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Abstract: The monolithic microwave integrated circuit (MMIC) power amplifiers serve an essential
and critical role in RF transmit/receive (T/R) modules of phased array radar systems, mobile commu-
nication systems and satellite systems. Over recent years, there has been an increasing requirement to
develop wideband high-efficiency MMIC high power amplifiers (HPAs) to accommodate wideband
operation and reduce power consumption. This paper presents a wideband high efficiency MMIC
HPA for Sub-6-GHz applications using a 0.25-µm gate-length D-mode GaN/SiC high electron mo-
bility transistor (HEMT) process. The amplifier consists of two stages with two HEMT cells for the
driver stage and eight HEMT cells for the power stage. To obtain a flat gain while maintaining the
wideband characteristic, a gain equalization technique is employed in the inter-stage matching circuit.
Meanwhile, a low-loss output matching network is utilized to ensure high efficiency. The fabricated
HPA occupies a compact chip area of 14.35 mm2 including testing pads. Over the frequency range of
2–6 GHz, measured results of this HPA show a saturated continuous wave (CW) output power of
44.4–45.2 dBm, a power added efficiency (PAE) of 35.8–51.3%, a small signal gain of 24–25.5 dB, and
maximum input and output return losses of 14.5 and 10 dB, respectively.

Keywords: MMIC; power amplifier; high efficiency; Sub-6-GHz; GaN/SiC HEMT

1. Introduction

Gallium nitride (GaN), as one of the wide band-gap semiconductors, features a high
electric breakdown field and high electron saturation velocity. Compared to the gallium
arsenide (GaAs) and silicon (CMOS or LDMOS) PAs [1–4], GaN PAs exhibit higher output
power, higher efficiency, wider bandwidth and better thermal characteristics. Therefore,
GaN technology is a good candidate for realizing high performance HPAs [5–12].

Over recent years, to meet the demand of wideband operation and low power con-
sumption for sub-6-GHz applications, wideband high-efficiency HPAs have been greatly
desired and studied. Several fabricated wideband GaN HPAs have been reported in [13–20]
to cover the frequency range of 2–6 GHz while maintaining watt-level output power. A
2–6 GHz two-stage high-efficiency GaN MMIC power amplifier based on gain compensa-
tion structure was implemented in [13] to deliver an output power of 35 dBm with a PAE
larger than 45%. However, this amplifier suffers from poor input matching networks. A
wideband two-stage MMIC HPA was presented in [14], with an output power of 40 dBm
and a relatively low PAE of 25%. In [15], a 0.5–6.5 GHz non-uniform distributed GaN
power amplifier with a small chip area was presented to obtain an output power higher
than 30 dBm and a PAE of 20–38.1%. In [20], a 2.5–10.5 GHz GaN power amplifier with
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distributed and reactively-matched amplifier stages was implemented to achieve a satu-
rated output power of 18–37 W and PAE of 19–40%. Nevertheless, the amplifier exhibits
degraded return losses and relatively large chip size. To date, it is still a challenge to design
a 2–6 GHz GaN HPA that simultaneously features better than 10 dB input/output return
losses, 20 watt output power and more than 35% PAE.

In this work, a wideband high-efficiency HPA for sub-6-GHz applications using a
0.25-µm gate-length GaN/SiC HEMT process at a nominal power supply voltage of 28 V
is developed and measured. Measurements of this chip show competitive performance in
terms of better than 14.5 dB/10 dB input/output return losses, a 44.4–45.2 dBm (27.5–33 Watt)
output power, and a 35.8–51.3% PAE in comparison to previously reported HPAs.

The rest of this paper is organized as follows. The utilized GaN HEMT technology
and its transistor characteristics will be first described. This is followed by the design and
analysis of the proposed HPA. The measured performances of the fabricated amplifier will
be given and discussed before conclusion.

2. GaN HEMT Technology and Characteristics

The two-stage PA is designed using a 0.25-µm gate-length D-mode GaN/SiC HEMT
process on 100 µm SiC from WIN Semiconductors. The technology is suitable for high
power applications from C-band through Ku-band. This process adopts a source-coupled
field plate design to provide reliable operation breakdown voltage at high drain bias.
Figure 1 demonstrates a representative transistor cross-section of the GaN HEMT process.
The epitaxial layers were grown on top of the SiC wafer to constitute the HEMT and passive
elements. The Au-metal layers consist of 0.6-µm MET0, 1.1-µm SFP, 1.1-µm MET1, and
4-µm MET2. The MET2 layer fulfills global interconnects to obtain low resistivity and high
current handling capacity [21,22].

Figure 1. Schematic transistor cross-section of WIN Semiconductors’ 0.25µm GaN/SiC HEMT technology.

The HEMT of the GaN process features a cutoff frequency (f T) of 23 GHz and a maxi-
mum self-oscillation frequency (f max) of 65 GHz. Typical DC characteristics of the transistor
are breakdown voltage exceeding 100 V at Id = 1 mA/mm, and pinch-off voltage of −3.2 V,
Idmax = 1.05 A/mm, Gmax = 340 mS/mm. The passive elements of the process include TaN
thin film resistors with 50 Ω/square sheet resistivity, metal–insulator–metal (MIM) capaci-
tors with capacitance density of 215 pF/mm2, round/square inductors, through-wafer vias
for grounding, and air bridge crossover. The transistor and passive element models have
been verified by measurements compared with simulations. Hence, the process design kit
(PDK) models are accurate for our design in sub-6-GHz. The reliability information of the
process can be referred to in [21].

The presented amplifier consists of two stages with two HEMT cells (6 × 150-µm GaN
HEMT) for the driver stage and eight HEMT cells (6 × 200-µm GaN HEMT) for the power
stage. For each HEMT cell of the power stage, Figure 2 shows its load pull contours of
Pout, PAE and optimal load impedance at 2 and 6 GHz. The optimal load impedance of the
transistor is chosen to approach the maximum PAE (>59.5%) while maintaining relatively
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large output power higher than 37.6 dBm at 6 GHz. It should be noted that the optimal
load impedance is not constant across the frequency range of 2–6 GHz.
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3. Power Amplifier Design

The motivation of this paper is to achieve a wideband high-efficiency MMIC PA with
an output power of 44 dBm and a high PAE larger than 35% in the frequency range of
2–6 GHz. Figure 3 depicts the block diagram of the proposed two-stage PA. The total gate
periphery is 11.4 mm from which the gate periphery ratios for the driver and power stages
are equal to 3:16 to obtain sufficient driving power at the driver stage. The input matching
and inter-stage matching circuits are designed to realize a good input match and a high
gain with a good flatness, whilst the output matching circuit is selected to provide an
optimal load match to obtain high efficiency and relatively large output power using the
load/source pull simulation.
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Figure 4 shows the circuit schematic of the designed amplifier in detail. The input
matching, inter-stage matching and output matching circuits are realized by both lumped
elements and distributed circuits. The parameter values of the relevant lumped elements
are listed in Table 1. The gate of each transistor is connected with a parallel-combined
resistor and capacitor to guarantee unconditional stability over the entire frequency range.
The resistors placed between adjacent parallel transistors are utilized to avoid odd-mode
oscillation. To gain wideband characteristics and flatness, a gain equalization technique is
employed in the inter-stage matching circuit, since a low-loss output matching circuit is
critical for gaining high efficiency [23,24]. To minimize insertion loss, the output matching
circuit consists of low-loss double-layer microstrip lines, a shunt inductor, as well as series
and shunt high-quality factor MIM capacitors. It should be mentioned that a series inductor
is not adopted in the output matching due to its low-quality factor. Figure 5 gives the
simulated insertion loss of the output matching network. It is seen that the loss of the output
matching circuit is 0.86–0.65 dB across the frequency range of 2–6 GHz, ensuring high
efficiency and high output power of the amplifier. It is worth mentioning that extensive
lumped elements employed in the input and inter-stage matching circuits are benefical in
limiting chip size.
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Table 1. Parameter values of the lumped elements of the proposed HPA.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

4 pF 3.8 pF 1.5 pF 1.5 pF 2.3 pF 9 pF 35 pF 1.8 pF 0.2 pF 3 pF 1.1 pF

C12 C13 C14 C15 L1 L2 L3 L4 L5 L6 L7

2.2 pF 2 pF 2.2 pF 35 pF 1 nH 2.2 nH 1.3 nH 1 nH 3 nH 1.2 nH 1.5 nH

L8 L9 R1 R2 R3 R4 R5 R6 R7 R8 R9

2 nH 2.2 nH 35.6 Ω 38 Ω 19 Ω 544 Ω 38 Ω 18 Ω 76 Ω 544 Ω 50 Ω

R10 R11 R12 R13 R14 R15 R16 R17

10 Ω 20 Ω 1.7 Ω 544 Ω 38 Ω 38 Ω 19 Ω 19 Ω
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The amplifier adopts a class-AB bias point with drain voltage of 28 V and gate voltage
of −2.4 V to improve efficiency. The driver and power stages share the same gate voltage
pads while containing individual drain voltage pads. Additionally, inductors are employed
to feed the DC power supply of the driver stage as well as the gate of the power stage, and
microstrip lines are chosen to feed the drain of the power stage due to the heavy current.

4. Power Amplifier Measurement Results

The two-stage HPA was implemented using a 0.25-µm gate-length D-mode GaN/SiC
HEMT process. Figure 6 shows a microphotograph of the chip. Including testing pads, the
chip occupies a die size of 3.5 mm × 4.1 mm with a SiC substrate thickness of 100 µm. To
measure amplifier performance, the chip was mounted on a PCB board with bonding wires
in a copper fixture as shown in Figure 7a. Each bonding wire is characterized with large
inductance as a function of its length, and has small DC loss and capacitance. The amplifier
was measured under CW conditions at the ambient temperature of 25 ◦C. The associated
biased voltages are VG = −2.4 V, VD1 = 28 V, VD2 = 28 V, and a 1.2-A quiescent DC current
is supplied. The test environment of the amplifier is demonstrated in Figure 7b.
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Figure 7. Photograph of the test fixture and small signal/large signal test environment of the HPA.
(a) Test fixture; (b) test environment.

The small-signal measurement of the HPA was completed via Keysight vector net-
work analyzer (VNA) N5242 B (Keysight Technologies, Santa Rosa, CA, USA). Figure 8
demonstrates the measured S-parameters in comparison to the simulated ones. It is evident
that the measurements and simulations are in good consistency. The amplifier achieves a
small-signal gain of 24–25.5 dB with gain flatness less than ±0.75 dB across the frequency
range of 2–6 GHz. The measured input and output return losses are better than 14.5 and
10 dB, respectively, achieving good input and output matching.
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The large-signal measurement was measured using an Agilent signal generator
N5182 B (Keysight Technologies, Santa Rosa, CA, USA), drive amplifier, attenuator, and
Agilent power meter N1911 A under driving CW signal. The measured saturated output
power (Pout), drain efficiency (DE), PAE, and gain against frequency are demonstrated in
Figure 9. In this case, the input power (Pin) is fixed as 28 dBm. The output power varies
from 44.4 to 45.2 dBm, the DE and PAE are within 36.4–52.7% and 35.8–51.3%, respectively,
and the power gain is between 16.4–17.2 dB over the band of interest. Figure 10 shows
the measured Pout, DE, PAE, and gain of the developed amplifier against input power at
different frequencies. From 2 to 6 GHz, the Pout is 44.5–45 dBm with the associated DE
greater than 36.7%, PAE higher than 35.7%, and power gain larger than 16.4 dB.
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Figure 10. Large signal measured results of the presented HPA against input power at 2, 4 and
6 GHz. (a) Measured Pout and power gain against input power; (b) measured DE and PAE against
input power.

Table 2 summarizes the performance comparison between this work and state-of
the-art HPAs. It is obvious that the presented wideband amplifier exhibits competitive
performance in terms of input/output return loss, output power and efficiency compared
to previously reported wideband counterparts.

Table 2. Comparison to previously published MMIC HPAs.

Ref. Process Stage Freq.
(GHz)

S11/S22
(dB)

Pout
(dBm)

PAE
(%)

DC Supply
(V)

Die Area
(mm2)

[2] GaAs 1 1.5–10 <−9.5/<−10 30.7 33–44 7 4.62

[3] GaAs 2 2–6.5 <−9.5/– 31–32 31.4–51.5 5 9.62

[4] GaAs 2 0.5–6 <−13/<−15 29.5–31.1 22–29 12 4.8

[12] GaN 1 4.6–5.5 <−7+/– 41.1–41.6 57.6–63.3 28 5.28

[13] GaN 2 2–6 <−2/<−8 35 45 25 3.52

[14] GaN 2 2–6 <−7/− 40 25 25 23.04

[15] GaN 1 0.5–6.5 <−10/−7+ 33.45 20–38.1 15 4

[16] GaN 2 2–6 <−20/<−5 31.5 31 25 3.21

[17] GaN 1 2–6 <−10/<−10 40.9–41.5 27–34 28 7.6

[18] GaN 2 2.5–6 <−6/<−5 44–45.7 30.7–32.8 28 16.82

[19] GaN 2 2–6 <−4/<−3 39 24–37 28 –

[20] GaN 2 2.5–10.5 <−5+/<−4.5+ 42.5–45.7 19–40 40 20

This work GaN 2 2–6 <−14.5/<−10 44.4–45.2 35.8–51.3 28 14.35

Freq.: frequency; +: estimated value from figure.
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5. Conclusions

This paper has reported the design and implementation of a wideband high-efficiency
monolithic power amplifier suitable for sub-6-GHz applications utilizing a commercial
0.25-µm D-mode GaN HEMT process. The developed amplifier, with a compact chip area
of 3.5 mm × 4.1 mm, demonstrates a delivered saturation output power of 44.4–45.2 dBm, a
PAE higher than 35.8%, a small signal gain of 24–25.5 dB, and input and output return losses
greater than 14.5 and 10 dB, respectively, over the entire 2–6 GHz bandwidth. It is believed
that this outstanding MMIC power amplifier is promising and applicable for the T/R
modules of sub-6-GHz systems due to its characteristics of wideband, good input/output
match, high output power and high efficiency.
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