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Abstract: In this paper, the effect of wind-induced vibration on measurement range of microcan-
tilever anemometer is investigated for the first time. The microcantilever anemometer is composed
of a flexible substrate and a piezoresistor. The wind speed can be detected through the airflow-
induced deformation in the flexible substrate. Previous work indicated that the flexible substrate
vibrates violently once the wind speed exceeds a critical value, resulting in severe output jitter.
This wind-induced vibration limits the measurement range of the anemometer, and the relationship
between the anemometer measurement range and its structural parameters has not been explored
systematically. Therefore, this paper aims to reveal this relationship theoretically and experimentally,
demonstrating that a shorter and thicker cantilever with larger stiffness can effectively suppress
the wind-induced vibration, leading to the critical speed rising. By eliminating the wind-induced
vibration, the measurement range of the microcantilever anemometer can be increased by up to 697%.
These results presented in this paper can pave the way for the design and fabrication of wide-range
mechanical anemometers.

Keywords: anemometer; flow sensor; wind-induced vibration; microcantilever

1. Introduction

The wind-induced vibration is a physical phenomenon that exists widely in nature.
In the field of energy harvesting, wind-induced vibration has been extensively utilized
to convert the ambient fluid flows into electricity [1–3]. The generated electricity can
power wireless sensor nodes without batteries [4,5]. P. Chen et al. proposed a self-power
management system that can realize automatic irrigation, weather monitoring, and wireless
water level warning by harvesting wind energy [6]. X. Yang et al. presented a piezoelectric
wind energy harvester enhanced by the interaction between vortex-induced vibration
and galloping to power wireless temperature and humidity sensing nodes [7]. In these
self-power systems, stronger wind-induced vibration is desired to create more energy.
Hence, the research objective is focused on vibration enhancement. However, wind-
induced vibration is not always desirable. In the afternoon of 5 May 2020, the Humen
Bridge of China suffered a sudden wind-induced vibration, resulting in serious traffic jams
and arousing strong public attention [8]. In addition, in previous work, our group has
fabricated a microcantilever anemometer, as shown in Figure 1 [9]. At low wind speeds, the
microcantilever undergoes stable deformation, and the wind speed can be determined by
detecting the deflection of the cantilever. However, once the wind speed exceeds a critical
value, the microcantilever starts to shake, resulting in severe jitter of the anemometer
output. The winds higher than the critical speed become impossible to be measured. In this
experiment, the wind-induced vibration limits the ability of the anemometer to monitor
high winds. Therefore, the suppression of wind-induced vibration is also a significantly
important research field.
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Figure 1. The microcantilever anemometer fabricated by our group, and the effect of wind-induced 
vibration on the output response of the anemometer under different wind speeds. 
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systems, such as buildings, bridges, aircraft, pipelines, and transmission lines. There is 
still no systematic study on the wind-induced vibration suppression of micro-scale ane-
mometers. Therefore, this paper discusses the wind-induced vibration theory about the 
microcantilever anemometers, and proposes the corresponding methods to suppress this 
vibration. On this basis, anemometers prototypes with different structural parameters are 
designed and fabricated to examine the theory. The proposal of the vibration elimination 
methods provides a vital reference for improving the measurement range of the micro-
cantilever anemometers. 

2. Principle and Design 
The microcantilever anemometer used to wind speed measurement is composed of 

a flexible substrate and a copper constantan piezoresistor, as shown in Figure 2. At low 
wind speeds, the flexible substrate deforms steadily with the wind, and there is a corre-
spondence between the wind speed and the substrate deflection. In contrast, the flexible 
substrate will undergo wind-induced vibration when the wind speed is close to or exceed-
ing the critical value. This vibration significantly affects the output signal of the anemom-
eter, making the wind speed measurement unreliable. In this device, the piezoresistor is 
used to detect the deformation or vibration behavior of the microcantilever anemometer. 

Figure 1. The microcantilever anemometer fabricated by our group, and the effect of wind-induced
vibration on the output response of the anemometer under different wind speeds.

To date, almost all of the wind-induced vibration suppression research is focused on
the fields of civil and aerospace engineering [10–14]. Most research objects are large-scale
systems, such as buildings, bridges, aircraft, pipelines, and transmission lines. There
is still no systematic study on the wind-induced vibration suppression of micro-scale
anemometers. Therefore, this paper discusses the wind-induced vibration theory about
the microcantilever anemometers, and proposes the corresponding methods to suppress
this vibration. On this basis, anemometers prototypes with different structural parameters
are designed and fabricated to examine the theory. The proposal of the vibration elimi-
nation methods provides a vital reference for improving the measurement range of the
microcantilever anemometers.

2. Principle and Design

The microcantilever anemometer used to wind speed measurement is composed of a
flexible substrate and a copper constantan piezoresistor, as shown in Figure 2. At low wind
speeds, the flexible substrate deforms steadily with the wind, and there is a correspondence
between the wind speed and the substrate deflection. In contrast, the flexible substrate will
undergo wind-induced vibration when the wind speed is close to or exceeding the critical
value. This vibration significantly affects the output signal of the anemometer, making the
wind speed measurement unreliable. In this device, the piezoresistor is used to detect the
deformation or vibration behavior of the microcantilever anemometer.

For low wind speeds (U < Uv), the deflection w(x) of the flexible substrate can be
expressed by [15]

w(x) =
px2

24EI
(x2 − 4Lx + 6L2) (1)

where E and I are the elasticity modulus and the area inertia moment of the cantilever,
respectively. L is the length of the movable flexible substrate, and x is the coordinate
in Figure 2a. Additionally, p is the distributed load exerted by the wind, which can be
expressed as follows [16]

p =
1
2

CDρairWU2 (2)
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where CD, ρair, W are the coefficient of drag force, the air density, and the cantilever width,
respectively. Hence, the deflection w(x) of the flexible substrate can be given by

w(x) =
CDρairWx2(x2 − 4Lx + 6L2)

48EI
U2 (3)
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Figure 2. Schematic overview of the microcantilever anemometer under different wind speeds: (a) no
wind, (b) lower than the critical speed, (c) higher than the critical speed.

The deflection w(x) of the flexible substrate is proportional to the square of wind speed
U. This is consistent with the results described by the Bernoulli equation [16].

However, when the wind speed exceeds the critical value (U > Uv), the airflow-induced
vibration will happen. As a result, the Bernoulli equation becomes useless to predict the
motion of the cantilever. According to the theory of continuous system vibration, the
motion equation for the transverse vibration of the cantilever can be given by [15]

EI
∂4w(x, t)

∂x4 + ρcan A
∂2w(x, t)

∂t2 = p (4)

where w(x,t), ρcan, and A are the time-dependent transverse deflection, the cantilever
density, and the cross-sectional area of the cantilever, respectively. For microcantilevers,
it is vortex-induced vibration that causes the shake of the output [17]. When an airflow
acts on the cantilever, periodic shedding of vortices will appear. The corresponding vortex
shedding frequency fv is expressed by [17,18]

fv = St
U
D

(5)

where St is the Strouhal number, which depends on the shape of the cantilever and is
typically 0.15–0.25 for an arbitrary shape. D is the windward-side characteristic size of
the cantilever. The shedding of vortices causes a fluid oscillation force with frequency fv,
resulting in the cantilever vibration. When the trigger frequency fv is close to the natural
frequency fo of the cantilever, the vortex-induced vibration will occur, which means

fv = fo (6)

where the natural frequency fo of the cantilever can be written as [15,19]

fo =
1

2π
(βnl)2

√
EI

ρcan AL4 (7)
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where βnl is constant, which is expressed by

βnl ≈ (2n − 1)π/2 (8)

Therefore, the vortex-induced vibration critical speed Uv of the cantilever can be
written as

Uv = fo
D
St

=
1

2π
(βnl)2

√
EI

ρcan AL4
D
St

=
(βnl)2

4πSt

T
L

√
E

3ρcan
(9)

where T is the thickness of the cantilever. It is evident that the critical wind speed Uv is
proportional to T and E1/2, and inverse proportional to L. Therefore, to improve the critical
speed, one can then look into three directions: increasing cantilever thickness T, increasing
elasticity modulus E, and reducing cantilever length L.

3. Experiment and Discussion

Given the analyses above, 12 microcantilever anemometer prototypes with structural
parameters in Table 1 were fabricated and tested in the wind tunnel to validate the de-
duced results. For prototypes 1 to 9, the cantilevers were formed with PET (polyethylene
terephthalate) substrate, while prototypes 10, 11, and 12 were made of PC (polycarbonate)
and two different PVC (polyvinyl chloride) materials. The piezoresistor unit fabricated
by MEMS (Micro-Electro-Mechanical Systems) technology was pasted onto the root of the
flexible substrate to measure the cantilever deformation, as shown in Figure 3. Owing
to the ultrathin thickness and low Young’s modulus, the effect of the piezoresistor unit
substrate on the cantilever deflection can be omitted. In the measurement, the piezoresistor
was inserted in a Wheatstone bridge, and an instrument amplifier AD623 was utilized to
amplify the bridge output signal. A high-precision multimeter received the output signal
of the amplifier and recorded the deformation of the cantilever. When the jitter range of the
output voltage is more extensive than 10 mV, the wind-induced vibration is considered to
occur. The overall experiment setup for the cantilever anemometer is shown in Figure 3.

Table 1. Structural and material parameters of 12 anemometer prototypes.

No. Length (L)
(mm)

Width (W)
(mm)

Thickness (T)
(mm)

Young’s Modulus
(GPa)

1 20 15 0.2 2.0
2 25 15 0.2 2.0
3 30 15 0.2 2.0
4 35 15 0.2 2.0
5 40 15 0.2 2.0
6 30 15 0.3 2.0
7 30 15 0.4 2.0
8 30 15 0.5 2.0
9 30 15 0.6 2.0

10 30 15 0.2 2.3
11 30 15 0.2 3.3
12 30 15 0.2 3.8
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Figure 3. Schematic diagram of the measurement setup and the photograph of the fabricated
microcantilever anemometer prototype.

Prototypes 1 to 5 were firstly tested to investigate the effect of the cantilever length.
The width and thickness of the cantilevers are set to be 15 mm and 0.2 mm, respectively, and
the length changes from 20 mm to 40 mm with an interval of 5 mm. The voltage outputs of
these prototypes at different wind speeds are recorded in Figure 4. It can be seen that for a
single cantilever, the deflection increases with the wind speed. As for different cantilevers,
the deflection increases with the length. These results are consistent with the outcome
predicted by Equation (3). In addition, once the wind speed is higher than the critical
value, the voltage outputs of the cantilever anemometers will vibrate violently. When the
fluctuation amplitude of the output voltages exceeds 10 mV, it can be considered that the
wind-induced vibration happens. The corresponding wind speed is the critical value. The
inset in Figure 4 gives the relationship between the critical wind speed and the cantilever
lengths. It can be observed that the critical speed becomes higher with the length reduction.
This result reveals that shortening the cantilever length can suppress the wind-induced
vibration and improve the critical wind speed, corresponding with the predicted impacts of
Equation (9). Furthermore, for the anemometer, the measurement sensitivity is defined as
the slope of the output signal curve [20]. Therefore, the results also show that the cantilever
anemometer presents higher measurement sensitivity in high winds, and higher critical
speed is accompanied by lower measurement sensitivity.

Prototypes 3, 6 to 9 were also characterized to explore the effect of the cantilever
thickness. The length and width of the cantilevers are set to be 30 mm and 15 mm. When
different thicknesses (0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm) are chosen, the voltage
outputs corresponding to different wind speeds are presented in Figure 5. It can be observed
that a thinner cantilever results in more vigorous deflection and higher sensitivity, while
a thicker cantilever is desired to increase the critical speed and reduce the wind-induced
vibration effect.
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Figure 5. Experimental output voltage versus wind speed characteristics for prototypes with different
thicknesses.

In addition, the cantilevers with different Young’s modulus substrates were also tested.
PET, PC, and two different PVC films were utilized to fabricate the cantilever with the same
size of 30 mm × 15 mm × 0.2 mm. Their responses to different wind speeds are shown
in Figure 6. It can be seen that among these materials, the stiffest PVC substrate exhibits
the highest critical wind speed. In contrast, the softest PET substrate possesses the lowest
critical wind speed and the highest measurement sensitivity. These results are consistent
with the qualitative analysis results of Equations (3) and (9).
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Figure 7. Experimental output voltage versus wind speed characteristics for the anemometers with
or without vibration suppression capability.

From the test results above, it can be concluded that a shorter and thicker anemometer
substrate with larger stiffness is more conducive to suppressing the wind-induced vibration
and increasing the critical wind speed. These results are in concordance with the theoretical
analysis results expressed by Equation (9). Based on these results, a microcantilever
anemometer with optimized anti-vibration capability (L = 20 mm, W = 15 mm, T = 0.6 mm,
E = 3.8 GPa) was fabricated and tested in the tunnel to compare with the anemometer
without anti-vibration design (L = 40 mm, W = 15 mm, T = 0.2 mm, E = 2 GPa). The
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corresponding experimental results are recorded in Figure 7. It can be observed that the
anemometer with optimized vibration suppression capability can reach a critical wind
speed of 31.10 m/s, achieving an improvement of 697%, compared with 4.46 m/s of
the anemometer without anti-vibration design. The increase in the critical wind speed
makes the anemometer obtain a wider measurement range for the wind. In contrast, the
anemometer without anti-vibration design presents higher sensitivity in low winds. Due to
the mutual constraints between measurement range and sensitivity, the performance of the
mechanical anemometer needs to be adjusted according to the practical application scenario.

4. Conclusions

In this paper, the effect of wind-induced vibration on measurement range of micro-
cantilever anemometers is demonstrated for the first time. The wind-induced vibration
theory and corresponding suppression methods for the microcantilever anemometer are
developed. Various anemometer prototypes with different structural parameters are fabri-
cated and characterized to examine the effectiveness of the proposed suppression approach.
The results indicate that a shorter and thicker cantilever with larger stiffness is expected
to suppress the wind-induced vibration and improve the critical wind speed. The sup-
pression of the wind-induced vibration makes the microcantilever anemometer achieve a
measurement range improvement of up to 697%. The results presented in this paper can
provide a novel idea for widening the measurement range of mechanical anemometers.
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