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Abstract: A high-property plasma resonance-sensor structure consisting of two metal-insulator-metal
(MIM) waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) is designed based
on surface plasmon polaritons. Its transmission characteristics are analyzed using multimode in-
terference coupling mode theory (MICMT), and are simulated using finite element analysis (FEA).
Meanwhile, the influence of different structural arguments on the performance of the structure is
investigated. This study shows that the system presents four high-quality formants in the trans-
mission spectrum. The highest sensitivity is 3000 nm/RIU with a high FOM* of 9.7 × 105. In
addition, the proposed structure could act as a biosensor to detect the concentrations of sodium
ions (Na+), potassium ions (K+), and the glucose solution with maximum sensitivities of 0.45, 0.625
and 5.5 nm/mgdL−1, respectively. Compared with other structures, the designed system has the
advantages of a simple construction, a wide working band range, high reliability and easy nano-scale
integration, providing a high-performance cavity choice for refractive index sensing and biosensing
devices based on surface plasmons.

Keywords: surface plasmon resonance; metal-insulator-metal; multimode interference coupling
mode theory; biosensor

1. Introduction

Surface plasmon polaritons (SPPs) are a kind of hybrid excited state caused by the
local coupling of free electrons and photons on a metal surface, which its field distribu-
tion decreases exponentially on both sides of the interface [1,2]. SPPs break through the
diffraction limit of traditional optics, and have strong optical field limitation and local field
enhancement capabilities, which means that they have important application value in opti-
cal integrated circuits [3,4]. Many optical phenomena, such as electromagnetically induced
transparency [5] and Fano resonance [6–8], have been observed in plasma-waveguide
coupling systems. In the propagation process of SPPs, the destructive interference between
the continuous odd pattern and the discrete even pattern will produce Fano resonance and
sharp asymmetric peaks in the transmission spectrum.

In recent years, various classical waveguide structures based on SPPs—including the
metal strip waveguide [9,10], metal slot waveguide [11,12] and hybrid plasmonic waveg-
uide [13,14]—have been designed for the fabrication of various photonic devices. The basic
structure of the metal slot waveguide is a metal-insulator-metal (MIM) construction. The
design of an MIM waveguide sensor based on SPPs has caught researchers’ extensive atten-
tion, owing to its characteristics of high constraint, low-loss, long transmission distance and
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ease of manufacture. Chen et al. [15] designed a plasmonic waveguide structure consisting
of an MIM waveguide side-coupled with two same-stub cavities, with a sensitivity of
1100 nm/RIU and a figure of merit (FOM*) of 2 × 105. Wen et al. [16] proposed an end-
coupled ring-slot-connected MIM waveguide construction; its sensitivity was 960 nm/RIU
and its FOM* was 1.65 × 104. Qiao et al. [17] designed an MIM waveguide configuration
consisting of an M-type resonator and a stub, with a sensitivity of 780 nm/RIU and an
FOM* of 1.56 × 105. Xiao et al. [18] proposed a tunable plasmonic sensor with resonators
in an inverted U-shaped resonator; its sensitivity was 840 nm/RIU and its FOM* was
3.9 × 105. Compared with other structures, the performance of the structure is obviously
improved. As shown in Table 1, the performance of the proposed structure is superior to
other structures. Additionally, optical functional equipment based on an MIM waveguide
structure has been designed, including wavelength-division multiplexers [19], a Bragg
reflector [20,21], an optical splitter [22,23], a bio-sensor [24], and so on. Meanwhile, many
researchers have designed photodetectors [25] and solar absorbers [26] based on surface
plasmon resonance (SPR).

Table 1. Performance comparison of various plasmonic sensors.

Reference Sensitivity (nm/RIU) FOM*

This paper 3000 9.7 × 105

Chen et al. [15] 1100 2 × 105

Wen et al. [16] 960 1.65 × 104

Qiao et al. [17] 780 1.56 × 105

Xiao et al. [18] 840 3.9 × 105

In this paper, a surface plasmon resonance system consisting of two MIM waveg-
uides coupled with a transverse ladder-shaped nano cavity (TLSNC) is presented and
investigated. The propagation characteristics of the surface plasmon resonance system are
analyzed by using finite element analysis (FEA). The effects of the refractive index of the di-
electric and the influences of the geometric parameters of the structure on the transmission
characteristics are studied, including the length of the two rectangular cavities on the side,
the height of the five perpendicular strip cavities, and the coupling gap between TLSNC
and the two MIM waveguides. In addition, the application of the designed structure in
bio-sensing is studied in detail.

2. Materials and Methods

The refractive index sensor structure of a transverse ladder-shaped resonator based
on an MIM waveguide is shown in Figure 1. Two MIM waveguides are placed on metallic
silver, and a TLSNC is placed between the two waveguides. The yellow area and the white
area represent silver and air, respectively. The geometrical analysis model based on FEM
was established in order to explore its optical response characteristics. The width w of MIM
waveguides, the horizontal strip-shaped cavity and the vertical strip-shaped cavity remain
constant at 50 nm in order to ensure that only TM0 can propagate through the waveguide
structure [27]. d is the separation distance between two vertical rectangular cavities. The
length of the two rectangular cavities on the side is signified as L. h expresses the height of
the five vertical strip-shaped cavities. g is defined as the coupling gap between TLSNC and
the two MIM waveguides.

The relative permittivity εd of air is 1. The permittivity εm of Ag is described by the
Drude model [28]:

εm = ε∞ −
ω2

p

ω2 + iωγ
(1)

where ε∞ = 3.7 is the boundless frequency permittivity, ωp = 9.1 eV is the plasma oscillation
frequency, γ = 0.018 eV is the collision frequency, and ω is the circular frequency of the
incident light.
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nano-cavity (TLSNC).

The transmission distance of SPPs is generally defined as 1/e, which is the propagation
length of SPPs. Because the loss of metal is relatively small, the formula is as follows:

L ≈ 1
2K I

SPP
(2)

where KSPP is the wave vector of the surface plasmon.
The formula of the TM0 mode is as follows [29]:

εmkitanh
(
− jkiω

2

)
+ εikm = 0 (3)

where ki,m = 2π/λ (εi,m−1/n2
eff)1/2, and ki and km represent, respectively, the lateral propa-

gation constants of air and silver.
Due to the size of the structure being nanoscale, the contribution of the imaginary

part is so small that it can be neglected, such that more energy should be put into the
contribution of the real part. Based on the standing wave theory, the resonant wavelengths
of the cavity can be expressed by the following formula [30,31]:

λ =
2Re

(
ne f f

)
Le f f

m − ϕ
π

(4)

Re
(

ne f f

)
=

√
εm −

(
k
k0

)2
(5)

where Leff represents the efficient length of the resonator, ϕ is the phase shift caused by the
reflection of SPPs at the dielectric–metal interface, and the positive integer m represents the
resonance order.

Based on the multimode interference coupling mode theory (MICMT) [32], the trans-
mittance can be deduced as follows [33]:

T =

∣∣∣∣∣∑n

2γn1eiϕn

−i(λ − λn0)τn + 2 + τn
τn0

∣∣∣∣∣, ϕn = ϕn1 + φn (6)

where ϕn is the entire coupled resonant phase of the nth pattern, which can be approximated
as a constant. φn represents the difference between the output phase and the input phase
of the nth resonance mode, and ϕn is the coupled phase of waveguide S1 and the nth
mode in the resonant cavity. τn0 expresses the internal loss decay time of the nth mode,
which here is τn = τn1 = τn2, because waveguides S1 and S2 are of equal length and width.
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γn1 ≈ 1 is the normalization coefficient, and λ and λn0 represent the incident wavelength
and resonance wavelength, respectively

In order to assess the sensing performance of the system, sensitivity (S) and FOM* are
introduced, which are defined by the following formula [34,35]:

S =
∆λ

∆n
(7)

FOM∗ =
∆T

T∆n
(8)

where T is the transmittance, and ∆T/∆n is the transmittance variation caused by the
change of a refractive index.

3. Simulations and Results

COMSOL Multiphysics software (COMSOL Inc., Stockholm, Sweden) was used to
establish the geometric analysis model for the optical response characteristics of the de-
coupled structure. The magnetic field characteristics of the two-dimensional model do
not differ seriously from those of a three-dimensional structure [36]. Therefore, in order
to save memory and reduce complexity, this paper adopts the two-dimensional model for
simulation analysis. The FEA was used to analyze the propagation properties. The geomet-
ric parameter settings are as follows: L = 510 nm, h = 200 nm, d = 50 nm, w = 50 nm and
g = 10 nm. The normalized transmittance of the waveguide configuration is described as
the quotient of the energy flow between the output end and the input end. The comparison
between the simulation results and theoretical calculation results of MICMT is shown in
Figure 2. As shown in Figure 2, the graph confirmed that the simulation results of FEA
and the theoretical calculation results of MICMT were a match. At the same time, it can
be seen that four high-quality resonance peaks—named Peak I, Peak II, Peak III and Peak
IV—appear in the transmission spectrum of the proposed structure. The four resonance
peaks enhance the ability of the system to eliminate interference factors.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 1. The two-dimensional schematic of two MIM waveguides with a transverse ladder-shaped 
nano-cavity (TLSNC). 

3. Simulations and Results 
COMSOL Multiphysics software (COMSOL Inc., Stockholm, Sweden) was used to 

establish the geometric analysis model for the optical response characteristics of the de-
coupled structure. The magnetic field characteristics of the two-dimensional model do not 
differ seriously from those of a three-dimensional structure [36]. Therefore, in order to 
save memory and reduce complexity, this paper adopts the two-dimensional model for 
simulation analysis. The FEA was used to analyze the propagation properties. The geo-
metric parameter settings are as follows: L = 510 nm, h = 200 nm, d = 50 nm, w = 50 nm and 
g = 10 nm. The normalized transmittance of the waveguide configuration is described as 
the quotient of the energy flow between the output end and the input end. The compari-
son between the simulation results and theoretical calculation results of MICMT is shown 
in Figure 2. As shown in Figure 2, the graph confirmed that the simulation results of FEA 
and the theoretical calculation results of MICMT were a match. At the same time, it can 
be seen that four high-quality resonance peaks—named Peak I, Peak II, Peak III and Peak 
IV—appear in the transmission spectrum of the proposed structure. The four resonance 
peaks enhance the ability of the system to eliminate interference factors. 

 
Figure 2. Comparison between the simulation results and theoretical calculation results of 
MICMT. 
Figure 2. Comparison between the simulation results and theoretical calculation results of MICMT.

In order to understand the physical reason for the four resonance peaks more compre-
hensively and deeply, the magnetic field distributions of four transmission peaks at their
wavelengths (λ = 780 nm, 843 nm, 1053 nm and 1917 nm) were drawn. All of the magnetic
field diagrams are normalized for research convenience. As shown in Figure 3, standing
wave resonance occurs in the TLSNC and MIM waveguides of the four modes, such that
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the incident light can pass through the resonant cavity and exit to form resonant peaks. It
was found that, compared with Peak IV, Peak III has weaker magnetic field distribution
in the TLSNC and stronger magnetic field distribution on the waveguide, as displayed in
Figure 3c,d. As shown in Figure 2, the transmission peak amplitude of Peak IV is less than
that of Peak III. This shows that when the energy of the TLSNC is divided more, the energy
of the exit waveguide is divided less, resulting in a smaller transmission peak.
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Figure 3. The magnetic field | Hz | of: (a) Peak I (λ = 780 nm), (b) Peak II (λ = 843 nm), (c) Peak III
(λ = 1053 nm) and (d) Peak IV (λ = 1917 nm).

Considering the practicability of the whole system, firstly, the influence of coupling
gap g on the system performance is studied by changing the g from 10 to 30 nm at an
interval of 5 nm. As represented in Figure 4, with g increased, the blue shift appears in the
transmission spectra in a very small range, which is almost negligible, but the transmittance
of the transmission peak decreases sharply. This can be explained by the fact that when
the coupling gap g between the TLSNC and MIM waveguides S1 and S2 increases, the
effective coupling distance of the system decreases, the transmission efficiency of the overall
structure decreases, and the transmittance of the system decreases. The coupling gap g
determines the bottleneck of the whole system, which can be seen from the influence of the
coupling distance on the transmission spectra of the whole system.
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transmittance with the increasing coupling gap.

In order to investigate the influences of the diverse lengths of the two rectangular
cavities on the side, L was increased from 470 nm to 550 nm in steps of 20 nm. Other
arguments were set as h = 200 nm, d = 50 nm, w = 50 nm and g = 10 nm. As shown in
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Figure 5a, with the increase of L, the transmission spectra of the four resonance peaks
show different degrees of red shift. This phenomenon could be explained by analyzing the
magnetic field distribution. As shown in Figure 3a, the magnetic field energy of Peak I has
a distribution mainly in the perpendicular rectangular cavity, while there is only a very
weak magnetic field distribution in the horizontal cavities on both sides. In Figure 3d, Peak
IV has a strong magnetic field energy distribution in two horizontal cavities. This leads to
the large redshift of Peak IV, while the redshift of Peak I is almost negligible.
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Afterwards, the effects of the height h of the five vertical rectangular cavities on the
performance of the sensor system were analyzed at 160, 180, 200, 220 and 240 nm, while
setting L as 550 nm and keeping the other parameters the same. The simulation result shows
that with the increase of h, there were four obvious linear red-shifts on the transmission
spectra of the four resonance peaks, which are represented in Figure 6.
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Figure 6. (a) Transmission spectra for different heights h of the five vertical rectangular cavities;
(b) varying wavelengths with the increasing lengths of the five vertical rectangular cavities.

The resonance system is greatly affected by the change of refractive index n of the
insulator. Hence, in order to further investigate how the various refractive indexes affect the
system performance, n was set to increase from 1.00 to 1.05 RIU at an interval of 0.01 RIU.
The transmission spectra were displayed in Figure 6a. The parameters of the structure
were as follows: L = 550 nm, h = 240 nm, d = 50 nm, w = 50 nm and g = 10 nm. As shown
in Figure 7a, with increases in n, the transmission spectra of four resonance peaks have
approximately equidistant red shifts. In Figure 7b, the sensitivities of four resonance peaks
were calculated to be 840, 960, 1140 and 3000 nm/RIU, respectively. The highest FOM*

obtained at λ = 888 nm was 9.7 × 105.
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4. Application in Bio-Sensing

The proposed structure can also serve as a biosensor. There are many patents for
biosensors based on surface plasmon resonance [37–39]. In human body fluid, sodium ions
(Na+) are the most important electrolyte in extracellular fluid, and potassium ions (K+) are
the most important electrolyte in intracellular fluid. Na+ and K+ are of great significance
in order to maintain the osmotic pressure, body fluid volume and acid-base balance of
normal body fluid [40]. For patients with diabetes, monitoring blood glucose levels is
also particularly important. In order to evaluate the detection performance, the TLSNC
with the proposed structure was filled with diverse concentrations of Na+, K+ and glucose
solution. The schematic diagram of the three-dimensional model is shown as Figure 8. The
yellow part, blue part, grey part and black part represent silver, filling solution, air and
the substrate, respectively. Silver is used as the designated metal in order to capitalize
on its enhanced filed penetration, lower ohmic loss, and lesser bandwidth than other
noble metals.
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The relationships of the refractive index with the concentration variation of Na+ (mgdL−1),
K+ (mgdL−1) and the glucose solution (mgdL−1) at a constant temperature are as follows [41,42]:

nNa+ = 1.3373 + 1.768 × 10−3 C × k
393

− 5.8 × 10−6
(

C × k
393

)2
(9)

nK+ = 1.3352 + 1.6167 × 10−3 C × k
529.8

− 4 × 10−7
(

C × k
529.8

)2
(10)

nglucose = 1.33230545 + 0.00011889 × C × k (11)
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where C expresses the concentration in mgdL−1, and k is the concentration element. The
concentration element k for Na+, K+, and the glucose solution is 30, 50, and 10, respectively.

The sensitivity equation can be expressed as follows:

SC =
∆λC
∆C

(12)

The structural parameters were fixed at L = 550 nm, h = 240 nm, d = 50 nm, w = 50 nm
and g = 10 nm. The concentration of Na+ was set to 200, 250, 300, 350 and 400 mgdL−1;
the concentration of K+ was set to 0, 20, 40, 60 and 80 mgdL−1. The glucose solution’s con-
centration was changed from 110 mgdL−1 to 230 mgdL−1, with an interval of 30 mgdL−1.
Their transmittance curves are presented in Figure 9. As shown in Figure 9a–c, distinguish-
able transmission peaks were observed as the concentrations of Na+, K+ and the glucose
solution varied with the patient’s range of possibilities. As the concentration of Na+, K+

and the glucose solution changed by 1 mgdL−1, the observed maximum transmission
peak displacements were 0.45 nm, 0.625 nm and 5.5 nm, respectively, which are expressed
in Figure 9d–f. Such large transmission peak changes can be easily detected by modern
spectrometers. The biosensor model has the advantages of simple construction, fast re-
sponse, high reliability and easy nano-scale integration, providing a high-performance
cavity choice for biosensing devices based on surface plasmons. At the same time, it has
certain guiding significance to the development of the real-time monitoring field.
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5. Conclusions

Herein, a high-performance plasma resonance sensor structure consisting of two
MIM waveguides coupled with a transverse ladder-shaped nano-cavity (TLSNC) was
designed. Its transmission characteristics were analyzed and simulated, respectively, using
multimode interference coupling mode theory (MICMT) and finite element analysis (FEA).
The influence of different structural parameters on the performance of the structure was
investigated, including the length of the two rectangular cavities on the side, the height
of the five perpendicular rectangular cavities, and the coupling gap between the TLSNC
and the two MIM waveguides. The simulation results reveal that the structure has four
high-quality formants in the 600–2500 nm operating range. The optimal performance was
achieved when the sensor structure parameters were set as follows: L = 550 nm, h = 240 nm,
d = 50 nm, w = 50 nm and g = 10 nm. The highest sensitivity was 3000 nm/RIU with a high
FOM* of 9.7 × 105. In addition, the proposed structure could act as a biosensor to detect
the concentrations of sodium ions (Na+), potassium ions (K+) and the glucose solution with
maximum sensitivities of 0.45, 0.625 and 5.5 nm/mgdL−1, respectively. Compared with
other structures, the designed structure has the advantages of simple structure, a wide
working band range, strong anti-interference ability and easy nano-scale integration, which
means that it has important guiding significance in the optical integrated circuit, refractive
index sensing and nano-biosensing fields.
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