
Absoption isotherm models 

According to the linear and nonlinear Langmuir model, it was assumed that the 

adsorption energy is uniform and there is no adsorbate migration in the surface plane 

[1,2], and is expressed as in Eq (1) and (2): 

Ce/qe = 1/qmKL + Ce/qm                   (1) 

qe = qmKLCe/(1 + KLCe)                      (2) 

where, “qe” is the amount of solute adsorbed per unit weight of adsorbent at equilibrium 

(mg/g), “Ce” is the equilibrium concentration of the solute in bulk solution (mg/L), “qm” 

is the maximum adsorption capacity (mg/g), and KL is the Langmuir constant(L/mg). 

The linear and nonlinear Freundlich models assumes heterogeneous surface energies and 

it becomes more heterogeneous as the value of the slope approaches zero [2-4]. Freundlich 

equation can be also written as Eq (3) and (4): 

lnqe = lnKF + 1/n lnCe                    (3) 

qe = KFCe1/n                        (4) 

where, “KF” is a constant indicative of the relative adsorption capacity of the adsorbent 

(mg1-(1/n)L1/n/g) and “n” is a constant indicative of the intensity of the adsorption, and “Ce” 

is the equilibrium concentration of the solute in bulk solution (mg/L). 



According to the Temkin model, it was assumed that the adsorption heat of all molecules 

in the layer decreases linearly with the coverage area due to the adsorbent-adsorbate 

interactions and the adsorption is characterized by a homogeneous distribution of 

binding energies up to a maximum binding energy [5]. Equation can be written as follows 

Eq. (5): 

qe = RT/b lnKT + RT/b lnCe                   (5) 

where “qe” is the amount of solute adsorbed per unit weight of adsorbent at equilibrium 

(mg/g), “RT/b = B”, “R” is the gas constant (8.314 J/mol K), “T” is the absolute temperature 

in Kelvin unit, “b” is related to the heat of adsorption (J/mol), “KT” is the Temkin constant 

(L/mg), and “Ce” the equilibrium concentration of the solute in bulk solution (mg/L).  

The Elovich model is based on a kinetic principle, which is assumed to increase 

exponentially by adsorption regions, which indicates a multi-layer adsorption [4]. The 

equation of Elovich isotherm is as follows Eq. (6): 

ln(qe/Ce)=ln(KEqm)-1/qm qe                 (6) 

where, “qe” is the amount of solute adsorbed per unit weight of adsorbent at equilibrium 

(mg/g), “Ce” is the equilibrium concentration of the solute in bulk solution (mg/L), “qm” 

is the maximum adsorption capacity (mg/g), and KE is the Elovich constant (L/mg). 



Dubinin-Radushkevich isotherm model is generally applied to express the adsorption 

mechanism on heterogeneous surfaces [6]. It is expressed by Eq. (7): 

lnqe = lnqm - Bε2                  (7) 

where “qm” represents the adsorption capacity (mg/g), “R” is the gas constant (8.314 

J/molK), and “T” refers to the temperature as Kelvin. In addition, ε2 value is given by 

ε2=(RT ln(1+1/Ce))2 equation. 

 

 



 

Figure S1. (a) FT-IR spectra and (b) TGA thermograms of TH based COFs. 
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Figure S2. The (a) Langmuir, (b) Freundlich, (c) Temkin, (d) Elovich, and (e) Dubinin-

Radushkecivh isotherms for MB absorption by dp-TH COFs. 
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Figure S3. The (a) Langmuir, (b) Freundlich, (c) Temkin, (d) Elovich, and (e) Dubinin-

Radushkecivh for MO abosrtion by p-TH COFs. 
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Table S1. Equilibrium pH values of 25 ppm 100 mL of MB and MO solutions at the end 

of absorption process by using TH, dp-TH, and p-TH COFs as absorbents and without 

absorbent.  

Dye 

pH values 

Without 

absorbent 

TH COF dp-TH COF p-TH COF 

MB 6.2±0.3 6.6±0.1 8.7±0.3 - 

MO 6.7±0.1 7.5±0.2 - 3.8±0.2 

 

 

 

 

 

 

 

 

 



Table S2. Various isotherm constants for absorption of MB and MO dyes by dp-TH, and 

p-TH COFs, respectively. 

 

Isotherm 

model
Isotherm constants Situation

Langmuir

(Linear)

Dye
KL

(L/mg)

qm

(mg/g)
R2

MB 1x10-3 113.6 0.078 Not fit

MO 2x10-3 68.9 0.930 Not fit

Langmuir

(Nonlinear)

MB 9x10-4 98.6 0.098 Not fit

MO 2x10-1 72.2 0.942 Not fit

Freundlich

(Linear)

Dye
KF

(mg1−(1/n) L1/n g−1)
n R2

MB 1x10-1 0.91 0.954 Not fit

MO 16.5 4.12 0.957 Not fit

Freundlich

(Nonlinear)

MB 3x10-1 1.01 0.998 Fit

MO 17.5 3.83 0.998 Fit

Temkin

Dye
KT

(L/mg)

B

(kJ mol−1)
R2

MB 8x10-2 204.8 0.903 Not fit

MO 4.06 300.3 0.746 Not fit

Elovich

Dye
KE

(L/mg)

Qm

(mg/g)
R2

MB 8x10-4 250 0.038 Not fit

MO 1.18 15.4 0.683 Not fit

Dubinin-

Radushkevich

Dye
B

(mol2/kJ2)

Qm

(mg/g)
R2

MB 5x10-5 19.3 0.853 Not fit

MO 3x10-7 41.3 0.561 Not fit
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