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Abstract: The Preisach model is a typical scalar mathematical model used to describe the hysteresis
phenomena, and it attracts considerable attention. However, parameter identification for the Preisach
model remains a challenging issue. In this paper, an improved particle swarm optimization (IPSO)
method is proposed to identify Preisach model parameters. Firstly, the Preisach model is established
by introducing a Gaussian−Gaussian distribution function to replace density function. Secondly, the
IPSO algorithm is adopted to Fimplement the parameter identification. Finally, the model parameter
identification results are compared with the hysteresis loop of the piezoelectric actuator. Compared
with the traditional Particle Swarm Optimization (PSO) algorithm, the IPSO algorithm demonstrates
faster convergence, less calculation time and higher calculation accuracy. This proposed method
provides an efficient approach to model and identify the Preisach hysteresis of piezoelectric actuators.

Keywords: Preisach hysteresis; piezoelectric materials; improved particle swarm optimization

1. Introduction

Piezoelectric actuators (PEAs) are widely utilized in the demanding field of high-
precision motion for their advantages of high resolution, large driving force, high stiffness,
small volume and high reliability [1,2]. PEAs use inverse piezoelectric characteristics to
achieve continuous output motion [3]. However, the inherent nonlinearity hysteresis,
multivalued mapping and rate-independent phenomenon lead to poor accuracy, and they
easily generate oscillation, which greatly affects the positioning precision of PEAs [4].

In recent years, smart material-based actuators have attracted extensive attention and
many mathematical models have been proposed to describe their hysteresis characteristics.
Generally speaking, these models can be classified as physics-based hysteresis models [5,6]
and phenomenology-based hysteresis models [7–9]. Also, there are other hysteresis models,
including the neural network model, the fuzzy system model and hybrid models [10–12].
The detailed classification of hysteresis models is shown in Figure 1.

Physics-based hysteresis models are based on the first nature principle, the mini-
mum free energy and the stress−strain relationship and study the electric dipole, electric
domains and their movement laws from the microscopic mechanism of the interaction
between the nucleus and the electron. The most typical physical model is the hysteresis
model of ferromagnets (Jiles−Atherton model), which was proposed by Jiles and Atherton
in 1986 [13]. For phenomenological models, the behavior of the material is described
mathematically by generating curves and following predefined rules for the material prop-
erties [14]. The differential equation model and the operator hysteresis model are two
typical phenomenological models. The differential equation models employ nonlinear
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differential equations to describe the hysteresis [15]. Examples of differential equation
models include the Bouc−Wen model [16] and the Duhem model [17]. The operator hys-
teresis model employs a weighted superposition of nonlinear operators to describe the
hysteresis [18]. Examples of operator hysteresis models include the Preisach model [19]
and the Prandtl−Ishlinskii model [20]. The Preisach model is a typical scalar model to
describe hysteresis phenomena. It has attracted considerable attention because of its ability
to describe the hysteresis loop accurately. However, the process to obtain the density
function of the Preisach model is difficult. To address this issue, a Gaussian−Gaussian
distribution function approximating the Preisach model density function was adopted to
model the hysteresis of PEAs.
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In addition, the parameter identification for the Preisach model is a challenging
problem. Some parametric identification approaches to identify these parameters have
been reported, such as the genetic algorithm (GA), differential evolution (DE), the least
squares method (LSM) and the PSO algorithm [21–23]. For instance, Hergli et al. used the
GA to identify parameters of the Preisach model [24]. Nevertheless, the main drawbacks of
the GA are the high computational burden and the slow convergent rate near the global
optimum. The GA can obtain a value near the global minimum but cannot guarantee
attainment of the global minimum. DE also demonstrates the characteristics of a slow
convergent rate when used to obtain the global optimum. On the other hand, the PSO
algorithm has been proven to be a robust intelligent optimization algorithm, which can be
easily understood and implemented. However, the PSO algorithm is easy to fall into the
local optimum when dealing with complex nonlinear problems with high dimensionality,
which leads to large errors in optimization results. For these reasons, the Preisach hysteresis
model parameters are identified by the IPSO algorithm in this paper.
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This paper describes an approach to identify Preisach model parameters using the
IPSO method. The proposed identification method has achieved significant improvements
in both accuracy and computational time when compared with the PSO approach. To
demonstrate the efficiency of this identification method, simulation studies were conducted
via MATLAB software. The rest of this paper is organized as follows: in Section 2, the
classical Preisach model and the key issues associated with the implementation of the
Preisach model are introduced; then, the Preisach model based on the Gaussian−Gaussian
distribution function is developed in Section 2; the PSO algorithm is improved in Section 3;
to validate the effectiveness of the proposed method, experimental studies are added to
obtain optimal results in Section 4; finally, this work is summarized in Section 5.

2. Preisach Model
2.1. Preisach Hysteresis Operator

The Preisach operator is developed by the delayed relay operator γ̂αβ[u(t)]. The
illustration of γ̂αβ[u(t)] is depicted in Figure 2, and the γ̂αβ[u(t)] can be written as:

γ̂αβ[u(t)] =


1 u(t) > α
−1 u(t) < β
γ̂αβ[u(t− 1)] β < u(t) < α

(1)

where t denotes the time, u(t) represents the input voltage, α and β are the upper and lower
thresholds, respectively, and they are defined from the previous output γ̂αβ[u(t− 1)] = ξ,
where ξ ∈ {+1,−1} is the state of the relay and γ̂αβ is the output of the relay corresponding
to the (α, β) pair.
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In addition, the output of the Preisach model is calculated as a weighted superposition
of delayed relays. The Preisach model can be expressed as follows:

f (t) =
x

α≥β

µ(α, β)γ̂αβ[u(t)]dαdβ (2)

where f (t) is the output displacement and µ(α, β) denotes the density function. The
density function µ(α, β) is a non-negative weight function, representing the weights of
each hysteron in the Preisach plane P = {(α, β) : α ≥ β, α ≤ αm, β ≥ βm}, where αm and
βm refer to the highest and lowest values of α and β, respectively. The model output can be
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calculated using the double integral in the plane region P of the Preisach model, as shown
in Figure 3.
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In Figure 3, L(t) is the step line, which separates the Preisach plane into positive and
negative areas, reflecting the magnetization history. S+ corresponds to relays with output
values of +1 and S− corresponds to output values of −1.

Based on the regions S+ and S−, the output in (1) can be rewritten as:

f (t) =
x

s+
µ(α, β)dαdβ−

x

s−
µ(α, β)dαdβ (3)

Referring to Equation (3), the determination of the density function is the key to obtain
the value of f (t). Therefore, the parameter identification of the Preisach model synonymous
with the parameter identification of the density function. However, this process requires a
large amount of experimental data. In addition, the first-order reversal loop of the hysteresis
loop needs to be measured, which requires a large workload and results in low accuracy. It
has become a challenging task to identify Preisach model parameters.

2.2. Implementation of the Preisach Model

In order to overcome the difficulties associated with the determination of the density
function of the Preisach model, it is necessary to reduce dependence on the first-order
reversal loop data. Moreover, reducing the complexity and computational workload of
the double integration is also important for the attainment of the Preisach model. For
this purpose, the Gaussian−Gaussian distribution function is introduced [25], which
replaces the density function for two Gaussian probability distributions. The expression for
Gaussian−Gaussian distribution function is depicted as follows:

µ′′ (α, β) =
1

2πσcσu H02
1

er f (σc
√

2) + 1
exp

− ( (α−β)
2 − H0)

2

2σc2H02 −
( (α+β)

2 )
2

2σu2H02

 (4)

where σc, σu is the standard deviation on each respective diagonal, H0 is the maximum
position and er f is the error function, which is defined as:

er f (x) =
2
π

x∫
0

exp(−u2)du (5)
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when σc = σu = H0 = 1, the following expression is obtained:

µ′′ (α, β) =
1

2π

1
er f (
√

2) + 1
exp

− ( (α−β)
2 − 1)

2
− ( (α+β)

2 )
2

2

 (6)

Figure 4 depicts the distribution of the density function µ′′ (α, β).
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Thus, the expression of the Preisach model can be determined as:

f (t) =
x

α≥β

µ′′ (α, β)γ̂αβ[u(t)]dαdβ (7)

Referring to Equation (7), the parameters that need to be identified in the Preisach
model based on the Gaussian−Gaussian distribution function are σc, σu and H0. Compared
with the classical Preisach model, this model has a more concise expression and fewer
parameters. Thus, it not only improves the computational efficiency of the Preisach model,
but also reduces the difficulty of parameter identification.

3. Parameter Identification Based on the IPSO Algorithm
3.1. Determination of the Fitness Function

The key problem of Preisach model parameter identification is the selection of the
fitness function, which is used to get a minimum value with a root-mean-square between
the actual system and the Preisach model. In this study, the objective function is chosen as:

η =

√√√√ 1
N

N

∑
k=1

(Ym(σc, σu, H0)−Y)2 (8)

where η denotes the root-mean-square error and Y and Ym denotes the output experimental
value and the analytical value, respectively.

3.2. Improvement of the PSO Algorithm

The PSO algorithm has the advantages of simple and easy implementation, fast
convergence and few parameters to be adjusted. However, the PSO algorithm is easy to
fall into the local optimum when dealing with complex nonlinear problems with high
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dimensionality, which leads to large errors in the optimization results. To address the
limitations of the PSO algorithm, several improvements are made to the PSO algorithm in
this paper, including setting the minimum error value ξ = 80e80η−8. Additionally, during
the iteration process, the inertia weight decreases amid the difference of the fitness function
values between two consecutive particles |ηi+1 − ηi|> ξ . Otherwise, we can increase the
inertia weight. On this basis, the adaptive effect on inertia weights is achieved, and
the success rate and the convergence speed of the search are improved. The parameter
identification process of the IPSO algorithm is shown in Figure 5.
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During the IPSO algorithm identification process, the evaluation is carried out for
an initial population of 10 individuals and 100 iterations. The learning factors c1 and c2
are both equal to 1.5. The lower and upper thresholds of the Preisach model parameters
{σc, σu, H0} to be identified are {0, 0, 1} and {1, 3, 100}, respectively. Once the iteration is
started, the Preisach model calculates the displacement, which is then evaluated using
the fitness function ς. The fitting results between the measured and simulated values are
provided for each iteration process and compared with the minimum error (ξ = 80e80η−8).

4. Experimental Simulation
4.1. Hysteresis Loop for PEAs

In order to implement the parameter identification of the Preisach model, the static hys-
teresis loop data needs to be measured. A preloaded PEA P-840.60 from Physik Instruments
is adopted, with a nominal travel range of 90 µm and an input voltage of 0–100 V [26].
The PEA is driven by a voltage amplifier device, and the amplification ratio is 10. The
output displacement of the PEA is measured by the capacitance sensor (D-510 from Physik
Instrument) with characteristics such as a sub-nanometer resolution and linearity better
than 0.1%, a nominal measuring range of 100 µm and a bandwidth of up to 10 kHz [27]. The



Micromachines 2022, 13, 698 7 of 11

excitation signals are generated by dSPACE, and the setup of the instruments are shown
in Figure 6a. The displacement data in the frequency of 1.0 Hz, 2.5 Hz and 5.0 Hz were
recorded, as shown in Figure 6b.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 12 
 

 

During the IPSO algorithm identification process, the evaluation is carried out for an 
initial population of 10 individuals and 100 iterations. The learning factors c1 and c2 are 

both equal to 1.5. The lower and upper thresholds of the Preisach model parameters { cσ , 

uσ , 0H } to be identified are {0, 0, 1} and {1, 3, 100}, respectively. Once the iteration is 
started, the Preisach model calculates the displacement, which is then evaluated using 
the fitness function ς . The fitting results between the measured and simulated values 
are provided for each iteration process and compared with the minimum error (

80 880e ηξ −= ). 

4. Experimental Simulation 
4.1. Hysteresis Loop for PEAs 

In order to implement the parameter identification of the Preisach model, the static 
hysteresis loop data needs to be measured. A preloaded PEA P-840.60 from Physik In-
struments is adopted, with a nominal travel range of 90 μm and an input voltage of 0–100 
V [26]. The PEA is driven by a voltage amplifier device, and the amplification ratio is 10. 
The output displacement of the PEA is measured by the capacitance sensor (D-510 from 
Physik Instrument) with characteristics such as a sub-nanometer resolution and linearity 
better than 0.1%, a nominal measuring range of 100 μm and a bandwidth of up to 10 kHz 
[27]. The excitation signals are generated by dSPACE, and the setup of the instruments 
are shown in Figure 6a. The displacement data in the frequency of 1.0 Hz, 2.5 Hz and 5.0 
Hz were recorded, as shown in Figure 6b. 

 
(a) (b) 

Figure 6. (a) The scheme of the experimental setup and hardware connection. (b) The static hyste-
resis loop of piezoelectric ceramic materials at different frequencies. 

4.2. Preisach Model Hysteresis Loop 
A Preisach model based on the Gaussian−Gaussian distribution function is devel-

oped in this paper. Assuming that the input voltage interval of the model is [−650, 650], 
the obtained hysteresis loop is shown in Figure 7. 

To analyze the effects of parameters cσ , uσ  and 0H  on the model, two parame-
ters remain constant while the rest of the parameters are changed. Referring to Figure 8, 

the slope and width of the hysteresis loop increases with increasing values of cσ , and 

the upper and lower thresholds of the output values changes less. As uσ  increases, the 
slope of the hysteresis loop essentially remains constant; however, the width increases, 
which has a greater effect on the upper and lower thresholds of the output values. As 0H  
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loop of piezoelectric ceramic materials at different frequencies.

4.2. Preisach Model Hysteresis Loop

A Preisach model based on the Gaussian−Gaussian distribution function is developed
in this paper. Assuming that the input voltage interval of the model is [−650, 650], the
obtained hysteresis loop is shown in Figure 7.

To analyze the effects of parameters σc, σu and H0 on the model, two parameters
remain constant while the rest of the parameters are changed. Referring to Figure 8, the
slope and width of the hysteresis loop increases with increasing values of σc, and the upper
and lower thresholds of the output values changes less. As σu increases, the slope of the
hysteresis loop essentially remains constant; however, the width increases, which has a
greater effect on the upper and lower thresholds of the output values. As H0 increases, the
slope and width of the hysteresis loop essentially remain constant, while the upper and
lower thresholds of the output values change significantly.
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between the model curve and the experimental curve, even though the root-mean-square 
error is very small. Therefore, the method that uses the Preisach model based on the 
Gaussian−Gaussian distribution function to model the hysteresis phenomenon may not 
be sufficiently accurate. 

Figure 8. The parameters’ effect on hysteresis loop: (a) Effects of parameter σc; (b) Effects of parameter
σu; (c) Effects of parameter H0.

4.3. Parameter Optimization of the Preisach Model

According to the IPSO identification process shown in Figure 5, 500 samples were
selected from experimental data using f = 5.0 Hz as an input. To further verify the accuracy
of the model, the upper and lower bound curves of the Preisach model are identified. The
obtained results of the model parameters are listed in Table 1. The iteration process of the
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algorithm is shown in Figure 9. Further, it should be noted that the control signal of the
piezoelectric actuator 0–100 V and the actual displacement 0–100 µm are normalized to the
range of −1–0 in the identification process for the sake of convenience.

Table 1. Identification results of upper and lower bound curve parameters of the Preisach model.

Algorithm

Parameters

Ascending Curve Descending Curve

σc1 σu1 H01 σc2 σu2 H02

IPSO 0.0012 0.6500 1.7302 0.0023 0.6990 51.2568
PSO 0.0034 0.6783 3.9821 0.3821 0.9213 32.9821

The comparison curves of the iteration process are depicted in Figure 9; these curves
use PSO and IPSO algorithms corresponding to ascending and descending curves. Refer-
ring to this Figure, the IPSO algorithm demonstrates advantages of faster convergence
speed and higher computational accuracy during the iterative process. It can meet the
requirements of parameter identification for the Preisach model.
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After substituting the identified parameter results of the IPSO and PSO into the
Preisach model, the Preisach hysteresis loop can be obtained by MATLAB, as shown in
Figure 10.
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The comparison between the simulated values and the experimental data reveals that
the parameter identification results of the IPSO are significantly better than those of the
PSO algorithm. However, there is also a certain number of errors between the analytical
curves and the experimental curves, which shows unsuccessful modeling. As observed in
Figure 10, when the unipolar loading is applied, a very large error is produced between the
model curve and the experimental curve, even though the root-mean-square error is very
small. Therefore, the method that uses the Preisach model based on the Gaussian−Gaussian
distribution function to model the hysteresis phenomenon may not be sufficiently accurate.

5. Conclusions and Future Works

A parametric identification method for the Preisach model based on the IPSO algo-
rithm is proposed in this paper. The Gaussian−Gaussian distribution function is introduced
to replace the density function. Then, the Preisach model based on the Gaussian−Gaussian
distribution function is developed, and a parametric sensitivity analysis for hysteresis prop-
erty is conducted. The IPSO approach is utilized to identify the parameters of this model.
The comparison of results showed that the IPSO algorithm is better than the PSO algorithm
in terms of accuracy and convergence time. Considering the results obtained in this paper,
the use of the Preisach hysteresis modeling method based on the Gaussian−Gaussian
distribution function cannot adequately describe the actual hysteresis measurements. In
addition, the calculation of the ascending and descending regions of the Preisach memory
curve using this method is time-consuming. However, reducing the number of measure-
ment points of the input signal degrades the accuracy of the calculated hysteresis loops. The
aim of our future work is to improve the model accuracy of the proposed method without
massive computations. In addition, we will apply this model or establish a generalized
model to describe smart materials hysteresis.
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