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Abstract: This paper provides a new way for spatial current/field profiles for frequency-selective
surface analytical approximation. It confirms that the per unit length radiation resistance of an
equivalent transmission line model for line antenna has little influence on the normalized current
distribution. The two-wire equivalent transmission line model (typically used for transmitting
line antenna) is applied to the receiving line antenna. In this case, the corresponding incident
field is decomposed into odd and even mode for asymmetric distribution. A one-wire equivalent
transmission line model is then introduced for any antenna composed of relative narrow strips. The
incident field does not need to be decomposed. According to the simulation, the transmission line
loss has little influence on the current distribution.

Keywords: antenna current; transmission line model; frequency-selective surface analytical
approximation

1. Introduction

Numerical methods, such as method of moment (MoM), are usually applied to calcu-
late the transmitting current of dipole antenna. However, the current distribution calculated
is in numerical form, which cannot be directly used for frequency-selective surface (FSS),
where the analytical current distribution is needed [1–7]. Two promising approximate ana-
lytical methods for FSS are the periodic method of moment (PMM) and multimodal network
approach. However, it is necessary for both of them to obtain the current/field distribu-
tion in the scatterer. PMM solves this problem using MoM [8–10], while the multimodal
network approach only considers simple rectangular scatters [11–13]. For a rectangular
patch (or aperture) under oblique incidence in the principle scan plane of the structure,
approximate closed-form expressions for aperture field and current profiles of patch surface
were obtained. However, to the authors’ knowledge, the approximate closed-form expres-
sions for other structures have not been reported. Therefore, the application of the above
approximate analytical methods depends on the development of current/field distribution
in the scatterer of other types. In [14], the spatial current/field profile is calculated using
a full-wave simulation, at a single- and low-frequency value. It is then assumed to be
independent of the frequency in the considered range of interest. However, this method
is restrictive, treating structures that are relatively simple and incidence angles that are
relatively small. Besides, the numerical preparation is time consuming and means the
analytical method is complex.

The calculation of spatial current/field profile for an FSS element is similar to the
analysis of current distribution for line antenna [15,16]. The equivalent transmission
line model was often adopted for the study of input impedance and mutual coupling of
transmitting line antenna [17–19]. It was usually a two-wire transmission line model with
lossy lumped feed. For single antennas, radiation lossy can be considered easily, as can the
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mutual coupling lossy. A two-wire straight antenna refers to two collinear or equidistant
antennas, which can be one or more segments. The segments may or may not be parallel.
The two-wire straight antenna can only be equivalent to the two-wire transmission line
model, and the requirement is that the antenna structures are symmetrical. Besides, the
tangential component of the incident electric field on the two antennas should be even or
odd symmetrical. For the asymmetric distribution of the incident field, the incident field
can be decomposed into odd and even symmetrical. The total current in the antenna is
then the superposition of currents in the above two modes.

Schelkunoff mainly used a one-wire transmission line model in [17] to study the
input impedance, mutual coupling, antenna impedance, and the approximate solution of
transmitting/receiving antenna current. Compared to the two-wire transmission line model,
the one-wire transmission model is more flexible. The former makes it easier to study the
dipole oscillator antenna. For the one-wire transmission line model of complex structures,
the main problem is that the equations and parameters are restrictive in approximating the
lossless case. Schelkunoff also studied the current distribution on the receiving antenna
(actually a reflector antenna, which is a straight continuous fine wire antenna, which is
exposed to the incident field and the corresponding tangential component is uniform)
using a two-wire transmission line model. The model is restrictive for vertical incidence
(the tangential field of incident field is uniform on the antenna). For oblique incidence, the
tangential electric field of the incident field on the antenna varies with the spatial position.
It results in the induced electromotive force distributed asymmetrically about the center
of the antenna. The currents on the lines are not equivalent and reverse, so the two-wire
model cannot be used.

In this paper, the current distributions of transmitting and receiving antenna, based
on the equivalent transmission line method, are analyzed. Both the two-wire and one-wire
model are studied, together with the radiation lossy. An iterative scheme is then introduced
to further improve the accuracy. The current distribution calculated is in analytic form,
which can be directly used to approximate the analytical method for FSS.

2. Transmitting Antenna
Equivalent Circuit of the Transformers

Symmetric diploes transmitting antenna (Figure 1) can be equivalent to the two-wire
transmission line model (Figure 2a). For the lossless equivalent transmission line corre-
sponding to equidistance symmetric diploes antenna (Figure 1a), the average characteristic
impedance is evaluated using [14,15]

Z0 =
120√

εr
ln

d
ρ

. (1)
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Figure 1. Symmetric diploes transmitting line antenna (a) equidistance; (b) collinear. Figure 1. Symmetric diploes transmitting line antenna (a) equidistance; (b) collinear.
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(b) cascaded two-port network.

For the lossless equivalent transmission line corresponding to collinear symmetric
diploes antenna (Figure 1b), the average characteristic impedance is calculated as [17,18]

Z0 =
1

l − l1

∫ l

l1

120√
εr

ln
2(z− l1)

ρ
dz. (2)

The per-unit-length inductance and capacity can then be obtained

L =
√

µ0ε0εrZ0, C =

√
µ0ε0εr

Z0
. (3)

The propagation constant is r1 = jβ = jω
√

LC = jω
√

µ0ε0εr.
According to the theory of the transmission line [20,21], the equivalent transmission

line model in Figure 2a can be equivalent to the cascaded two-port network in Figure 2b.
Vi and Ii denote the corresponding port voltage and current, respectively. A voltage source
V1 = Ṽs is connected at the left-hand-side port and the right-hand-side is an open circuit
(I2 = 0). The transmission matrix A1 can be expressed as

A1 =

 cos[β(l − l1)] −jZ0 sin[β(l − l1)]
sin[β(l−l1)]

jZ0
cos[β(l − l1)]

. (4)

According to the microwave network theory, we obtain[
V2
I2

]
= A1

[
V1
I1

]
. (5)

Substituting the boundary condition V1 = Ṽs and I2 = 0 into Equation (5), we can
obtain the coefficients of the voltages and currents

V2 =
Ṽs

cos[β(l − l1)]
, I1 = j tan[β(l − l1)]

Ṽs

Z0
. (6)

Based on the above port voltages and currents, the currents distribution of the equiva-
lent transmission lines (Figure 1) can be written as

I(z) = I1 cos[β(z− l1)] +
V1

jZ0
sin[β(z− l1)]. (7)

The simulated normalized current distribution of the proposed method and MoM
are shown in Figure 3. It can be observed that the results comply well with each other
when l = 0.05λ. However, they differ from each other when l = 0.25λ. In fact, there
is deviation for MoM when εr 6= 1.0. It should be pointed out that this method can be
extended to multi-section line antenna. In this case, the equivalent transmission line model
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and two-port network are cascaded by the corresponding multi sections. It would affiliate
the analysis of the complicated line antenna.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 10 
 

 

to multi-section line antenna. In this case, the equivalent transmission line model and two-
port network are cascaded by the corresponding multi sections. It would affiliate the anal-
ysis of the complicated line antenna. 

-0.050 -0.025 0.000 0.025 0.050
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
ur

re
nt

l/λ

 Proposed
 MoM

 -0.2 -0.1 0.0 0.1 0.2
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
ur

re
nt

l/λ

 Proposed
 MoM
 CST

 
(a) (b) 

Figure 3. Normalized current distribution of the proposed method and MoM. (a) 𝑙𝑙 = 0.05𝜆𝜆; (b) 𝑙𝑙 =
0.25𝜆𝜆. 

3. Two-Wire Transmission Line Model of Receiving Antenna 
As discussed in the introduction, the necessary condition for a single straight antenna 

to be equivalent to a two-wire transmission line model is that the incident field of the 
antenna is symmetrical. Mode decomposition can be applied to asymmetric situations. In 
this section, the equivalent transmission model is applied to the analysis of receiving an-
tenna, shown in Figure 4. 

0z = ll− 1l1l−

( )i
zE z2ρ

 
Figure 4. Two-wire straight antenna exposed to incident electric field. 

The two-wire lossless transmission line model of Figure 4 is shown in Figure 5, where 
( )V z  is the voltage between the two lines. The voltage and current on the line are gov-

erned by the transmission line equations 

( ) ( ) ( )2 i
z

V z
jwL I z E z

z
∂

= − ⋅ +
∂   

(8) 

( ) ( )
I z

jwC V z
z

∂
= − ⋅

∂   
(9) 

Figure 3. Normalized current distribution of the proposed method and MoM. (a) l = 0.05λ;
(b) l = 0.25λ.

3. Two-Wire Transmission Line Model of Receiving Antenna

As discussed in the introduction, the necessary condition for a single straight antenna
to be equivalent to a two-wire transmission line model is that the incident field of the
antenna is symmetrical. Mode decomposition can be applied to asymmetric situations.
In this section, the equivalent transmission model is applied to the analysis of receiving
antenna, shown in Figure 4.
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The two-wire lossless transmission line model of Figure 4 is shown in Figure 5, where
V(z) is the voltage between the two lines. The voltage and current on the line are governed
by the transmission line equations

∂V(z)
∂z

= −jwL · I(z) + 2Ei
z(z) (8)

∂I(z)
∂z

= −jwC ·V(z) (9)
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The corresponding transmission line parameters can be calculated following Section 2.
The boundary condition is

I(−l) = I(+l) = 0. (10)

Substituting (10) into (8) and (9) yields the general expression of potential and current

V(z) = Ae−r1z + Ber1z + ϕv(z)
I(z) = 1

Z0
[Ae−r1z − Ber1z + ϕi(z)]

(11)

ϕv(z) and ϕi(z) are the terms corresponding to Ei
z(z). The coefficients A and B can be

obtained according to the boundary condition of the transmission line. Suppose the incident
field on the antenna is

Ei(z) = E0 cos θ · e−jβ0 sin θz. (12)

where β0 = jω
√

µ0ε0, θ is the incident angle. Since the incident field is asymmetrically
distributed, mode decomposition is required.

Ei
e(z) =

Ei(z) + Ei(−z)
2

= E0 cos θ · cos(β0 sin θz) (13)

Ei
o(z) =

Ei(z)− Ei(−z)
2

= −jE0 cos θ · sin(β0 sin θ · z) (14)

The total current on the antenna is then obtained by the superposition of the above
two modes. The corresponding simulated results are shown in Figure 6.
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Figure 6. Normalized current distribution of two-wire transmission line model. l1 = 0,
ρ = 1× 10−7 m, f = 10 GHz, εr = 1.6, θ = 0

◦
. (a) l = 0.25λ; (b) l = 0.5λ.

4. One-Wire Transmission Line Model of Receiving Antenna

In this section, the one-wire transmission line model for a single straight antenna
is analyzed. In this case, the mode decomposition of the incident field is eliminated. A
single straight antenna is a continuous straight-line antenna, which could be one section or
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multiple non-parallel sections. It can be equivalent to the one-wire equivalent transmission
line model. Each section corresponds to a potential and a current equation. A single straight
antenna with one section is illustrated in Figure 7, and Ei

z(z) is the tangential component
in the incident electric field. The corresponding one-wire equivalent transmission line
model is shown in Figure 8. For the transmission line excited by the distribution voltage
source, the electric potential and current on the line are governed by the transmission
line equations.

∂V(z)
∂z

= −jwL · I(z) + Ei
z(z) (15)

∂I(z)
∂z

= −jwC ·V(z) (16)

V(z) and I(z) are potential and current, respectively. The boundary condition is

I(−l) = I(+l) = 0 (17)
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Compared with the two-wire equivalent transmission line model, the one-wire model
is a more general method. It can be used for any antenna composed of relatively narrow
strips or slots. This will benefit the analysis of FSS, where the element currents are usually
unknown. The normalized current distribution of Figure 7 is shown in Figure 9, together
with the results of the two-wire model.
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5. Loss of Equivalent Transmission Line

The equivalent transmission line models discussed above are lossless. In this section,
the antenna lossy is analyzed. In this case, the current in the receiving antenna needs to be
obtained first and the per unit length radiation resistance can then be calculated. However,
the current is practically an unknown quantity. One way to obtain it is to approximate the
current in the form of sine function. However, it is restricted to some special cases (e.g.,
electrically small antenna and vertical incident). An alternative way is to use the lossless
receiving current I0(z) as the approximation, which has been discussed in Sections 3 and 5.
I0(z) produces the scattered fields, namely the re-radiated field. The radiation energy is
the radiation lossy of the antenna. Consequently, the radiation resistance, potential and
current of the equivalent transmission line model can then be solved. Through the iterative
algorithm of the above process, a more accurate current distribution of the receiving antenna
can be obtained.

Suppose r is parallel to r1, θ = θ1. When calculating the magnitude of the field, assume
r1 ≈ r. When calculating the phase of a field, assume r1 ≈ r− z cos θ. The far-field radiation
produced by the current element is

dEθ ≈ j
30β√

εr

I(z)dz
r

sin θe−jβ(r−z cos θ) (18)

The far-field radiation electric field of the antenna is the integral of (18) on the
whole antenna

Eθ =
∫ l

−l
dEθdz = j

30β√
εr

e−jβr

r
sin θ

∫ l

−l
I(z)ejβz cos θdz. (19)

According to the approximation property of the plane wave in the far field, the active
power of the antenna is

Pr =
1
2

∮
S

[→
E ×

→
H
∗]
· d→s =

1
2

∫ 2π

0

∫ π

0

1
Zw
|Eθ |2r2 sin θdθdϕ (20)

where Zw = 120π/
√

εr. Substituting (19) into (20) yields

Pr =
5πβ2
√

εr

∫ π

0

∣∣∣∣∫ l

−l
I(z)ejβz cos θdz

∣∣∣∣2 sin3 θdθ (21)

The total lossy on the transmission line (Figure 10, the average actual power) is

Pr
′ =

1
2

∫ l

−l
|I(z)|2R1dz (22)
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Suppose that all radiation lossy of an antenna are equivalent to the total power
dissipated on the per unit length radiation resistance R1 of the transmission line, we can
solve R1

R1 =

15β2
r√

εr

∫ π
0

∣∣∣∫ l
−l I(z)ejβz cos θdz

∣∣∣2 sin3 θdθ∫ l
−l |I(z)|dz

(23)

Consequently, the equivalent transmission line model of Figures 2, 5 and 8 should be
revised. Taking Figure 7 as an example, the lossy is shown in Figure 11. The corresponding
transmission line equations and parameters should be revised as well

∂V(z)
∂z

= −(jwL + R1) · I(z) + Ei
z(z) (24)

∂I(z)
∂z

= jwC ·V(z) (25)

Zc =
√
(jwL + R1)/jwC (26)

r = jβr =
√
(jwL + R1)jωC = jω

√
µ0ε0εr (27)
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The simulation results show that the lossy has little influence on the normalized
current distribution. The per unit length radiation resistance R1 is shown in Figure 12.
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6. Conclusions

The equivalent transmission line model is established for the current analysis of line
antenna. The two-wire model is discussed for transmitting antenna and receiving antenna
(the incident field should be decomposed for asymmetric case). The one-wire model is
introduced for any receiving antenna composed of narrow strips. The corresponding mode
decomposition is eliminated. The transmission line radiation resistance hardly effects the
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