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Abstract: The effect of the coupling texture on the friction and wear of a piston rod-rubber seal pair
under lubricating conditions is studied in this paper. Crescentiform textures with different area
densities were fabricated on high carbon chromium bearing steel (GCr15) and ethylene propylene
diene monomer (EPDM) materials by using a laser marking machine. We compare and analyze the
effects of untextured, single-textured, and coupling-textured surfaces on the friction characteristics of
the piston rod-rubber seal pair by conducting tests on the reciprocating module of the UMT-2 friction
and wear testing machine. The results showed that the coupling-textured surface had the lowest
coefficient of friction and wear compared to the untextured and single-textured surfaces. When
the normal load was 10 N under the optimal coupling texture area density (6.4%), the friction and
wear of the sealing pair decreased the most. Compared with the untextured surface, the friction
coefficient was reduced by 27.9% and the wear amount was reduced by 30.0%; compared with the
single-textured surface, the friction coefficient was reduced by 18.9%, and the wear amount was
reduced by 23.8%. The coupling effect generated by the coupling texture effectively enhanced the
formation and stabilization of the oil lubricant film and effectively captured wear debris, preventing
it from continuously scratching the surface and reducing wear and roughness.

Keywords: surface texture; high carbon chromium bearing steel (GCr15); ethylene propylene diene
monomer (EPDM); friction; wear morphology; coupling

1. Introduction

A hydraulic cylinder is the executive component of an aircraft hydraulic system, and
its internal piston rod sealing pair is a metal-rubber sealing pair, which is prone to wear
failure under the combined action of hydraulic oil pressure, temperature, and viscosity,
resulting in leakage; this affects the servo of the main rudder surface of the aircraft and,
thus, the reliability and safety of the hydraulic system [1]. Therefore, the problem of how
to further improve the lubricating properties of the metal–rubber sealing pair to reduce the
wear of the piston rod needs to be solved urgently.

As a technology that can effectively improve the surface friction performance of oil-
lubricated friction pairs, surface texture can effectively improve the wear of piston rod seal
pairs [2,3]. Nowadays, there are various ways to process micro-texture structures. Accord-
ing to different mechanism categories, there are two main categories of ways to process
micro-texture structures: one is the micro-texture processing technique based on material
removal, and the other is the dimple texture processing technology that plastically deforms
the material. The techniques of micro-texture processing based on material removal include
electrolytic processing techniques [4–7], micro-electro-discharge machining [8–11], abrasive
air-jet technology [12–14], and laser surface micromachining technology [15–17]. Plastic
deformation technology of materials refers to the processing of micro-texture structures by
applying a load to the base material that exceeds the range of elastic deformation under
the action of an external force. Such processing techniques include conventional vibration-
impact processing techniques [18–20], ultrasonic vibration machining techniques [21,22],
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embossing techniques [23], and laser shocking techniques [24–28]. Currently, laser surface
micromachining techniques and electrolytic processing techniques are the mainstream
texture processing techniques.

The mechanisms by which surface texture improves the tribological properties of
materials include three main aspects: the ability to store lubricant under fluid lubrication
conditions, improving lubrication conditions; the generation of hydrodynamic effect, in-
creasing load-bearing capacity; and the storage of fine abrasive dust, reducing abrasive dust
scratching. The morphology of the texture, geometrical parameters, and specific working
conditions are the main parameters that influence the surface tribological properties [29].
Liao et al. [30,31] analyzed the influence mechanism of surface texture size parameters
on the tribological properties of metal–rubber seal pairs by combining simulation and
tribological experiments. The results showed that under the same conditions, the larger the
working pressure and the larger the texture diameter, the greater the elastic deformation of
the nitrile rubber and the better the tribological properties when the texture diameter was
less than 300 µm. Wang’s team [32–34] showed that a surface texture with reasonable size
parameters and arrangement could effectively reduce the friction and wear of metal–rubber
sealing pairs; some surface texture samples exhibited better parameter combinations, where
the friction coefficient, temperature increase, and wear could be reduced by more than
30%. Jiang et al. [35] used a ball-disk friction tester to study the lubrication characteristics
of micro-pit PDMS friction pairs made by photolithography-complex mold technology.
The results showed that under low-speed conditions, a smaller-diameter texture in the
mixed-lubrication region could reduce friction, and the larger the area ratio of the pits in
the experimental range, the more obvious the effect. He et al. [36] analyzed the tribological
properties of textured metal and rubber specimens through experiments and showed that
a reasonable texture combination and distribution could effectively improve the tribo-
logical properties of metal–rubber sealing pairs. Li et al. [37] designed a crescentiform
surface texture and compared the optimization of water film carrying capacity and friction-
reducing property for different rotational speeds and loads and different texture sizes by
simulation. The results showed that the crescentiform surface texture of model CC1006
had the best-integrated optimization of water film carrying capacity and friction reduction
performance. Tang et al. [38] redesigned the crescentiform surface texture and investigated
the tribological properties of ethylene propylene diene monomer (EPDM) rubber under
different loading conditions, and the results showed that under low loading conditions, the
crescentiform surface texture can effectively reduce the friction coefficient of the friction
pair and reduce corrosive wear and adhesive wear. Miao et al. [39,40] compared the friction
performance of cylinder liner and piston ring (metal–metal seal) with single texture and
coupling texture. Compared with single texture, the friction performance of coupling
texture is better; the surface of the texture is easier to generate a stable oil film, which can
enhance the ability to collect abrasive chips to prevent abrasive chips from scratching the
surface and play a role in reducing friction.

At this stage, only the coupling effect of simultaneous texture in metal–metal seals has
been studied, However, most studies on the texture of metal–rubber seals have focused
on both as separate objects, exploring the effect of texture on its overall surface properties,
respectively. The research involving the coupling effect of the simultaneous texturing
of the two is relatively lacking. Therefore, this paper uses the reciprocating module of
a UMT-2 friction and wear testing machine to compare the friction performances of the
coupling-textured, untextured, and single-textured surfaces of a piston rod–rubber seal
pair and analyze the coupling mechanism.

2. Experiments
2.1. Specimen Design

Figure 1 shows a schematic diagram of the piston rod sealing system. Under the action
of hydraulic pressure, the piston rod and the rubber ring undergo reciprocating relative
sliding, thereby converting hydraulic energy into mechanical energy. In order to simulate
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the reciprocating motion and working parameters of the piston rod and the rubber ring, the
reciprocating module of a UMT-2 friction and wear testing machine was used. The upper
sample was a pin that was made of high carbon chromium-bearing steel (GCr15), with a
diameter of 3.6 mm and a height of 20 mm; the average surface roughness Ra measured
after polishing is 0.2 µm. The lower sample was a disc made of EPDM material with a
diameter of 24 mm, a thickness of 8 mm, and an elastic modulus of 7.8 MPa.
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Figure 1. Schematic diagram of the piston rod sealing system.

The crescentiform texture possesses good tribological properties with the advantages
of both groove-shaped texture and discrete pit texture (refer to [36,41]). Figure 2a shows
the 3D morphology of the crescentiform texture prepared by Cui et al. [41]. It can be seen
that the crescentiform texture is more complex in shape, more difficult to process, and more
costly for practical applications. Therefore, Tang et al. [38] simplified the crescentiform
texture; the newly designed crescentiform texture consists of two concentric arcs, as shown
in Figure 2b. The three-dimensional map and size map of the crescentiform texture in this
paper are shown in Figure 2c,d, with an outer diameter of 200 µm and an inner diameter
of 120 µm. The opening angle of the crescentiform pattern is β = 60◦, and the area is
St = 0.1675 mm2 [38]. In order to obtain coupling textures with different domain densities,
the texture spacing was changed while keeping the texture size constant. The area density
of the texture is defined as the ratio of the area covered by the crescentiform texture to the
area covered by the dummy cells, which is calculated as follows:

α =
St

S
=

0.1675
l2 (1)

where α is the area density of the texture, St is the area covered by the texture, S is the area
covered by the cell, and l is the interval between the textures. To investigate the effect of
coupling textures, texture patterns of different arrays were prepared by varying the texture
area density of the GCr15 metal and EPDM rubber. The detailed texture pattern array
parameters are shown in Table 1.
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Figure 2. Schematic diagram of the crescentiform surface: (a) the crescentiform surface prepared by
Cui et al., (b) the crescentiform surface prepared by Tang et al., (c) the three-dimensional schematic
diagram of the crescentiform surface in this experiment, and (d) the crescentiform surface dimensions.

Table 1. Parameters for the array of textured pattern.

Parameters Coupling Texture Area Density α Texture Height h

for all samples 6.4%, 12.8%, 19.2%, 25.6%, 32.0% 5 µm

The coupling texture is a synergistic texture produced by the simultaneous texture of
the two materials of the sealing pair. Therefore, a laser marker with a power of 75 W, a
pulse frequency of 20 kHz, and a pulse width of 100 ns were used to process a crescentiform
surface texture on the end face of the GCr15 pin; and a 50-W laser marker was used to pro-
cess a crescentiform texture on the end face of the EPDM rubber. We washed and dried the
test specimen with alcohol before texture processing. After processing, the texture heights
at different positions were measured by a non-contact three-dimensional microscope, and
the average value was calculated. Figure 3 shows the three-dimensional topography of the
texture distribution on the surfaces of the GCr15 pin and the EPDM rubber.
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Figure 3. Three-dimensional topography of surface textures of the carbon chromium bearing steel
(GCr15) pin and ethylene propylene diene monomer (EPDM) rubber: (a) GCr15 pin surface with a
texture area density of 6.4%; (b) EPDM rubber surface with a texture area density of 6.4%.

2.2. Test Content

All tests were performed using the reciprocating module of a UMT-2 friction and
wear testing machine, as shown in Figure 4. Before testing, the GCr15 metal material was
lightly polished, and the GCr15 metal pins and EPDM rubber surfaces were cleaned with
alcohol to remove dirt particles and then dried. The lower sample was fixed, and the
upper sample moved back and forth via a motor. Test loads ranged from 10 to 40 N in
10 N increments. Since the normal movement speed of a hydraulic cylinder with rubber
seals is 0.1–0.5 m/s [42], a movement speed of 0.4 m/s was selected. The movement
amplitude was 10 mm, the frequency was 20 Hz, and the reciprocating friction test was
carried out for 40 min [38]. All tests were carried out under lubricated conditions at room
temperature (30 ± 2 ◦C). In order to provide sufficient lubricating conditions at the piston
rod sealing interface, Castrol Magnetic Protection 0w-20 Oil was used; the lubricating oil
was continuously supplied at a time interval of 5 s (12 drops per min) at the inlet area of
the piston rod sealing contact. The normal load is set to 10, 20, 30, and 40 N (corresponding
contact pressure is 1, 2, 3, and 4 MPa) [30]; the detailed test conditions are shown in Table 2.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 15 
 

 

Figure 3. Three-dimensional topography of surface textures of the carbon chromium bearing steel 
(GCr15) pin and ethylene propylene diene monomer (EPDM) rubber: (a) GCr15 pin surface with a 
texture area density of 6.4%; (b) EPDM rubber surface with a texture area density of 6.4%. 

2.2. Test Content 
All tests were performed using the reciprocating module of a UMT-2 friction and 

wear testing machine, as shown in Figure 4. Before testing, the GCr15 metal material was 
lightly polished, and the GCr15 metal pins and EPDM rubber surfaces were cleaned with 
alcohol to remove dirt particles and then dried. The lower sample was fixed, and the 
upper sample moved back and forth via a motor. Test loads ranged from 10 to 40 N in 10 
N increments. Since the normal movement speed of a hydraulic cylinder with rubber seals 
is 0.1–0.5 m/s [42], a movement speed of 0.4 m/s was selected. The movement amplitude 
was 10 mm, the frequency was 20 Hz, and the reciprocating friction test was carried out 
for 40 min [38]. All tests were carried out under lubricated conditions at room temperature 
(30 ± 2 °C). In order to provide sufficient lubricating conditions at the piston rod sealing 
interface, Castrol Magnetic Protection 0w-20 Oil was used; the lubricating oil was 
continuously supplied at a time interval of 5 s (12 drops per min) at the inlet area of the 
piston rod sealing contact. The normal load is set to 10, 20, 30, and 40 N (corresponding 
contact pressure is 1, 2, 3, and 4 MPa) [30]; the detailed test conditions are shown in Table 
2. 

 
Figure 4. UMT-2 reciprocating test device. 

Table 2. Friction test conditions. 

Specification Value 
Normal load 10 N, 20 N, 30 N and 40 N 

Speed 0.40 m/s 
Lubricant Castrol Magnetic Protection 0w-20 Oil 

Displacement amplitude 10 mm 
Room temperature 30 ±  2 °C 

The normal load and friction force were measured by the Z-axis and XY-axis force 
sensors, respectively. After each test, the friction coefficient and wear amount of the 
EPDM sample were calculated using Equations (2) and (3). Each test was carried out three 
times, and the average values of the friction coefficient and wear amount were taken to 
ensure the accuracy of the test. The EPDM samples were sprayed with gold, and the 
sampling range was 0.8 × 0.8 mm. The wear scars and wear debris were observed by FE-
SEM. The distribution of elements on the surface of the GCr15 metal after the test was 
measured by EDS. 

Figure 4. UMT-2 reciprocating test device.

Table 2. Friction test conditions.

Specification Value

Normal load 10 N, 20 N, 30 N and 40 N
Speed 0.40 m/s

Lubricant Castrol Magnetic Protection 0w-20 Oil
Displacement amplitude 10 mm

Room temperature 30 ± 2 ◦C
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The normal load and friction force were measured by the Z-axis and XY-axis force
sensors, respectively. After each test, the friction coefficient and wear amount of the EPDM
sample were calculated using Equations (2) and (3). Each test was carried out three times,
and the average values of the friction coefficient and wear amount were taken to ensure
the accuracy of the test. The EPDM samples were sprayed with gold, and the sampling
range was 0.8 × 0.8 mm. The wear scars and wear debris were observed by FE-SEM. The
distribution of elements on the surface of the GCr15 metal after the test was measured
by EDS.

Friction coe f f icient =
Ff

Fn
(2)

Abrasion = Wb − Wa (3)

where Ff is the friction force, Fn is the normal load, Wb is the weight of the EPDM sample
before the test, and Wa is the weight of the EPDM sample after the test.

In order to verify the test method in this paper, single-textured specimens with a rubber
surface texture area rate of 6.4% were selected for frictional wear tests under different
contact pressure conditions, and the variation curve of friction coefficient with contact
pressure was obtained and compared with the test data reported in the literature [38]; the
comparison graph is shown in Figure 5. The “Single texture-Rubber” data in the figure
is the test data of the textured sample only on the rubber. Under the same experimental
conditions, the two sets of experimental data agreed well.
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3. Results and Discussion
3.1. Effect of normal load

The effect of normal load on friction and wear behavior was investigated. Figure 6
shows the experimental results of the friction behavior of the piston rod seal specimens
under different normal loads in the range of 10–40 N, a texture depth of 5 µm, and a sliding
speed of 0.4 m/s. A textured area density of zero represents an untextured sample. As
the normal load increased from 10 to 40 N, the friction coefficient of the coupling-textured
sample increased gradually. This is because the larger the normal load is, the more the
volume of rubber in the untextured area is pressed into the texture of the metal dimples.
Then, the scraping and cutting effect is more obvious during the reciprocating motion
of the rubber, and stress concentration occurs at the edge of the rubber texture, which
leads to aggravated wear of the rubber texture edge, increases the surface roughness of the
specimen, and then leads to an increase in the friction coefficient. The friction coefficient of
the untextured specimen has a slowly decreasing trend, and the laser surface texture pattern
in the literature [38] also has a similar trend. Compared with the untextured specimen,
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when the normal load was less than 20 N, the friction coefficient of the coupling-textured
specimen decreased significantly, while under a normal load greater than 20 N, it increased
significantly. The minimum coefficient of friction was obtained on a textured array with a
normal load of 10 N and a coupling texture area density of 6.4%. At lower normal loads (i.e.,
less than 20 N), the friction coefficient of the coupling texture sample decreased by 27.9%
compared to the untextured specimen. Figure 7 shows the variation of the wear amount of
samples with coupling texture area densities under different normal loads. It can be seen
that when the area density of the coupling texture was in the range of 6.4–25.6%, the wear
amount and friction coefficient of the sample had a similar trend with the normal load, and
the wear amount increased with increasing normal load. When the normal load is 40 N, the
wear amount is the largest. This is due to the increased wear caused by stress concentration
at the edge of the texture; a large amount of wear debris is generated, which exceeds
the wear debris capture ability of the coupling texture, causing the large wear debris to
continue to damage the surface. This, in turn, leads to increased wear. The wear amount
of the untextured specimen increased gradually with increasing normal load. Among all
coupling textured arrays, the specimens under a normal load of 10 N had the lowest wear.
When the coupling texture area density was 6.4% and the normal load was 10 N, the wear
amount decreased by as much as 30.0% compared with the untextured specimen.
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3.2. Effect of Coupling Texture Area Density

The effect of different texture area densities on the friction and wear properties of
the coupling-textured and single-textured samples under a normal load of 10 N was
investigated by changing the texture spacing without changing the texture size or height.
Figure 8 shows the variation curves of friction coefficient vs. the area density of the samples
under a normal load of 10 N and a texture depth of 5 µm. In the figure, “Single texture-
Metal” indicates that the texture was only on the GCr15 metal (i.e., the upper sample).
The results show that the friction coefficient of the experimental group textured only on
the metal increased with area density, and the friction coefficient was lowest when the
areal density of the textured array was 6.4%. The friction coefficient of the test group
textured only on the rubber decreased first and then increased with increasing area density.
When the area density of the textured array was 12.8%, the friction coefficient decreased
significantly. When the area density of the textured array was greater than 12.8%, the
friction coefficient decreased. The friction coefficients were all smaller than those of the
experimental group textured only on the metal, which is consistent with the research in the
literature [43]. Under a normal load of 20 N, the friction coefficient of the coupling-textured
specimens increased with area density, and the friction coefficient was the smallest when the
area density of the textured array was 6.4%. Compared with the single-textured samples,
the friction coefficients of the coupling-textured samples were significantly reduced, with
a maximum reduction of 18.9%. It can be seen that the coupling texture plays a positive
role in the reduction of the friction coefficient, which is due to the coupling texture that
enhances the replenishment of the oil film on the contact surface; the dynamic pressure
effect is more obvious so that the friction coefficient is reduced. However, the increase of
the area density of the coupling texture will reduce the bearing area, increase the specific
pressure, and increase the friction coefficient, so that the friction coefficient increases with
the increase of the area density. Figure 9 shows the variation curve of the wear amount vs.
the area density of the sample with a texture depth of 5 µm under a normal load of 10 N.
The variation trends of the wear amount and friction coefficient of the sample vs. texture
area density were similar. The wear amount of the coupling texture increased with the
increase in the area density of the textured array. When the normal load was 10 N, the area
density was 6.4%, and the structural array experienced the least amount of wear. Compared
with the single-textured samples, the wear of the coupling-textured samples all decreased,
with a maximum decrease of 23.8%. This showed that under certain conditions, the effect
of a coupling texture on wear reduction was more significant than that of a single texture.
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3.3. Analysis of Wear Morphology

Figure 10 shows the typical morphologies of the worn surfaces of the EPDM materials
under a normal load of 10 N. Figure 10a shows the worn surface of the EPDM material
under the untextured condition, where rubber-specific pattern wear marks appeared on
the surface of the sample. The overall pattern was relatively flat and regular. The wear
debris adhered during the friction process acts as a solid lubricating layer in the friction
pair and is discharged from the friction area during the subsequent friction process. Thus,
uniform friction is achieved. Figure 10b shows the worn surface of the EPDM material
is only on the surface of the GCr15 metal, and the texture area density is 6.4%. A large
number of small corrosion pits were distributed on the surface of the material, mainly
because the hydraulic oil eroded the surface of the EPDM material during the friction
process, which is a typical manifestation of corrosion wear. The surface of the material
had obvious flake peeling, indicating that adhesive wear had occurred during the friction
process. There was a large amount of wear debris on the surface of the EPDM material,
and there was a large amount of wear debris. This was because the texture on the surface
of the GCr15 metal only collected part of the wear debris, indicating that the ability of the
single texture to collect and store wear debris was limited. Figure 10c shows the worn
surface of the EPDM material under the condition that only the EPDM rubber surface was
textured, with a texture area density of 6.4%. There was wear on the textured edge, as
well as crescent-shaped protrusions in the vertical direction, indicating that adhesive wear
mainly occurred during the grinding process. Furthermore, there was more wear debris
on the textured edge and the untextured area. Thus, the wear debris was not completely
stored in the texture, and larger debris could further damage the surface. Figure 10d shows
the worn surface of the EPDM material under the coupling texture treatment, with a texture
area density of 6.4%. It can be seen that there was no obvious wear on the textured surface,
and only a small amount of wear scars and small corrosion pits appeared in the untextured
area. The wear mechanism was mainly corrosion wear. The wear debris was mainly
concentrated in the texture, and there was basically no wear debris in the untextured area.
This was because the coupling effect improved the ability of the texture to collect and store
the wear debris, which effectively prevented large wear debris from damaging the surface.
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3.4. Morphology Analysis of Wear Debris

Wear debris can reflect the characteristics of the friction pair system and is an important
information carrier. The analysis of wear debris can map the wear characteristics of a friction
pair surface [44]. Figure 11a shows the wear debris morphology of the EPDM material
of the untextured sample after wear under a normal load of 10 N. It can be seen that the
main body of the wear debris was flake. It is generally believed that flake wear debris
is the product of wear debris between friction pairs being rolled and ironed under the
action of pressure, and its wear mechanism is mainly adhesive wear. Figure 11b shows
the wear debris morphology of the EPDM material after wear under a coupling texture
area density of 6.4% and a normal load of 10 N. Through observation, its overall size was
slightly smaller than that of the other wear debris; it was peanut-shaped, and its surface
was relatively smooth, which is typical of corrosion wear debris, where chemical reactions
such as oxidative degradation and molecular bond breakage occur on the rubber surface.
Under lower loads, the lubricating oil stored in the coupling texture could produce a good
hydrodynamic pressure effect, and the oil film pressure and the normal load could be
balanced, which could improve the formation and stability of the oil film. At the same time,
the coupling texture had a good ability to collect and store wear debris, which avoided the
continued damage from large wear debris, resulting in minimal surface wear. Figure 11c
shows the wear debris morphology of the EPDM material after wear under a coupling
texture area density of 32.0% and a normal load of 40 N. It can be seen that the wear
debris under these conditions was strip-shaped, with obvious characteristics of cutting
wear debris. Generally speaking, cutting wear particles are formed by the plowing of hard
and sharp asperities on a softer wear surface [45]. Relevant studies [46] show that the
introduction of surface texture will produce stress concentration at its edges, and when
the normal load is large, significant bulges will occur, which may lead to the occurrence
of micro-cutting. Here, the shape of the wear debris proved that under poor working
conditions and coupling texture parameters, serious furrows and even cutting wear effects
did indeed occur.
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3.5. Energy Spectrum Analysis

Figure 12 presents electron microscope images and energy spectrum analyses of the
GCr15 material under a normal load of 10 N for the untextured sample. Adhesive wear
was indicated by dark flakes, and localized tears were featured along the sliding direction.
From the energy spectra, it can be seen that the content of C and O elements on the surface
of the GCr15 metal sample was relatively high, indicating that the polymer material had
been transferred during the friction process. Figure 13 shows electron microscope images
and energy spectrum analyses of the GCr15 material under a coupling texture area density
of 6.4% and a normal load is 10 N. The wear surface around the dimples was smoother and
less scratched. At this time, the content of C and O elements at the edge of the pit texture
decreased compared with that of the untextured sample, indicating that the adhesion and
transfer phenomenon of the polymer material was improved. Figure 14 shows electron
microscope images and energy spectrum analyses of the GCr15 material under a coupling
texture area density of 32.0% and a normal load of 40 N. There were many scratches on the
surface of the sample, and serious wear occurred around the pit texture. The content of
the C element at the edge of the pit texture was high, while that of O was low, indicating
that during the grinding process, due to the stress concentration on the edge of the pit, the
local high temperature made the EPDM material burn and degenerate, resulting in severe
cutting wear, which was consistent with the results of the wear debris morphology analysis.
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3.6. Mechanism of Texture Coupling

The schematic diagram of the coupling texture mechanism (at the symmetry plane)
is shown in Figure 15. Before the GCr15 metal dimple texture reached the EPDM rubber
dimple texture, the lubricating oil stored in the EPDM rubber dimple texture formed an oil
film on the untextured area. With the relative sliding of the friction pair, the GCr15 metal
dimples collected the wear debris generated by part of the wear, which led to the weakening
of the dynamic pressure effect in the dimple texture and a decrease in oil pressure. When
the GCr15 metal dimple texture passed through the EPDM rubber dimple texture, the
normal load extruded the lubricating oil from the EPDM rubber dimple, filling in the
GCr15 metal dimple texture and replenishing the oil film. At the same time, the inside of
the GCr15 metal dimple was pushed out. Part of the collected wear debris was flushed
into the underlying rubber dimple texture, preventing the wear debris from continuing to
damage the surface as the metal pin moved. When the GCr15 metal dimple texture left the
EPDM rubber dimple texture, due to the lubricating oil supplemented by the EPDM rubber
dimple texture, the lubricating oil in the GCr15 metal dimple texture enhanced the dynamic
pressure effect and increased the maximum oil film bearing capacity. The reduction of
wear debris in the metal pit texture also relatively enhanced its ability to capture new wear
debris. Under the coupling effect of the metal dimple texture and the rubber dimple texture,
the dynamic pressure effect inside the coupling texture increased, which increased the
maximum pressure that the oil film could bear, forming a virtuous circle and improving
the formation of the oil film on the contact surface during the entire friction process. After
the coupling texture treatment discussed in Section 3.3, the distribution area of the wear
debris on the worn surface of the EPDM material under an area density of 6.4% proved the
wear debris capture mechanism of the coupling texture.
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4. Conclusions

This paper presents the effects of coupling textures on the friction and wear of the
piston rod–rubber seal pair under different normal loads; different texture area densities
are introduced. We used a laser marker to create crescentiform textures on the surfaces of
the two materials of the sealing pair and performed a reciprocating sliding test. The effects
of untextured, single textured, and coupling textured surfaces on the friction characteristics
of the piston rod–rubber seal pair were compared and analyzed. This study draws the
following conclusions:

(1) The reduction in friction coefficient is inversely proportional to the normal load.
Under lubricating conditions, the friction coefficient increases linearly with the increase
of the normal load; under low normal load conditions, the magnitude of the friction
coefficient is proportional to the area density of the coupling texture. The wear on the
surface increases linearly.

(2) Under the condition of low normal load, the coupling texture array has a significant
reduction effect on the friction coefficient and wear amount compared with the untextured
and single textured surfaces. When the area density of the coupling texture is 6.4% and the
normal load is 10 N, the friction and wear of the sealing pair decrease the most. Compared
with the untextured surface, the friction coefficient decreased by 27.9% and the wear amount
decreased by 30.0%; compared with the single-textured surface, the friction coefficient
decreased by 18.9% and the wear amount decreased by 23.8%.

(3) The coupling effect generated by the coupling texture can effectively enhance the
formation and stabilization of the oil film, produce a good dynamic pressure effect, and has
a good ability to capture wear debris, prevent the wear debris from continuously scratching
the surface, and reduce wear and roughness. The service life of the piston rod seal pair
is improved.
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