ ↑ ↑ ↑
I1 ± 0.001 (kg m2) ↑ ↑ ↑ ↑ ↑
E1,2 ± 10 (GPa) ↑ ↑ ↑ ↑ ↑
cr ± 0.01 (-) ↑ ↑ ↑ ↑ ↑
fd ± 0.005 (-) ↑ ↑ ↑ ↑ ↑
ρ± 1 (mm) ↑↑ ↑↑ ↑ ↑↑ ↑↑
b± 1 (-) ↑ ↑ ↑ ↑ ↑
h± 1 (mm) ↑↑ ↑↑ ↑↑ ↑↑ ↑↑
β± 1 (◦) ↑↑↑ ↑↑↑ ↑↑ ↑↑↑ ↑↑
Eh ± 10 (GPa) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ ↑↑

It can be observed that the radius R1, and therefore the radial clearance δ, is a critical
parameter for the model. Increasing or decreasing the clearance modifies the kinematics
of the impact, anticipating or delaying it, and implies important changes especially on
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the gross motion (x, y, θ). Other parameters related to the impact model produce small
deviations in the dynamic response. A very different thing happens with regard to the
flexure parameters whose modification has strong repercussions on the system dynamics.

Finally, the Table 5 shows the parametric analysis for the time-stepping Moreau’s
method. It should be noted that, while following the trend of the event-driven methods,
the model is more sensitive to changes in the parameters. Probably, this behavior derives
from the higher stiffness of the Moreau’s method.

Table 5. Parametric analysis for the time-stepping Moreau’s method. One arrow (low influence), two
arrows (medium influence), three arrows (high influence).

x y θ FN FT

R1 ± 1 (mm) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ ↑↑
m1 ± 0.1 (kg) ↑↑ ↑↑ ↑↑ ↑↑ ↑↑
I1 ± 0.001 (kg m2) ↑ ↑ ↑ ↑ ↑
cr ± 0.01 (-) ↑↑ ↑↑ ↑↑ ↑↑ ↑↑
fd ± 0.005 (-) ↑↑ ↑↑ ↑ ↑ ↑
fa ± 0.01 (-) ↑ ↑ ↑ ↑ ↑
ρ± 1 (mm) ↑↑ ↑↑ ↑ ↑↑ ↑↑
b± 1 (-) ↑ ↑ ↑ ↑ ↑
h± 1 (mm) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ ↑↑
β± 1 (◦) ↑↑↑ ↑↑↑ ↑↑ ↑↑ ↑↑
Eh ± 10 (GPa) ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑

8. Discussion

Comparing the four different models reported in the previous sections revealed im-
portant insights. The contact problem with friction was confirmed to be tough. The strong
coupling between stiffness and hysteresis loss creates highly non-linear dynamics making
the system’s evolution chaotic. This tendency is further amplified by the flexure, being de-
pendent on the position and orientation of the attached bodies. Considering these premises,
comparing different impact models would seem useless. Experimentally, it is preferred to
quantify the extent of the collision by monitoring, for example, the accelerations produced
on bumping bodies. The acceleration is correlated to the impact forces and by observing
the first one can quantify the second, which is much more difficult to observe directly.
Monitoring the levels of impact forces has important repercussions on various issues of
industrial interest such as wear and durability.

To study microcontacts in MEMS application a nanoindenter based experimental setup
similar to that proposed in [47] could be designed. A piezoelectric transducer could push
the body 1 to touch the body 2. Then, a microprobe, linked to the body 2, could measure
forces and displacements.

From the previous numerical results, we can state that the proposed LNA (K cylinders)
is very close to the experimentally verified LNA-ESDU. Considering the computational
efficiency, the Moreau time-stepping method is the fastest. Nevertheless, the impulsive
nature of impact forces makes the Moreau model too stiff. The classic LNA method is less
stiff than Moreau but it needs more computational resources to resolve the continuous
contact. The LNA-ESDU is the most reliable but the slowest method at the same time.
Compared to the latter, LNA (K cylinders) has the advantage of being simpler by using a
constant stiffness instead of a variable one.

The results look promising and worthy of further future developments as the LNA (K
cylinders) seems to be a good compromise in terms of efficiency and reliability.

9. Conclusions

The dynamic model of a CSFH including impacts and friction has been described. First,
the flexure hinge elasto-kinematic model has been recalled. Then, the impact kinematics
of two conjugate cylindrical surfaces has been formulated and the event-driven contact
models have been introduced. These models are based on the detection of the impact
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instants in correspondence of which a switch among different dynamic models or states
is imposed. Based on this class of impact models, we proposed to modify the classic
Lankarani-Nikravesh impact model using a generalized stiffness derived from the contact
of two cylinders. This solution seemed well-suited to describe the CSFH where two
cylindrical conjugate surfaces collide. The proposed model has been equipped with the
modified Ambrósio friction model. Then, the non-smooth Moreau’s scheme has been
recalled. The latter is a time-stepping method that does not require the detection of impact
points and the consequent change of state.

In the numerical part, the proposed method, the Moreau scheme, and two continuous
event-driven schemes including the classic Lankarani-Nikravesh-Ambrósio model and its
evolution obtained by the ESDU constitutive law have been compared in different impact
scenarios. All numerical simulations revealed that the dynamics are strongly influenced by
the impact formulation and its parameters. Furthermore, due to the high non-linearity of the
problem, the differences are further amplified by the presence of the flexure. The proposed
method not only provided indentation, impact, and friction force values comparable to
those provided by the experimentally verified LNA-ESDU model but has the advantage of
requiring lower computational resources equal to those needed by the classic LNA method.

The parametric analysis revealed that some parameters such as the radial clearance or
flexure parameters have a strong influence on system dynamics. This can be very useful in
helping designers to establish the right manufacturing processes and dimensional tolerances.

The present investigation is expected to be a first step towards the understanding
of the dynamic behavior of CSFH. Furthermore, the benefits introduced by the method
could be important in developing control strategies. For example, the impact model could
characterize the displacements of a micro-gripper equipped with CSFHs in function of the
comb-drives actuation voltage. In this way, it would be possible to fully exploit the potential
of the CSFH by taking into account the contact dynamics among the conjugated surfaces
and ensuring, at the same time, control over the maximum stresses that the materials can
withstand during the impact phase.
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