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Abstract: We designed a high electron mobility transistor (HEMT) epitaxial structure based on an
AlGaN/GaN heterojunction, utilizing Silvaco TCAD, and selected AlGaN with an aluminum compo-
sition of 0.1 as the back-barrier of the AlGaN/GaN heterojunction. We enhanced the confinement of
the two-dimensional electron gas (2DEG) by optimizing the structural parameters of the back barrier,
so that the leakage current of the buffer layer is reduced. Through these optimization methods, a
lower drain leakage current and a good radio frequency performance were obtained. The device
has a cut-off frequency of 48.9 GHz, a maximum oscillation frequency of 73.20 GHz, and a radio
frequency loss of 0.239 dB/mm (at 6 GHz). This work provides a basis for the preparation of radio
frequency devices with excellent frequency characteristics and low RF loss.

Keywords: HEMT; AlGaN; back-barrier; RF loss

1. Introduction

Devices based on gallium nitride (GaN) have great potential in high-power and high-
frequency applications, due to the superior material properties of GaN such as a wide
bandgap, high electron mobility, high saturation velocity, high breakdown electrical field,
high thermal conductivity and radiation resistance properties [1–4]. High electron mobility
transistors (HEMTs) in GaN devices is a hotspot for research nowadays. The AlGaN/GaN
heterojunction is the mainstream structure of a GaN HEMT device. Two-dimensional
electron gas (2DEG), which has significantly higher mobility and saturation velocity than
bulk electrons, is generated at the AlGaN/GaN heterojunction interface with high areal
density (1 × 1013 cm−2) and without any external doping [4,5]. Therefore, the AlGaN/GaN
HEMT device exhibits great saturation current density and radio frequency (RF) power
output capabilities.

The performance of the GaN HEMT device is largely determined by its substrate, and
the two most commonly used substrates for it are silicon carbide (SiC) and silicon (Si). The
crystal quality of GaN thin film grown on SiC substrate is quite excellent. However, the cost
of the SiC substrate is high, and the wafer size is small (3 to 4 inches), which are obstacles
to the industrialization of the GaN HEMT device [6,7]. Compared with SiC substrate, Si
substrate has a low price and a large wafer size (≥6 inches), which means that a GaN HEMT
device based on Si substrate has some advantage in industrialization. However, the Si-
based GaN HEMT device also meets some challenges. First, there is a large lattice mismatch
and a thermal mismatch between Si and GaN, which will cause cracks and large warpages
on the wafer surface [8]. Second, the compatibility issue between the CMOS process and
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GaN devices’ preparation process has not been resolved [9,10]. For the GaN HEMT RF
device, there is still a very serious challenge, which is that the conductive layer is more likely
formed at the interface between the Si substrate and the nucleation layer. The GaN HEMT
device usually introduces an AlN nucleation layer between the Si substrate and the GaN
layer, but its Al atoms will diffuse on the surface and on the inside of the Si substrates to
form a conductive layer, which will cause RF loss in the devices working at high frequency
and results in limiting output power and efficiency [11]. According to reports, wafer
warpage caused by mismatch is greatly improved by adding a suitable Al(Ga)N stress
control layer [12], and gold-free ohmic contacts technology has achieved a breakthrough in
the compatibility issue mentioned above [13]. However, the problem of RF loss has become
an urgent problem to be solved at present. Optimizing the parameters of the substrate and
epitaxial structure to suppress the RF loss is key to improving the performance of the Si-
based GaN device. In the past ten years, researchers have made a lot of progress in reducing
RF loss, such as by etching trenches between the coplanar waveguide (CPW) conductors
(Marti et al. 2010) [14], using a low-temperature aluminum nitride (AlN) nucleation layer
(Cordier et al. 2017) [15], and Si substrate nitridation (Wei et al. 2020) [11]. They all reduce
the RF loss by changing the process conditions, while there are not many reports on the
reduction in the RF loss based on the optimization of the buffer layer structure parameters,
and this is the focus of our work. We studied the influence of some methods that have been
proven to improve the high resistance (semi-insulating property) of the GaN HEMT device
by reducing the RF loss [16–18].

We designed the GaN HEMT epitaxial structure using simulation software (from
Silvaco TCAD). The performance of the device was improved by adopting the back barrier,
optimizing the thickness of the buffer layer, and introducing P-type doping. The S param-
eters of the CPW made on our buffer layer structure show that this work reduces the RF
loss of the buffer layer. Compared with traditional GaN HEMT devices, the S21 (at 6 GHz)
of our device decreased from 1.318 dB/mm to 0.239 dB/mm, a decrease of 81.8%, and the
drain leakage current was reduced to 7.0 × 10−10 mA/mm.

2. Structure Description

Our structure of AlGaN/GaN-based HEMT is shown in Figure 1a. From bottom to
top are a high-resistance Si substrate, a buffer layer 1000 nm thick, a GaN channel layer
150 nm thick, and an AlGaN barrier layer 25 nm thick. We used a high-resistance silicon
substrate with a resistivity of 5000 Ω·cm in the simulation. We set the Al component to
0.25, which is the most suitable choice derived from our experiments, in the AlGaN barrier
layer. We chose the widely used straight gate as the electrode structure of the device we
studied. We set the gate length (Lg) to 400 nm and the lengths of the source and drain both
to 500 nm. The length of the gate to the drain terminal (Lgd) was 2600 nm, the gate to the
source (Lgs) was 1500 nm, and the source to drain (Lds) was 4500 nm.

We first set the drain-source voltage (VD) to 1 V and set the gate-source voltage
(VG) range from −10 V to 1 V to obtain the drain current (ID)-VG characteristics (transfer
characteristics). Then, we plotted the drain currents against the drain-source voltage VG
(output characteristics) for gate bias VG of 0 V. In small-signal feature extraction, drain-
source voltage VD can be divided into DC component (VD-DC) and AC component (VD-AC),
and VD-AC is a small signal relative to VD-DC. We set VG = −2 V, VD-DC = 4 V, and set the
frequency of VD-AC to sweep from 1 GHz to 300 GHz to obtain the frequency characteristics
of the device.

To test the RF loss of the epitaxial materials, the conductive part of the HEMT device
needs to be removed, leaving only the buffer layer, and the CPW electrodes are fabricated
directly on the buffer layer, as shown in Figure 1b. The S21 of the CPW is usually used to
characterize the RF loss of the buffer layer [19,20]. We used Silvaco to establish the CPW
transmission line model. We set the width of the signal electrode to W = 25 µm, the width
of the ground electrodes to Wg = 40 µm, the distance between the electrodes to S = 15 µm,
and set the thickness of all electrodes to 0.5 µm.
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Figure 1. (a) The HEMT structure; (b) schematic of the CPW structure; (c) S-parameter simulation
circuit diagram; (d) schematic diagram of the S-parameter simulation results.

The simulation of this article mainly uses the ATLAS device simulation framework
in commercial software Silvaco TCAD. It can obtain the electrical characteristics of the
terminal, as well as the internal concentration distribution, the potential distribution, the
current density, etc. In order to avoid the transmission loss of microwave signal energy
caused by the impedance mismatch of CPW, this design should meet the load impedance
matching of the circuit. However, the S-parameters we calculated using ATLAS did not
consider impedance matching, but further considered impedance matching using advanced
design system (ADS) software that can simulate actual test scenarios for MMIC circuits.
We show the computational model constructed by the ADS in Figure 1c,d. We imported
the S parameters calculated by the ATLAS (regardless of impedance matching) into the
ADS and obtained the S21 or loss value of the device and through the simulation of the
two-port network.

ATLAS device simulation is based on comprehensive sets of models, including drift-
diffusion transport models; energy balance and hydrodynamic transport models; Fermi–
Dirac and Boltzman statistics; advanced mobility models; quantum transport models
etc. [21,22]. In addition to the above comprehensive sets of models, ATLAS also has many
specific built-in models suitable for different scenarios, among which we mainly use the
low-field mobility model; the nitride-specific field-dependent mobility model; and the
Shockley–Read–Hall (SRH) recombination and the Fermi–Dirac statistics models [23,24].
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All of the above models, except SRH, can directly call the default values in the software,
and SRH needs to further define each parameter.

SRH is a model for calculating the carrier generation–recombination process. Con-
sider a uniformly doped semiconductor with carrier concentrations n and p (n0 and p0 in
equilibrium). Intrinsic carrier concentration and effective intrinsic carrier concentration are
denoted by ni and nie, respectively. At equilibrium, the following conditions exist:

n0·p0 = ni
2 (1)

When there are traps (or defects) in the semiconductor material, phonon transitions
will occur within the forbidden band width. The expression corresponding to the SRH
model in ATLAS is as follows:

RSRH =
pn − n2

ie

TAUP0[n + nie exp( ETRAP
kTL

)] + TAUN0[p + nie exp(−ETRAP
kTL

)]
(2)

where ETRAP is defined as the difference between the trap level and the intrinsic Fermi
level, TL represents the lattice temperature, and the TAUN0 and TAUP0 are the electron
and hole lifetimes.

We set the electron lifetime as 1 × 10−7 s and the hole lifetime as 1 × 10−7 s. For GaN
materials, the low-field electron mobility mun is set to 900, the low-field hole mobility
mup is set to 10, the saturation electron velocity vsatn = 2 × 107, the conduction band
density at 300 k nc300 = 1.07 × 1018, and the valence band density nv300 = 1.16 × 1019; for
AlGaN Materials, mun = 600, mup = 10, nc300 = 2.07 × 1018, nv300 = 1.16 × 1019 [21]; the
AlGaN/GaN interface charge density is set to −1 × 1013, the electron surface recombination
speed is set to 1 × 104, and the hole surface recombination speed is set to 1 × 104.

3. Result and Discussion
3.1. Buffer Layer Materials

We first investigated the effects of different buffer layer materials on the electrical
performance of our HEMT device. We improved the design of the HEMT buffer layer with
the selection of a high-resistance Si substrate. First, we chose GaN, AlGaN and AlN as
buffer layers to simulate the DC and frequency characteristics. Note that there are four
types of AlGaN (the Al components are 0.05, 0.1, 0.15 and 0.2, respectively). The thickness
of all materials was set to 1 µm. We set the background carrier concentration of the buffer
layer to 1 × 1014 cm−3. When AlGaN or AlN is selected as the buffer layer material, the
back-barrier structure is formed.

Figure 2a shows that the GaN buffer layer produced the highest electron concentration,
followed by AlXGa1-XN with x = 0.05, 0.1, 0.15, 0.2, and the AlN buffer layer produced
the lowest electron concentration. The results of Figure 2a can be explained from two
perspectives: on the one hand, the spontaneous polarization is formed between the GaN
channel and the Al(Ga)N back barrier with the introduction of the Al component, and
the spontaneous polarization direction is opposite to that of the AlGaN/GaN heterojunc-
tion, which reduces the polarization effect of the heterojunction, thus reducing the 2DEG
induced by it; on the other hand, compared with the GaN channel layer grown on the
GaN buffer layer, the thinner GaN channel layer grown on AlGaN is still in a state of
compressive strain, and its lattice size is closer to AlGaN’s, thus reducing the degree of
lattice mismatch of the subsequently grown AlGaN/GaN heterojunction, which further
weakens the piezoelectric polarization effect of the heterojunction [25]. The conduction
band distributions of the HEMT devices with different buffer layers are shown in Figure 2b.
At the interface between the GaN channel layer and the buffer layer, the introduction of the
back barrier significantly improves the conduction band. As the Al component increases
in the back barrier, the conduction band increases, deepening the 2DEG potential well at
the AlGaN/GaN heterojunction interface and reducing the possibility of thermal electrons
spilling into the buffer layer.
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Figure 2. (a) Variation of electron concentration at AlGaN/GaN heterojunction interface with different
buffer layers; (b) Conduction band distribution of HEMT devices with different buffer layers.

As can be seen from Figure 3a, as the Al component in the buffer layer increases,
the threshold voltage shows a positive trend on the horizontal axis (the voltage value
decreases), indicating that the smaller voltage can pinch off the channel. This corresponds
to the positive offset of the peak transconductance on the horizontal axis in Figure 3b.
Meanwhile, the peak transconductance decreases with the increase in the Al component.
The peak transconductance corresponding to the GaN buffer layer is 231 mS/mm, while
that corresponding to AlN is only 173 mS/mm. Figure 3c shows the drain current ID
versus VD when the gate bias VG is 0 V. It can be seen that the introduction of the back
barrier significantly reduces the maximum saturation current of the device, and when the
Al component is higher, the maximum saturation current decreases more obviously. This is
because the Al component enhances the parasitic channel effect, thus reducing the electron
concentration of the channel layer.
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Figure 3. (a) Transfer characteristics, (b) transconductance, and (c) output characteristics of the HEMT
with different buffer layers.

Although the introduction of the back barrier deteriorates the DC characteristics of the
HEMT device, its frequency performance is greatly improved. We use ADS to calculate the
RF parameters and analyze the RF performance of the HEMT device. Figure 4a shows the
frequency performance of the HEMT devices (cut-off frequency f T and maximum oscillation
frequency f max) under different buffer layer materials. Figure 4a shows a traditional GaN
buffer layer without a back-barrier structure, and 0.05/0.95 represents the device’s buffer
layer material as Al0.05Ga0.95N, and so on. It can be seen that the buffer layer of the back-
barrier structure is significantly better than the conventional GaN buffer layer in frequency
characteristics. For the AlGaN back barrier, the f T and f max decrease with an increasing
Al component. This may be due to the confinement of the AlGaN back barrier, reduced
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leakage in the buffer layer, and increased high resistance in the epitaxial layer. The gate
length Lg also affects the frequency characteristics of the device. As can be seen in Figure 4a,
when the gate length decreased from 500 nm to 200 nm, both f T and f max of the devices with
different buffer layer materials improved. This improvement became more pronounced
with increasing the Al component. In general, in order to make HEMT devices suitable for
the radio frequency field, Lg must be reduced. However, a more severe short channel effect
occurs when Lg is low to a certain value [26,27]. Considering the above situation, we chose
a more appropriate 400 nm long straight gate as the gate structure.
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Figure 4. (a) The cut-off frequency (f T) and the maximum oscillation frequency (f max) of the HEMT
buffer layer of different materials and gate lengths. (b) The RF losses of the CPW structure with the
HEMT buffer layer of different materials.

As shown in Figure 4b, the RF loss corresponding to the buffer layer with the back-
barrier structure is less than that of the traditional GaN buffer layer. For the devices of
the AlGaN back-barrier buffer layer, as the Al component decreases, S21 decreases and the
corresponding RF loss decreases. Due to the optimal RF performance of AlXGa1-XN (its Al
component is 0.05), we chose it as the buffer layer material in the following simulation.

All the simulation results in Section 3.1 are summarized in Table 1.

Table 1. DC and AC simulation results of the HEMT with different buffer layers.

Buffer Threshold
Voltage (V)

Peak Transcon-
ductance
(mS/mm)

Drain Leakage
Current

(mA/mm)
f T (GHz) f max

(GHz)

GaN −4.38 231.3 3.0 × 10−8 31.6 40.7
Al0.05Ga0.95N −3.62 216.4 2.7 × 10−8 39.8 61.3
Al0.10Ga0.90N −3.45 212.8 3.5 × 10−9 39.7 60.6
Al0.15Ga0.85N −3.30 209.1 5 × 10−9 39.6 60.4
Al0.20Ga0.80N −3.16 205.6 7.8 × 10−9 39.3 59.8

AlN −2.31 173.2 7.1 × 10−10 32.8 57.7

3.2. Thickness of the Buffer Layer

Next, we investigated the effect of the thickness of the buffer layer on the electrical
performance of the HEMT devices. Considering the actual growth of the epitaxial layer,
we must control the thickness of the whole epitaxial layer within 2 µm. Therefore, in
the following studies, we set the thickness of the buffer layer to be 1 µm, 1.3 µm, and
1.6 µm, respectively.

From Figure 5a, the height of the conduction band increases as the thickness of the
buffer layer increases. As can be seen in Figure 5b–d, with the increase in the AlGaN buffer
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layer thickness, the transfer characteristics of the device do not change significantly, and
there are small increases in peak transconductance and output characteristics. The small
pictures in Figure 5b,c represent the partial enlargement of the curve (note that the enlarged
horizontal and vertical ratio has been adjusted to highlight the characteristics of the curve).
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The calculated results of the off-state leakage current of the device are shown in
Table 2. The leakage current of the device is approximately 1.8 × 10−8 mA/mm at 1 µm
and approximately 9.5 × 10−19 mA/mm at 1.6 µm, respectively. They illustrate that the
increase in thickness significantly reduces the leakage current of the device.

Table 2. DC and AC simulation results of the HEMT with different thicknesses of AlGaN buffer layer.

Buffer
Thickness

(µm)

Threshold
Voltage (V)

Peak Transcon-
ductance
(mS/mm)

Drain Leakage
Current

(mA/mm)
f T (GHz) f max

(GHz)

1.0 −3.62 216.4 2.7 × 10−8 39.8 61.3
1.3 −3.65 216.6 1.8 × 10−8 41.4 62.7
1.6 −3.69 216.8 9.5 × 10−9 43.5 63.8
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As the thickness of the AlGaN buffer layer increases, the f T and f max of the device
become larger, and the RF performance is improved, as shown in Figure 6. When the
thickness was changed from 1 µm to 1.6 µm, the f T and f max were increased by 9.3% and
4.1%, respectively. In addition, comparing the values of S21, we found that the increased
thickness within also reduces the RF loss in the scope of our study.
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Increasing the thickness is considered another effective way to improve the high
resistance of the epitaxial layer. It can be seen from the above results that the high resistance
increases as the device thickness increases, which has some effect on reducing the drain
leakage and RF loss.

All the simulation results in Section 3.2 are summarized in Table 2.

3.3. Doping

Like other GaN materials, there are a lot of impurities in unintentionally doped AlGaN
film [28]. In order to form a high-resistance AlGaN buffer layer, its background carrier
concentration needs to be reduced. Due to the presence of N-type background carriers
in AlGaN, we introduced appropriate P-type polarization doping in the buffer layer to
neutralize the N-type background carriers to reduce the background carrier concentration
in it. This doping process is simulated by the method of acceptor doping. We set the
acceptor trap energy level to 0.36 eV, the trap to capture electrons with a cross-section of
1 × 10−13 cm−2, and the trapped hole cross-section as 1 × 10−15 cm−2. We set the doping
concentration to 1 × 1018 cm−3, 1 × 1019 cm−3, and 1 × 1020 cm−3, respectively, to simulate
the DC and small-signal characteristics of the HEMT device.

Figure 7a shows the electron concentration of the buffer layer at different doping
concentrations. As the doping concentration increases, the electron concentration decreases,
which may be because, when the device is working in a high electric field condition, the
electrons in the 2DEG channel will gain higher energy and overflow to the outside of the
channel, and some of them will be trapped by the traps of the AlGaN buffer layer. This
corresponds to the reduction in off-state leakage in Table 3. Figure 7b shows the conduction
band distribution of the HEMT at different doping concentrations. In the buffer layer, the
conduction band increases as the doping concentration of the back-barrier layer increases.
It is shown that the introduction of P-type doping effectively strengthens the effect of the
back barrier and further suppresses the 2DEG overflow.
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Table 3. DC and AC simulation results of the HEMT of AlGaN buffer layer with different
doping concentrations.

Doping
Conc (cm−3)

Threshold
Voltage (V)

Peak Transcon-
ductance
(mS/mm)

Drain Leakage
Current

(mA/mm)
f T (GHz) f max

(GHz)

0 −3.62 216.4 2.7 × 10−8 39.8 61.3
1 × 1018 −3.60 199.4 3.0 × 10−9 42.4 69.1
1 × 1019 −3.57 190.3 1.0 × 10−10 45.6 70.9
1 × 1020 −3.45 178.3 7.0 × 10−10 48.9 73.2

As the doping concentration increases, the threshold voltage of the device will drift
positive (Figure 8a), and the saturation current will decrease (Figure 8b). The peak transcon-
ductance of the device decreases (Figure 8c). These mean that an increase in the doping
concentration causes a deterioration of the DC characteristics of the HEMT device, which
further confirms the conclusion of Figure 7a.
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of AlGaN buffer layer with different doping concentrations.

Figure 9a shows that as the doping concentration increases, the frequency characteris-
tics of the device are improved, and the f T and f max increase significantly. When the doping
concentration reaches 1 × 1020 cm−3, f T reaches 48.9 GHz and f max reaches 73.2 GHz.
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Compared to non-doped devices, the doped devices have an increase of 22.9% for f T and
19.4% for f max. As can be seen from Figure 9b, the S parameter decreases with increasing
doping concentration, from 0.641 dB/mm (at 6 GHz) to 0.239 dB/mm (at 6 GHz).
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In order to further study the relationship between the doping concentration of the
device’s AlGaN buffer layer and the f T and f max performance of the device, we further
studied the variation of the effective capacitance between the device electrodes with the
signal frequency. Figure 10 shows the gate-source capacitance (Cgs) and gate-drain ca-
pacitance (Cgd) with frequency at different doping concentrations of the buffer layer. As
the doping concentration increases, Cgs and Cgd gradually decrease. Cgs and Cgd can
describe the charge–discharge behavior of the depletion layer capacitance with gate voltage.
Considering parasitic effects, the formulas describing f T and f max are as follows:

fT =
gm/2π

(Cgs + Cgd)[1 + (Rs + Rd)/Rds] + Cgdgm(Rs + Rd)
(3)

fmax ≈ fT

2
√

Rg+Ri+Rs
Rds

+ 2π fT RgCgd

(4)

where gm is the transconductance, Rg and Rs are the gate and source resistances, and Ri and
Rds are the input and output resistances at gate bias. As can be seen from Equations (3) and (4),
decreasing Cgd can increase fT; increasing fT and decreasing Rg, Rs, Ri and Rds can in-
crease f max. This also explains the improvement of f T and f max with increasing doping
concentration of the back barrier.

All the simulation results in Section 3.3 are summarized in Table 3.
To compare the reported losses caused by substrate parasitic conduction, we took

advantage of the small-signal CPW line losses reported in the literature, which are sum-
marized in Table 4 below. In contrast, our study employed a back-barrier structure to
improve RF loss in the HEMT device, which was not used by others. We obtained the ideal
small-signal characteristics and loss values through simulation, which provided the basis
for the preparation of the HEMT with low RF loss.
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Table 4. Epitaxial structure and CPW loss of GaN-on-Si below 20 GHz reported in the literature.

Author Structure Loss Time

Meneghesso G. [29] Si/(AlGa)N/GaN/AlN 0.9 dB/mm @ 10 GHz 2013
Cao L. [30] Si/(AlGa)N/GaN/AlGaN 0.58 dB/mm @ 5 GHz 2017

Cordier Y. [15] Si/(AlGa)N/GaN 0.3 dB/mm @ 10 GHz 2018
Cao L. [20] Si(HR)/(AlGa)N/GaN/AlGaN 0.27 dB/mm @ 20 GHz 2018

Chandrasekar H. [28] GaN-on-Si 0.6 dB/mm @ 6 GHz 2019
Wei L. [11] Si/AlN 1.47 dB/mm @ 6 GHz 2020

Ghosh S. [31] Si/AlN 12.7 dB/mm @ 5 GHz 2021

4. Conclusions

High-resistance buffer layer material helps to reduce the off-state leakage current of the
device and increase the on-off ratio and breakdown voltage. One implementation measure
of the high-resistance buffer layer is to introduce an AlGaN back-barrier buffer layer with
a wider bandgap. The magnitude of the off-state leakage current is closely related to the
RF loss of the material. Therefore, the use of the AlGaN back-barrier buffer layer structure
can improve the RF loss of the material to some extent. We found that the most obvious
improvement is the introduction of the back barrier, followed by the introduction of P-type
doping and increasing thickness.

In conclusion, we employ three methods to enhance the high resistance of the epitaxial
layer and study their effects on the DC characteristics, the frequency characteristics, and
the RF loss of the device. The simulation results show that the high resistance of the
epitaxial layer can significantly improve the frequency characteristics and reduce the RF
loss. We have designed a HEMT device suitable for RF, and then on this basis, designed
the transmission line model for S-parameter simulation. We used a P-type doped AlGaN
back barrier with an Al component of 0.05 and a doping concentration of 1 × 1020 cm−3

to obtain f T of 48.9 GHz, f max of 73.20 GHz, and RF loss of 0.239 dB/mm (at 6 GHz). In
addition, a simple modeling method for evaluating the RF loss of epitaxial materials is
proposed, which facilitates subsequent research.

The results demonstrate that there is a large correlation between the buffer leakage
current of the GaN HEMT device and its RF loss and provides new ideas for researchers.
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