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Abstract: An all-fiber temperature and refractive dual-parameter-sensing Michelson interferometer is
designed based on the waist-enlarged bitaper. At 5 mm from the fiber end, the waist-enlarged bitaper
is manually spliced and the probe is formed. Since the input light encounters the waist-enlarged
bitaper, it will excite high-order modes to transmit in the fiber cladding, and there will be an optical
path difference between the basic mode and the higher-order mode. The light transmitted in the core
and cladding is reflected upon encountering the fiber end face and the interference occurs due to
the optical path difference between basic mode and higher-order mode. Changes in temperature
and refractive index at the fiber probe can be detected by monitoring the interference fringes. The
refractive response sensitivity is −191.06 dBm/RIU from 1.351 RIU to 1.4027 RIU, and the temperature
response sensitivity is 0.12 nm/◦C from 11 ◦C to 98 ◦C. Through the sensitivity matrix equation, the
superimposed refractive index and temperature signals can be effectively demodulated. The sensor
has the advantages of multi-parameter measurement, compact structure, low cost, easy fabrication
and high reliability.

Keywords: fiber-optic sensors; temperature; refractive index; multi-parameter sensing; Michelson
interferometer

1. Introduction

Temperature and refractive index are important parameters in the biochemical, food
processing, pharmaceutical, oil extraction and biochemical measurement fields. Traditional
electrical sensors find it difficult to meet the sensing requirements of these fields under
severe environmental factors such as corrosion resistance, oxidation resistance and electro-
magnetic interference resistance. The optical fiber sensor performs sensing measurement
based on optical signals, which can overcome the sensing problems such as oxidation
resistance and corrosion resistance that electrical sensors cannot deal with, and has the ad-
vantages of compact structure, multi-parameter sensing measurement and high sensitivity,
which make the optical fiber sensor a multi-parameter sensor.

In recent years, various fiber-optic sensors have been reported, such as long-period
fiber gratings [1,2], fiber Bragg gratings [3–6], Mach–Zehnder interferometer [7–11] and
Michelson interferometer [12–19], etc. In 2020, JENS HØVIK et al. [1] of Norwegian Uni-
versity developed a wavelength refractive index sensor based on long-period grating, and
a response sensitivity of 5078 nm/RIU was measured from 1.33 RIU to 1.34 RIU. Subse-
quently, Yang H et al. [3] of Nanchang University developed a refractive index sensor using
fiber Bragg grating from the perspective of intensity modulation, and a maximum refractive
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index sensitivity of −134.174 dB/RIU was obtained. In 2021, Wang, S. et al. [12] of Nanyang
Technological University in Singapore developed a fiber tip Michelson interferometer,
which partially filled with polymer glue in the suspended core fiber, and achieved high-
sensitivity temperature sensing of −164 pm/◦C from 25 ◦C to 60 ◦C. In the same year, Zhao,
Y. et al. [13] from Tsinghua University proposed a polarization-maintaining fiber Sagnac
temperature sensor based on combination with a fiber-optic Michelson structure, and the
temperature sensitivity is 78.984 nm/◦C from 31 ◦C to 35 ◦C; however, the reduction of the
overall structure of the sensor still needs continuous exploration. The above studies have
not covered the measurement of temperature and refractive index dual-parameter sensing,
so multi-parameter sensing needs further research.

In 2019, Gao, X. et al. [7] of Beijing Jiaotong University measured the refractive index
and temperature at the same time based on MZI combined with coreless fiber and few-
mode fiber; the refractive index sensitivity from 1.3707 RIU to 1.39809 RIU was 97 pm/RIU,
22.9 pm/RIU and 24.6 pm/RIU, respectively, and the temperature sensitivity from 35 ◦C
to 55 ◦C was 162 pm/◦C, 162 pm/◦C and 194 pm/◦C, respectively. In order to further
improve the temperature and refractive index sensing performance of the sensor, in 2021,
Siti Mahfuza, Saimon et al. [6] from Universiti Malaysia proposed a novel fiber-optic sensor,
which is composed of a section of single-mode silica rod–single-mode fiber structure
cascaded to fiber Bragg grating, by monitoring the transmission spectrum; a sensitivity of
108.07 dBm/RIU in the refractive index range of 1.45 RIU to 1.531 RIU and a sensitivity of
9.31 pm/◦C from 35 ◦C to 85 ◦C was measured. In the same year, Wu, B. et al. [8] proposed
a curved-core-shifted coaxial Mach–Zehnder interferometer with a bending radius of
35.64 mm; the highest refractive index sensitivity in the range of 1.333 RIU to 1.373 RIU
was −44.55 nm/RIU, and the highest temperature sensitivity in the temperature range
of 25 ◦C to 60 ◦C was 0.0799 nm/◦C. The above structures can realize temperature and
refractive index sensing, but they are transmissive structures that are not easy to transform
into probe structures. Therefore, the Michelson interferometers which can be made into
probe structures have become the focus of research.

In 2019, Wang, J. et al. [14] fabricated a Michelson interferometer by splicing a single-
mode fiber and a hollow silica tube, with a refractive index and temperature sensitivity of
8.1498 rad/RIU from 1.331 RIU to 1.387 RIU, and −0.05 rad/◦C from 20 ◦C to 90 ◦C. In
2020, Qi K et al. [15] of Harbin Institute of Technology proposed a fiber-optic Michelson
interferometer based on a three-microsphere array, which measured a maximum tem-
perature sensitivity of 115.3 pm/◦C from 20 ◦C to 90 ◦C and a refractive sensitivity of
−56.63 nm/RIU in the range of 1.3335 RIU to 1.406 RIU; the fabrication repeatability of
the three microsphere structures of the sensor is difficult to control, and the repeatabil-
ity of the process needs to be further enhanced. In 2021, Zheng J et al. [16] proposed a
thin-waist-cone Michelson interferometer, and measured the temperature sensitivity of
wavelength demodulation as being 8.4 pm/◦C, and the refractive index sensitivity of inten-
sity demodulation as being −145.54 dB/RIU. In the same year, Zhang Y et al. [17] designed
a new L-type Michelson interferometer based on the method of flame firing. The refractive
index response sensitivity was −131.0 nm/RIU from 1.3430 RIU to 1.3927 RIU, and the
temperature response sensitivity was 94.17 pm/◦C from 30 ◦C to 100 ◦C. The sensor is
greatly affected by the position of the flame intensity during the production process, and
needs to be further improved in terms of repeatability. The waist-enlarged fiber bitaper
can be used as a coupling point [20,21]. Yanhong Liang et al. [22] from Zhejiang University
developed a novel optical fiber sensor, based on the waist-enlarged fiber bitaper and the
polyvinyl alcohol film, where the refractive index variance ranges from 1.49 to 1.34, the
ambient humidity increases from 20%RH to 95%RH, and a sensitivity up to 1.2 dB/%RH
can be achieved.

In this paper, a Michelson interferometer based on the waist-enlarged fiber bitaper
is developed, which realizes the simultaneous sensing of temperature and the refractive
index. The sensor has a compact structure, and a thick waist-cone structure is directly
fabricated on the optical fiber by manual welding, which eliminates the process of fiber
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cutting and alignment welding, and reduces the manufacturing steps of the sensing probe.
The spectrum of the optical signal is analyzed, and the mode distribution diagram of the
optical fiber section is given. The intensity and wavelength changes of the spectra are
analyzed, and the temperature and refractive index are measured using the sensitivity
matrix equation.

2. Principle and Design

The schematic diagram of the fiber Michelson interferometer is shown in Figure 1,
where the distance L between the waist-enlarged bitaper and the right end face is the length
of the sensing arm. When the input light is transmitted from the left to the position of the
waist-enlarged bitaper, the higher-order modes are excitation in the cladding. The lower-
order fundamental modes continue to propagate in the core. When the light transmitted
in the fiber core and fiber cladding encounters the reflective end face, it is reflected and
returns along the original path. When the waist-enlarged bitaper is encountered for the
second time, the different orders of light are coupled together and form interference fringes.
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Figure 1. Schematic diagram of Michelson interferometer.

The formation of interference fringes is caused by the optical path difference of the
transmitted light in the fiber core and cladding. We can first list the optical path difference
equation, as follows [23,24]:

∆φ =
4π

λ
(nm − ncore)L m = 1, 2, 3 . . . . . . (1)

where nm is the effective refractive index of the optical fiber cladding, ncore is the effective
refractive index of the fiber core, L is the length of Michelson interferometer and λ is the
wavelength.

If we define the intensities of fiber core mode and fiber cladding mode as Icore and
Im(RI), the effective refractive index difference is ∆ne f f and the initial phase is φ0; the
intensity of the transmission spectrum can be defined as [25,26]:

I(λ) = Icore + ∑
m

Im(RI) + ∑
m

2[Icore × Im(RI)]
1
2 · cos

(4π∆ne f f L
λ

+ φ0

)
(2)

When the external refractive index changes, the intensity of the reflected light will
change. Changes in light intensity are related to changes in the external refractive index.
Assuming that the initial phase is equal to 0, the change in the interference intensity can be
described as [27]:

dI
dRI = ∑

m

dIm(RI)
dRI +Icore · ∑

m
[Icore Im(RI)]

1
2 · dIm(RI)

dRI · cos
{

4π
λ [Icore − Im(RI)] · L

}
+

∑
m
[Icore Im(RI)]

1
2 · sin

{
4π
λ [Icore − Im(RI)] · L

}
· 8π

λ · L · dnm(RI)
dRI

(3)
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The generation of the interference spectrum is mainly caused by the phase difference,
the phase condition represented by the cosine phase of Equation (2); therefore, the spectral
phase at a certain moment can be expressed as the following equation:

φ =
4πncoreL

λ
+ φ0 (4)

When the temperature changes, the length and refractive index of the fiber material
will change, and the center wavelength will also drift accordingly. Assuming that when the
temperature increases by ∆T, the cavity refractive index of the fiber sensor changes from n
to ncore + ncoreξ∆T, the length changes from L to L + Lα∆T, and the center wavelength λ
will drift to λ + ∆λ, so [23,25]:

φ =
4π(ncore + ncoreξ∆T)(L + Lα∆T)

λ + ∆λ
(5)

In the equation: ∆T—temperature change; ξ—thermo-optical coefficient. The change
of wavelength with temperature has little to do with the initial phase. In order to simplify
the equation, we set the initial phase φ0 as 0; then, from Equations (4) and (5), we can
obtain:

∆λ = λ
(

ξ∆T + α∆T + ξα∆T2
)

(6)

Because the wavelength and temperature change is very small, the equation can be
approximated to Equation (7):

∆λ

∆T
≈ dλ

dT
= λ(ξ + α) (7)

Equation (7) characterizes the change in wavelength with temperature. The thermal
expansion coefficient and the thermo-optic coefficient are constants. Therefore, it can be
drawn theoretically that when the monitoring wavelength is constant, the temperature
response sensitivity is a constant; in other words, the change of wavelength is approxi-
mately linear with the change of temperature, which can be confirmed by the following
temperature experiments.

A fusion splicer (Furukawa, S177B, Tokyo, Japan) is used to fabricate the fiber Michel-
son, and the fiber used for the sensor is a common single-mode fiber with core and cladding
diameters of 9 µm and 125 µm, respectively. A fiber cleaver (Furukawa, S325, Tokyo, Japan)
is used to cut the fiber end face flat to obtain a reflective end face with high reflectivity. The
part between the waist-enlarged bitaper and the reflective end face is the sensing arm. Ac-
cording to the required length of the sensing arm, the position of the waist-enlarged bitaper
is selected and the manual welding program is set to make the waist-enlarged fiber bitaper.
Through a large number of experimental comparisons, it is found that if the waist size of the
waist-enlarged bitaper is too small, the contrast of the generated interference fringes will
become smaller; and if the bitaper is too large, the overall intensity of the spectrum will be
reduced. Therefore, it is necessary to restrict the size of the waist-enlarged bitaper structure
within a certain range, and an intermediate size is selected in the manufacturing process.
The parameters in the specific production process are as follows. The discharge cleaning is
set to 50 ms, the discharge duration is set to 1100 ms, the discharge intensity is set to 155
xmW and the push distance is set to 140 µm. Due to the high discharge intensity and the
large advancing distance, the diameter of the set point will slowly expand. Figure 2 is a
90-times magnified photo of the optical fiber waist-enlarged bitaper under the microscope
(Olympus, SZ61, Center Valley, PA, USA). It can be seen from the figure that the diameter
of the welding point is enlarged from 125 µm to about 152 µm, and the length of the optical
fiber waist-enlarged bitaper is about 350 µm.
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Figure 2. The optical fiber waist-enlarged bitaper under microscope.

Figure 3 shows the interference fringes corresponding to sensors with different lengths.
It can be seen from the figure that the contrast of the interference fringes is high, and the
interference peaks and interference valleys are clearly visible. By fabricating a large number
of sensors, we summarize the relationship between the interference arm length and the
interference period per 80 nm spectral range. It can be seen from Figure 4 that as the length
of the interference arm increases, the spectrum in the unit spectral range increases. In other
words, as the interference arms grow, the interference fringes become denser.
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The spectrum is converted to a spatial spectrum by a fast Fourier transform (FFT), as
shown in Figure 5. It can be seen that the high-order spectra corresponding to sensors of
different lengths have only one main peak. For sensors with interference lengths of 5 mm,
13 mm and 17 mm, the positions of the main peaks are at 0.0204388 nm−1, 0.0573041 nm−1

and 0.0712539 nm−1, respectively. Based on Taylor expansion, the phase φ can be defined
as [24]:

φ ≈ φ0 −
2π∆λ

λ2 ∆ne f f · 2L (8)
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Meanwhile, the phase part of the interference wavelength can be expressed as a cosine
equation, as shown below [28].

cos φ = cos(2πξ∆λ) (9)

Assuming the initial phase φ0 is equal to 0, we can obtain the spatial frequency ξ based
on Equations (8) and (9), as shown in Equation (10).

ξ =
2

λ2 ∆ne f f · L (10)

By transforming Equation (10), it can be obtained that the refractive index difference is
as follows.

∆ne f f =
ξ · λ2

2L
(11)

The C + L band is selected in the experiment; the center wavelength is around 1550 nm,
and the lengths of the interference arms are 5 mm, 13 mm and 17 mm, respectively. Sub-
stituting each parameter into Equation (11), the refractive index difference ∆neff between
modes can be calculated to be 0.004910422 dB·s, 0.005295119 dB·s and 0.005034926 dB·s,
respectively. The relationship between ∆neff and different modes is analyzed by OptiFiber
software, as shown in Table 1. By analyzing the effective refractive index difference between
the higher-order mode and the fundamental mode, the experimentally obtained refractive
index difference is closest to the difference between LP01 and LP07. Among them, LP01
is mainly transmitted in the core, and LP07 is mainly transmitted in the cladding. The
optical mode distribution of the fiber-truncated surface of the fundamental mode LP01 and
high-order LP07 mode given by software simulation is shown in Figure 6.
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Table 1. Relationship between mode order and refractive index difference ∆neff.

X nLP0x ∆neff

1 1.4658679 0
2 1.4627498 0.0031181
3 1.4625833 0.0032846
4 1.4623038 0.0035641
5 1.4619147 0.0039532
6 1.4614194 0.0044485
7 1.4608213 0.0050466
8 1.4601245 0.0057434
9 1.4593324 0.0065355
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3. Experiment and Discussion
3.1. Refractive Index Response Experiment

As shown in Figure 7, the fiber Michelson interferometer measuring system is com-
posed of an optical spectrum analyzer (OSA, Anritsu, MS9740A, Kanagawa, Japan) and a
broadband light source (BBS, Lightcomm, ASE-CL, Shenzhen, China). The resolution of the
OSA is set to be 0.02 nm, and the bandwidth of BBS is 80 nm. Sugar solutions with different
refractive indices are prepared as samples for measurement, which are set as 1.351 RIU,
1.357 RIU, 1.369 RIU, 1.369 RIU, 1.378 RIU, 1.3872 RIU, 1.3941 RIU and 1.4027 RIU. Further,
the refractive index solutions are verified by Abbe refractometer. During the specific ex-
periment, a single concentration of sugar solution is dropped on the sensor head, and the
OSA is utilized to record the transmission spectral response. Before the next measurement
of the sugar solution, the sensor head is rinsed repeatedly with water and allowed to
dry. In addition, the ambient temperature is kept at 11 ◦C to minimize the cross effects
of temperature.
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As the refractive index of the liquid increases, the intensity and wavelength of the
spectral valleys change accordingly, as shown in Figure 8. The blue dots are the measured
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intensity data, and the black dots are the measured wavelength data. The fitted line is
obtained by the least squares fitting method. A linear decrease in the power of the trough
can be observed. With the refractive index changes from 1.351 RIU to 1.4027 RIU, an
intensity response sensitivity of −191.06 dB/RIU and a wavelength response sensitivity of
5.09 nm/RIU are obtained, as shown in Figure 9.
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Figure 9. The refractive index response of the Michelson interferometer.

In addition, the change of air humidity can also be attributed to the small change of
the air refractive index, so we also experimentally designed a humidity experiment. In the
humidity range of 20% to 80%, the interference spectrum of the sensor hardly changes with
humidity. This can be attributed to the fact that the refractive index change is too small;
the total change of air refractive index with air humidity is less than 0.00005 RIU [29]. The
spectral change is too low, and the demodulation equipment can no longer distinguish it.

3.2. Temperature Response Experiment

The schematic diagram of the temperature experimental device is shown in Figure 10.
The light emitted by the ASE light source is transmitted into the sensor, and the MS740A
spectrometer (Anritsu, MS9740A, Kanagawa, Japan) is used to measure the reflection
spectrum of the sensing system. The temperature control system is a high-temperature
muffle furnace (Omega, Biel/Bienne, Switzerland), and the temperature control accuracy is
1 ◦C. As the temperature increases, the spectrum of the fiber Michelson shifts due to the
thermo-optic and thermal expansion effects, as shown in Figure 11. It can be seen from
the figure that the sensor is sensitive to temperature changes and can be designed as a
temperature sensor.
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Figure 11. The spectra under different ambient temperatures.

The trough around 1555 nm is monitored and used to analyze the temperature response
sensitivity of the fiber Michelson interferometer, as shown in Figure 11. The shift of the
trough intensity and wavelength with temperature is analyzed as shown in Figure 12. The
blue dots and blue lines are the measured intensity data and the fitted line, and the black
dots are the measured wavelength data and the fitted line. Temperature sensitivities are
−0.011 nm/◦C and –0.009 dB/◦C from 30 ◦C to 90 ◦C.[

∆P
∆λ

]
=

[
KnP KTP
Knλ KTλ

][
∆n
∆T

]
(12)

Micromachines 2022, 13, 658 10 of 12 
 

 

 
Figure 11. The spectra under different ambient temperatures. 

 
Figure 12. The temperature response of the Michelson interferometer. 

= nP TP

n T

K KP n
K K Tλ λλ

Δ Δ    
    Δ Δ      

(12)

In Equation (12), Δn and ΔT are the refractive index and temperature changes, re-
spectively. KnP and Knλ are the intensity and wavelength response sensitivities when the 
refractive index changes. KTP and KTλ are the intensity and wavelength response sensi-
tivities when temperature changes. Multiplying both sides of the Equation by the in-
verse of the sensitivity matrix, Equation (13) can be obtained [30]. 

-1

= nP TP

n T

K Kn P
K KT λ λ λ

Δ Δ    
    Δ Δ      

(13)

The corresponding relationship between the experimentally measured sensitivity 
coefficient of each parameter and each parameter of the matrix equation is as follows: 
KnP = −191.06 dB/RIU, Knλ = −5.09 nm/oC, KTP = −0.003 dB/RIU, KTλ = 0.12 nm/oC. Substi-
tuting the measurement data into Equation (13), Equation (14) can be obtained. Through 
the analysis of the spectrum, the changes of the refractive index and temperature value 
of the detection environment can be obtained based on Equation (14). 

-1-191.06 5.09
=

-0.003 0.12
n P
T λ

Δ Δ     
     Δ Δ     

 (14)

1520 1540 1560 1580
-25

-20

-15

-10

Tr
an

sm
iss

io
n(

dB
)

Wavelength(nm)

 

 

 11℃
 25℃
 40℃
 55℃
 70℃
 85℃
 98℃ 

10 20 30 40 50 60 70 80 90 100
-25

-24

-23

-22

-21

1551

1554

1557

1560

1563

Temperature(℃)

y=1550.25+0.12x
R2=0.997

y=-23.056-0.003x
R2=0.835

W
avelength（

nm
）

Po
w

er
（

dB
）

 

 

Figure 12. The temperature response of the Michelson interferometer.

In Equation (12), ∆n and ∆T are the refractive index and temperature changes, re-
spectively. KnP and Knλ are the intensity and wavelength response sensitivities when the
refractive index changes. KTP and KTλ are the intensity and wavelength response sensitivi-



Micromachines 2022, 13, 658 10 of 11

ties when temperature changes. Multiplying both sides of the Equation by the inverse of
the sensitivity matrix, Equation (13) can be obtained [30].[

∆n
∆T

]
=

[
KnP KTP
Knλ KTλ

]−1[ ∆P
∆λ

]
(13)

The corresponding relationship between the experimentally measured sensitivity
coefficient of each parameter and each parameter of the matrix equation is as follows:
KnP = −191.06 dB/RIU, Knλ = −5.09 nm/◦C, KTP = −0.003 dB/RIU, KTλ = 0.12 nm/◦C.
Substituting the measurement data into Equation (13), Equation (14) can be obtained.
Through the analysis of the spectrum, the changes of the refractive index and temperature
value of the detection environment can be obtained based on Equation (14).[

∆n
∆T

]
=

[
−191.06 5.09
−0.003 0.12

]−1[ ∆P
∆λ

]
(14)

4. Conclusions

In this paper, a waist-enlarged bitaper Michelson interferometer for multi-parameter
sensing is proposed. By comparing the spectra of probes with different lengths, it is
found that as the length of the sensor probe increases, the distance between the two
valleys of the interference spectrum becomes smaller. The experimental analysis of the
temperature-refractive index characteristics of the sensor shows that the sensor has a
wavelength response sensitivity of 0.12 nm/◦C and an intensity response sensitivity of
−0.003 dBm/◦C in the range of 11 ◦C to 98 ◦C. In the refractive index range of 1.351 RIU to
1.4027 RIU, the wavelength response sensitivity is 5.09 nm/RIU, and the intensity response
sensitivity is −191.06 dBm/RIU. The measurement results prove that this type of optical
fiber sensor can measure various external parameters according to the change of spectral
intensity and wavelength, combined with the sensitivity matrix equation. In the process of
food processing and pharmaceutical production, the temperature and refractive index of
the product can be obtained through sensor monitoring in a timely manner, and then the
product quality can be controlled. At the same time, it can also monitor the temperature and
refractive index in real time during oil exploration to obtain the temperature of underground
oil and the quality of crude oil. In short, the sensor has the advantages of simple structure,
high sensitivity and multi-parameter measurement, and has certain application value.
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