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Abstract: Roll-to-plate nanoimprinting with flexible stamps is a fabrication method to pattern large-
area substrates with micro- and nanotextures. The imprint consists of the preferred texture on top
of a residual layer, of which the thickness and uniformity is critical for many applications. In this
work, a numerical model is developed to predict the residual layer thickness (RLT) as a function of
the imprint parameters. The model is based on elastohydrodynamic lubrication (EHL) theory, which
combines lubrication theory for the pressure build-up in the resin film, with linear elasticity theory
for the elastic deformation of the roller material. The model is extended with inextensible cylindrical
shell theory to capture the effect of the flexible stamp, which is treated as a tensioned web. The results
show that an increase in the tension of the web increases the effective stiffness of the roller, resulting
in a reduction in the RLT. The numerical results are validated with layer height measurements from
flat layer imprints. It is shown that the simulated minimum layer height corresponds very well with
the experimental results for a wide range of resin viscosities, imprint velocities, and imprint loads.

Keywords: nanoimprinting; roll-to-plate; residual layer thickness; simulation; elastohydrodynamic
lubrication; web tension; experimental validation

1. Introduction

Nanoimprint lithography (NIL) is a high-resolution, high-throughput fabrication
technology to replicate micro- and nanopatterns on rigid and flexible substrates. The
concept of NIL is essentially based on a moulding process, in which a liquid resist is
deformed to conform to the surface topography of a stamp [1]. The stamp surface is
equipped with the inverse polarity of the preferred texture. After solidification of the
resist material, the stamp is removed and a negative of the pattern is replicated onto the
substrate. A distinction can be made between thermal NIL with a thermoplastic polymer
resist material [2], and ultraviolet (UV) cure NIL, which employs UV-curable resin [3].
Moreover, depending on the contact method, the NIL process can be divided into plate-
to-plate, roll-to-plate, and roll-to-roll nanoimprinting. To further increase the throughput
and imprint area of the NIL process, a shift towards large-area NIL can be identified [4].
Practical applications of large-area NIL can be found in the fabrication of optical films for
displays or augmented reality [5], anti-reflection surfaces for solar panels [6], antifouling
surfaces [7], and many more [4]. In particular, roller-based NIL is an attractive method,
as it offers the advantage of a reduced contact area during the imprint process, which
results in lower imprint forces, and reduced issues regarding bubble trapping [8]. The
first thermal NIL roller-based imprint system was introduced by Tan [9], and Ahn has
developed the first UV-cure roll-to-roll imprint system [10]. Various roller-based imprint
systems are available, and can be classified based on the configuration of stamp, roller, and
substrate [11,12].

A roll-to-plate imprint system can be equipped with one or multiple rollers. Figure 1
shows a schematic of a UV-cure roll-to-plate imprint system. It uses multiple rollers, for
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imprinting and for guiding a textured flexible stamp. The UV-curable resin is dispensed
on the substrate. The middle-left imprint roller presses the flexible stamp into the liquid
resin, which is then UV-cured through the transparent stamp. The middle-right roller
delaminates the flexible stamp from the hardened resin. When taking a closer look at the
imprinted substrate, it can be seen that the imprint consists of the preferred texture on top
of a residual layer. For many applications, the residual layer thickness (RLT) must be thin
and uniform, in order to prevent poor optical or mechanical performance of the product,
or to facilitate efficient and high-quality etching as a subsequent process step to transfer
the pattern into the substrate material [13]. Simulation of the imprint process can assist in
predicting the imprint quality to further optimize the imprint process. The imprint quality
is mainly governed by the replication fidelity of the preferred textures and the RLT and
its uniformity over the imprint area. In the literature, research on the simulation of the
replication fidelity can be found for different aspects of the imprint process: the texture
filling and potential bubble trapping [14–17], the UV curing step [18,19], and the potential
fracture of textures during delamination [16], to name a few. This work specifically focuses
on the prediction of the RLT.

UV

residual layer
thickness

rigid substrate

flexible stamp

dispense 
resin

Figure 1. Schematic of a roll-to-plate imprint system. Picture is adapted from [20].

Previous work on the simulation of the RLT and its uniformity is given for plate-to-
plate imprint systems [21–24]. For roller-based imprint systems, analytical expressions for
the RLT [25] and droplet merging under the imprint roller [18] are presented. The elastic
deformation of the roller material is not taken into account. It is included by Taylor [26],
who developed a contact mechanics-based model to simulate the RLT. The rollers in roller-
based imprint systems are typically equipped with a relatively soft, elastomeric layer, which
elastically deforms during the imprint process, due to the hydrodynamic pressure build-up
in the resin film. The elastic deformation is relatively large compared to the film height,
and affects the hydrodynamic pressure profile in the resin film, in return. The result is
a strong coupling between the hydrodynamic and elastic effects, which is described by
elastohydrodynamic lubrication (EHL) theory. The working principle behind roller-based
imprint systems is analogous to roller-based coating and printing processes [27–30]. These
studies also use EHL theory for the prediction of the coating or printing layer height. When
the thickness of the elastomeric layer is relatively small, it influences the elastic deformation
and its finite thickness needs to be taken into account [28,31–33]. Cochrane also employs
EHL theory to predict the RLT in a roll-to-roll set-up to imprint deformable substrates [34].
Lubrication theory is combined with the inextensible cylindrical shell theory to couple
the pressure build-up in the thin film of resin with the motion and elastic forces of the
deformable substrate.
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In this work, a numerical EHL model is developed to predict the RLT in roll-to-plate
imprint systems. The EHL model couples lubrication theory for the pressure build-up in the
thin film of resin with linear elasticity theory for the elastic deformation in the elastomeric
layer of the imprint roller with finite thickness. The model is extended with inextensible
cylindrical shell theory to include the effect of the flexible stamp, which is treated as a
tensioned web. The study focuses on the RLT, and the influence of textures on the flexible
stamp is not taken into account. Unique contributions of this work are the implementation
of EHL theory in roll-to-plate nanoimprinting, including the experimental validation of
the numerical results. Moreover, the effects of the tensioned web in a roll-to-plate imprint
set-up on the RLT have not been studied before, to the authors’ knowledge. The numerical
model can directly be used to determine the required amount of resin in an imprint, for a
given set of imprint parameters. Furthermore, the numerical model can be used to study
the RLT as a function of the resin viscosity, imprint velocity, and imprint load. The material
properties of the elastomeric layer (elastic modulus and Poisson ratio) and the system
geometry (roller radius and elastomeric layer thickness) can be adjusted as well, in order to
study the influence on the RLT.

2. Methods

In this section, the applied methods are described in detail. First, the development of
the numerical model for the lubricated roller contact with a tensioned web is discussed.
Next, the experimental method to validate the model is described.

2.1. Model Development

The numerical model is based on the full-system finite element approach for EHL
problems [35]. The modeled system geometry is shown in Figure 2a. The imprint roller
with an elastomeric layer is pressed onto the substrate. They are separated by a tensioned
web, which applies a contact pressure onto the elastomeric layer, and a thin film of resin.
The roller contact is treated as an infinite line contact. Furthermore, it is assumed that
the substrate and roller core are rigid, and all elastic deformation occurs in the relatively
compliant, elastomeric layer, which is wrapped around the imprint roller core. If the
contact width is small relative to the roller radius, a simplified equivalent geometry can
be used, as shown in Figure 2b [36]. A rigid roller of radius R is pressed onto the flat,
elastomeric layer of thickness t, which is essentially unwrapped from the roller core. With
this implementation, the tensioned web follows the roller shape, instead of losing contact
with the roller and moving away with the substrate. The kinematics of the tensioned web
and its contact mechanics with the roller are not taken into account. Both the roller and
substrate move with a unidirectional surface velocity u1 and u2, in the positive x-direction.
This is in fact the imprint velocity of the imprint process. The contact area is subject to an
effective imprint load per unit length W. It is assumed that a surplus of resin is available in
front of the roller, which makes the contact fully flooded.

Three layer heights are identified in the formed thin film of resin: the central layer
height hC at the roller center, the minimum layer height hM close to the outlet of the roller
contact, and the final layer height hF between the tensioned web and substrate. The final
layer height hF is the layer height of interest, but due to the absence of the web kinematics,
this layer height cannot be determined directly. However, it will be shown in Section 2.1.2
that the final layer height hF should be equal to the central layer height hC.
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Figure 2. (a) Schematic of the imprint roller with tensioned web. The elastic deformation of the
elastomeric layer is highly exaggerated for illustrative purposes. (b) Equivalent geometry of the
imprint roller with tensioned web.

The numerical model is governed by four main equations: the Reynolds equation
for the resin flow, the linear elasticity equations for the elastic deformation, the inexten-
sible cylindrical shell equations for the web tension physics, and a load balance equa-
tion. For the sake of numerical robustness and faster convergence, the relevant variables
are scaled. The scaling parameters and dimensionless equations are presented in the
Supplementary Materials. For readability, the dimensional equations are presented in the
following subsections. The equations are applied on the computational domain in Figure 3,
which represents the elastomeric layer. It has a dimensional width of 20× aH, and a di-
mensional height which is equal to the elastomeric layer thickness. The parameters aH
and pH, which are already introduced for later use, correspond to the Hertz dry contact
half-width and peak pressure, respectively. They are based on the mechanical properties of
the elastomeric layer:

aH =

√
8WR
πE′

, pH =
2W
πaH

. (1)

As it is assumed that all elastic deformation occurs in the elastomeric layer, the effective
elastic modulus reduces to:

2
E′

=
1− ν2

E
. (2)

x

z

-10aH -4.5aH 1.5aH0 10aH

∂ΩT Ω

∂ΩR ∂ΩC

t

Figure 3. Computational domain and mesh.

2.1.1. Elastic Deformation

The elastic deformation is determined by applying the classical linear elasticity equa-
tions on the elastic layer domain Ω in Figure 3, with appropriate boundary conditions. The
linear elasticity equations are given by [35]:



Micromachines 2022, 13, 461 5 of 16

x-direction:
∂

∂x

[
(λ + 2µ)

∂u
∂x

+ λ
∂w
∂z

]
+

∂

∂z

[
µ

(
∂u
∂z

+
∂w
∂x

)]
= 0,

z-direction:
∂

∂x

[
µ

(
∂u
∂z

+
∂w
∂x

)]
+

∂

∂z

[
λ

∂u
∂x

+ (λ + 2µ)
∂w
∂z

]
= 0.

(3)

where λ and µ correspond to the Lamé parameters:

λ =
νE

(1− 2ν)(1 + ν)
, µ =

E
2(1 + ν)

. (4)

The upper boundary ∂ΩT in Figure 3 is fixed. The contact domain ∂Ωc is loaded with
the contact pressure pC, which follows from the tensioned web physics. This results in the
following boundary conditions:

u = w = 0 on ∂ΩT,
σn = pC on ΩC,
σn = σt = 0 elsewhere.

(5)

The parameters σn and σt are the normal and tangential components of the stress
tensor, respectively.

2.1.2. Hydrodynamic Lubrication

As the layer thickness of the thin film of resin is small compared to the roller contact
width, the resin flow can be described by thin film theory, which assumes a constant
pressure across the film thickness. The steady-state, incompressible Reynolds equation in
one dimension is given by [37]:

∂

∂x

(
− h3

12η

∂p
∂x

+
h(u1 + u2)

2

)
= 0, (6)

where η is the dynamic viscosity of the resin, and u1 and u2 are the top and bottom surface
velocities, respectively. Equation (6) assumes Newtonian fluid behavior and isothermal
conditions. The first part in the Reynolds equation is the Poiseuille term, which describes
the volume flow rate due to pressure gradients within the thin film. The second term is
the Couette term and describes the volume flow rate due to the surface velocities. The
hydrodynamic film pressure p is determined for a given layer height profile h:

h(x) = h0 +
x2

2R
+ w(x), (7)

where h0 is the unknown gap between the roller and substrate at x = 0. A negative gap
indicates roller engagement, as shown in Figure 2b. The second term is an approximation
to describe the circular roller shape, and the last term represents the elastic deformation,
which follows from Equation (3). The Reynolds equation is applied on domain ∂ΩR in
Figure 3. It is defined by −4.5aH ≤ x ≤ 1.5aH, which is sufficiently wide to capture the
pressure build-up in the thin film of resin [35]. Zero pressure boundary conditions are
applied on the edges of the domain. In the outlet region of the roller contact, negative
pressures will follow from the Reynolds equation, due to the diverging surfaces. These
negative pressures are physically not tolerated and the fluid will cavitate. The location of
the cavitation boundary is unknown beforehand. When it is assumed that the cavitation
pressure is equal to ambient pressure, the following cavitation condition must be satisfied:

p ≥ 0 on ∂ΩR, and p =
∂p
∂x

= 0 on the cavitation boundary. (8)
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To satisfy the cavitation condition, different methods are available and implemented
in the literature. Habchi [38] uses a penalty method to force any negative pressures towards
zero. Other methods are based on the observation that two regions can be identified: the
full film region in which p is unknown (but larger than 0) and the liquid volume fraction f
is known (namely 1), and the cavitated region where p is known (namely 0) and the liquid
volume fraction f is unknown (but smaller than 1). This reasoning can be captured in a
complementarity condition when introducing the cavity fraction θ = 1− f :

p ≥ 0 and θ = 0,

p = 0 and θ ≥ 0,
(9)

Alakhramsing [39] suggests a variable transformation to combine both p and f into
one variable. In this work, the complementarity condition is satisfied by adding a modified
constraint function to the model, known as the Fischer–Burmeister function [40]:

p + θ −
√

p2 + θ2 = 0. (10)

The Reynolds equation in Equation (6) is essentially a mass flow balance, and conser-
vation of mass must be satisfied on the entire domain. Similar conditions are present at
the roller center (at x = 0) and outlet (at the cavitation boundary). The pressure gradient
∂p/∂x is equal to zero and the surface velocities u1 and u2 are the same. Conservation of
mass then yields that the layer height at the cavitation boundary should be equal to the
central layer height hC at the roller center. As the layer height is assumed to be constant
downstream of the roller outlet, the final layer height hF should be equal to the central layer
height hC.

2.1.3. Web Tension

The tensioned web is relatively thin, and therefore cylindrical shell equations can be
used to describe the web tension physics [34,41]. It is assumed that the bending stiffness of
the web and tangential traction acting on the web are negligible. The normal stress balance
reduces to:

κT + pn = 0. (11)

This equation states that the normal stress or pressure pn is a function of the web
curvature κ and the applied web tension T. The tensioned web follows the roller shape and
its potential elastic deformation, which are described by the last two terms in Equation (7),
respectively. The curvature can be approximated by the second spatial derivative:

κ = −∂2zroller

∂x2 = − ∂2

∂x2

(
x2

2R
+ w

)
= −

(
1
R
+

∂2w
∂x2

)
. (12)

The normal stress is equal to the tensioned web contact pressure pC minus the hydro-
dynamic film pressure p. The resulting normal stress balance is equal to:

pC = p + T
(

1
R
+

∂2w
∂x2

)
. (13)

Equation (13) explains that the web contact pressure, which acts on the elastomeric
layer, is the sum of the hydrodynamic film pressure and the pressure as induced by the web
tension itself. This last term scales with the curvature of the roller and the local curvature
due to the elastic deformation of the elastomeric layer. Equation (13) is applied on the
contact domain ∂ΩC in Figure 3. Zero pressure boundary conditions for the web tension
pressure are applied on the edges of the domain.
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2.1.4. Load Balance

The load equilibrium is derived by balancing the pressure force from the hydrody-
namic film pressure build-up with the effective roller load per unit length:∫

ΩR

pdx = W. (14)

This equation is satisfied by regulating the gap h0 in Equation (7), which is one of the
unknowns in the system of equations.

2.1.5. Numerical Implementation

The linear elasticity equations in Equation (3), the Reynolds equation in Equation (6), the
Fischer–Burmeister function in Equation (10), the tensioned web equation in Equation (13),
and the load balance equation in Equation (14) completely define the EHL model with a
tensioned web. The unknowns of these equations are the elastic deformation components
u and w, the hydrodynamic film pressure p, the cavity fraction θ, the tensioned web contact
pressure pC, and the constant film thickness gap h0. The equations are implemented in
the commercial finite element method (FEM) software COMSOL Multiphysics® [42]. The
Reynolds equation in Equation (6) and web tension equation in Equation (13) are discretized
using second-order (quadratic) Lagrangian finite elements. The linear elasticity equations
in Equation (3) are discretized using third-order (cubic) Lagrangian finite elements, to allow
for a smooth second-order derivative of the curvature in Equation (13). The load balance
equation is a simple ordinary integral equation, which is associated with the unknown
constant film thickness gap h0. It is directly added to the system of equations as formed by
Equations (3), (6) and (13), together with the Fischer–Burmeister constraint function.

The Reynolds equation, which is an example of a typical convection–diffusion equation,
is convection-dominated in the cavitated region, where the film pressure is equal to
zero. Convection-dominated partial differential equations are known to be unstable using
FEM [35]. Therefore, the formulation is stabilized with a mesh-dependent artificial diffu-
sion term. Moreover, to speed up the solution time, a small mesh-dependent diffusion term
is added to the Fischer–Burmeister equation.

The use of FEM allows for non-structured, non-regular meshing of the computational
domain; see Figure 3. A relatively course triangular mesh is used in the solid domain. The
mesh is refined at the lower boundaries ∂ΩC and ∂ΩR. The mesh is set fine in the inlet
and outlet regions (−4.5aH ≤ x ≤ −aH and aH ≤ x ≤ 1.5aH), finer in the central (Hertz)
roller contact zone (−aH ≤ x ≤ 0.5aH), and finest in the outlet of the central contact zone
(0.5aH ≤ x ≤ aH), where the pressure and elastic deformation gradients are most important.
Mesh convergence studies have been performed to guarantee a mesh-independent solution.
The solution procedure starts with selecting an appropriate initial guess for the unknown p,
pC, u, w, and h0. The Hertz dry contact pressure is taken as an initial guess for the Reynolds
pressure and tensioned web contact pressure. It is defined by:

pR,initial = pC,initial =

pH

√(
1− x2

a2
H

)
for − aH ≤ x ≤ aH,

0 elsewhere.

(15)

The elastic deformation resulting from the Hertz dry contact pressure is taken as an
initial guess for the elastic deformation components u and w. The initial guess for the
constant film thickness gap h0 is simply taken as a small, positive number (e.g., 10 µm).
The set of equations is iteratively solved in a fully coupled manner using a damped
Newton–Raphson approach until convergence is reached.
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2.2. Experimental

The numerical EHL model is validated with experimental results. Multiple flat layer
imprints have been made on a Morphotonics Portis NIL1100 roll-to-plate nanoimprint
set-up [20]; see Figure 4. A schematic of the working principle is shown in Figure 1. Each
imprint is performed on a flat 150 mm× 150 mm glass substrate of 0.5 mm thickness, which
is placed on a thick 5 mm glass carrier plate. To improve the adhesion between the resin
and the glass substrates, the substrates are cleaned with isopropyl alcohol and pretreated
with atmospheric pressure oxygen plasma and a primer containing an adhesion promoter.
The flat layer imprints are fabricated using a flexible polymer stamp without textures. The
stamp is pre-tensioned around the test rollers, which are equipped with a 7.5 mm thick
elastomeric layer with an elastic modulus of 3.2 MPa and a Poisson ratio of 0.47. The linear
elastic material behavior is confirmed by experimental compression tests.

The experimental validation procedure consists of multiple measurement series, in
which the resin viscosity, imprint velocity, and imprint load are varied. Five different
in-house-developed acrylate-based resins are used [20]. The viscosities and volumetric
shrinkage levels upon UV curing are listed in Table 1. The viscosity is determined at 25 °C.

(a) (b)

Figure 4. (a) Morphotonics Portis NIL1100 roll-to-plate nanoimprint equipment [20]. (b) Detailed
view of the rollers inside the Morphotonics Portis NIL1100 nanoimprint tool.

Table 1. Properties of the imprint resins. The viscosities are measured at 25 °C.

Resin Viscosity (mPa s) Volumetric Shrinkage (%)

A 6.3 12.5
B 38 8.1
C 134 7.2
D 181 8.8
E 349 7.8

The imprint layer height of each imprint is determined using a Keyence VK-X1100
laser confocal microscope, by optically measuring the step height of a small scratch made
in the cured imprint layer. This is done on multiple locations of the imprint surface, to
determine the layer height average and variation. To be able to compare the modeled
layer heights with the measured, cured layer heights, the latter are converted to the liquid,
pre-cured layer height using the shrinkage values in Table 1. Finally, the material properties
of the elastomeric layer and resin are considered to be the most sensitive to variations
in environmental temperature or material composition. A variation of ±10% in both the



Micromachines 2022, 13, 461 9 of 16

elastic modulus of the elastomeric layer and the resin viscosity is included in the model,
to provide insight into their impact on the layer height. The amount of variation is based
on measurements of the elastic modulus of the elastomeric layer and the resin viscosity,
given the possible variations in the material composition of the elastomeric layer and the
temperature dependency of the viscosity.

3. Results

This section presents the numerical and experimental results. The numerical results
give an indication of the pressure and layer height profiles within the roller contact, in-
cluding the influence of web tension. Next, the numerical results are validated with
experimental results for a wide range of imprint parameters.

3.1. Model

The numerical model has been run with varying web tension values and a specific
set of imprint parameters: a resin viscosity of 30 mPa s, an imprint velocity of 3 mm s−1,
and an imprint load of 2000 N m−1. The resulting pressure profiles for the hydrodynamic
film pressure and tensioned web contact pressure are shown in Figure 5a. It also shows the
Hertz dry contact pressure, for reference. The Hertz pressure and contact half-width are
equal to 1.53× 105 Pa and 8.3 mm, respectively. Starting from the inlet of the roller contact,
the hydrodynamic film pressure smoothly increases up to the peak pressure in the center
(x = 0), after which it decreases to ambient pressure again. The finite thickness of the
elastomeric layer results in smaller contact widths and larger peak pressures in the resin
film, compared to the Hertz solution. A similar phenomenon can be identified when web
tension is included in the model. The tensioned web restricts the elastic deformation of the
elastomeric layer material, thereby increasing the effective stiffness of the roller contact. For
zero web tension, the tensioned web contact pressure is equal to the hydrodynamic film
pressure, as also indicated by Equation (13). Increasing values of the web tension result
in smaller contact widths and increased peak pressures in the thin film of resin. Outside
the roller contact zone, the tensioned web contact pressure approaches a constant value
of T/R. This can be explained by an absence of hydrodynamic film pressure, while the
second-order derivative of the elastic deformation in Equation (13) approaches zero.

The corresponding layer height profiles are shown in Figure 5b. Due to the diverging
surface of the roller, the layer height rapidly decreases until the roller contact zone. Within
the contact zone, the layer height follows a nearly uniform, slowly decreasing profile. The
central layer height hC in the center and the minimum layer height hM near the outlet are
clearly visible. This does not hold for the final layer height hF. With the implemented
model approach, the tensioned web follows the roller shape, which quickly increases after
the location of the minimum layer height. For zero web tension, the central and minimum
layer heights are equal to 1.14 µm and 0.91 µm, respectively. The influence of web tension
is in line with the effect on the pressure profiles. The layer height decreases for increasing
web tension, due to the increased effective stiffness of the roller contact.
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Figure 5. (a) The hydrodynamic film pressure (p) and tensioned web contact pressure (pC) along
the x-coordinate for varying web tension values. The Hertz dry contact pressure profile from
Equation (15) is shown for reference. (b) The layer height (h) along the x-coordinate for varying web
tension values.

3.2. Experimental Validation

Figures 6–8 visualize the simulated and measured layer heights for different imprint
loads and for a variation in imprint velocity, resin viscosity, and imprint load, respectively.
The modeled variation of ±10% in both the elastic modulus of the elastomeric layer and
the resin viscosity is shown as well. The variation is modeled around the results including
web tension. The results in each graph will be discussed separately.

Figure 6 visualizes the layer heights for varying velocity and three different imprint
loads. In both model and measurement, the viscosity is kept constant at 38 mPa s. The layer
height increases with increasing velocity and decreasing load. Furthermore, the layer height
slightly decreases when the web tension of 370 N m−1 is taken into account. This behavior
is also shown in Figure 5b. When taking a closer look at the layer height for a 1000 N m−1

imprint load, it can be seen that there is good agreement between the measured layer heights
and the minimum layer height from the numerical model with web tension. Contrary to the
hypothesis, the minimum layer thickness seems to be the best predictor of the RLT, instead
of the central layer thickness. For clarity, the central layer heights for the other imprint loads,
which show similar behavior, are not shown. The layer heights for a varying resin viscosity
and two different imprint loads are shown in Figure 7. The imprint velocity is kept constant
at 6.7 mm s−1. The results are comparable to the results for a varying imprint velocity
in Figure 6. The layer height increases with increasing resin viscosity and decreasing
imprint load. Again, good agreement is found between the measured layer heights and the
minimum layer height from the numerical model. The layer height for a varying imprint
load is shown in Figure 8. The experimental data in this graph are in fact deduced from the
measurements in Figures 6 and 7. The resin viscosity and imprint velocity are kept constant
at 38 mPa s and 6.7 mm s−1, respectively. The layer height decreases with increasing imprint
load, as expected. Again, good agreement is found between the measured layer heights
and the minimum layer height from the numerical model.
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Figure 6. Numerical and experimental results for the layer height for varying imprint loads and
imprint velocities. The modeled results include a ±10% variation in both elastic modulus of the
elastomeric layer and resin viscosity. The simulations and imprints are performed with Resin B from
Table 1 (viscosity of 38 mPa s).
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Figure 7. Numerical and experimental results for the layer height for varying imprint loads and resin
viscosities. The modeled results include a ±10% variation in both elastic modulus of the elastomeric
layer and resin viscosity. The simulations and imprints are performed with a constant imprint velocity
of 6.7 mm s−1. The imprints are performed with the resins as listed in Table 1.
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Figure 8. Numerical and experimental results for the layer height for a varying imprint load. The
modeled results include a ±10% variation in both elastic modulus of the elastomeric layer and
resin viscosity. The simulations and imprints are performed with Resin B from Table 1 (viscosity of
38 mPa s) and a constant imprint velocity of 6.7 mm s−1.

4. Discussion

The numerical results for the minimum layer thickness and the experimental results
agree very well. This contradicts the hypothesis that the final layer thickness corresponds
to the central layer thickness. The validity of the numerical model and the corresponding
results will be discussed.

The EHL model consists of different physics, each with its own assumptions. The
assumptions in material properties and behavior are considered to be the most critical.
The relevant materials in the imprint process are the elastomeric layer and the imprint
resin. The numerical results in Figures 6–8 include a modeled variation of ±10% in both
the elastic modulus of the elastomeric layer and the viscosity of the resin. The results
clearly indicate that any changes in the material properties have a direct impact on the
layer height of the imprint. The elastic deformation in the elastomeric layer is described by
linear elasticity theory, which assumes small deformations and a linear relation between
stress and strain. Although the elastic deformation is large compared to the layer height,
it is still small compared to the elastomeric layer thickness. For the maximum load case
of 3000 N m−1, the maximum elastic deformation is equal to 0.26 mm. This corresponds
to a linear strain of 0.034, which is considered to be small. The resin is the other relevant
material in the imprint process. It is assumed to be isoviscous. In practice, the resin viscosity
can depend on pressure, shear rate, and temperature. The EHL contact is part of the soft
EHL regime, which is characterized by relatively low contact pressures [43,44], as can also
be seen in the typical film pressure profiles in Figure 5a. This confirms the assumption that
any piezoviscous effects can be neglected. The Newtonian fluid behavior, which assumes a
shear-rate-independent viscosity, is confirmed by viscosity measurements for a varying
shear rate. Moreover, because the roller and substrate move with a similar velocity, the
shear rate in the thin film of resin will be relatively low. Lastly, the process is assumed
to be isothermal. It is known that the resin viscosity depends on temperature, similar as
with other fluids and lubricants [37]. However, because the location of curing is relatively
far way from the imprint roller (see Figure 1), any heating due to the UV source or the
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exothermal curing process can be neglected. This is confirmed by monitoring the imprint
roller temperature during the experiments.

An important difference between the numerical model and the experimental set-up is
the contact mechanics and kinematics of the tensioned web. The numerical model assumes
that the tensioned web follows the imprint roller, as shown in Figures 2b and 5b. In reality,
the tensioned web and roller lose contact in the outlet region, as the tensioned web moves
away with the substrate in the imprint direction and the contact pressure diminishes.
Furthermore, the bending stiffness of the tensioned web is not yet taken into account. The
tensioned web is a relatively flexible stamp. The bending stiffness will be low, but might
not be negligible. The hypothesis is that the bending stiffness slightly increases the effective
stiffness of the roller contact, which results in a small reduction in the RLT. It is believed
that both aspects must be included to better describe the roll-to-plate imprint process with
tensioned, flexible stamps.

5. Conclusions

In this work, a numerical model is developed to predict the imprint layer thickness in
UV-cure roll-to-plate nanoimprinting. The numerical model combines multiple physics in
an elastohydrodynamic lubrication model to describe the fluid flow of the thin film of resin,
the elastic deformation of the elastomeric layer, the mechanics of the tensioned web, and
the coupling between them. We have shown that the simulated minimum film thickness
in the roller contact corresponds very well to the experimental layer thickness values for
a wide range of resin viscosities, imprint velocities, and imprint loads. The model finds
direct practical use for determining the required amount of resin in a specific imprint, for a
given set of machine and process parameters. Furthermore, it can be employed to study the
impact of the various parameters in the imprint process on the RLT and its uniformity over
the imprint area. Future work will address the contact mechanics of the tensioned web and
the roller, the bending stiffness and kinematics of the tensioned web, and the influence of
different textures on the resin flow and the RLT. These extensions of the numerical model
will help in an even better understanding of the roller-based nanoimprint process to further
improve the prediction of the RLT in UV-cure roll-to-plate nanoimprinting.

Supplementary Materials: The description of the dimensionless equation set-up is available online
at https://www.mdpi.com/article/10.3390/mi13030461/.
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Nomenclature

Abbreviations
EHL Elastohydrodynamic Lubrication
FEM Finite Element Method
NIL Nanoimprint Lithography
RLT Residual Layer Thickness
UV Ultraviolet
Symbols
aH Hertz contact half-width (m)
E Elastic modulus (Pa)
E′ Effective elastic modulus (Pa)
f Liquid volume fraction (-)
h Film/layer height (m)
h0 Gap between roller and substrate at x = 0 (m)
hC Central layer height (m)
hF Final layer height (m)
hM Minimum layer height (m)
p Hydrodynamic film pressure (Reynolds) (Pa)
pC Tensioned web contact pressure (Pa)
pH Hertz contact pressure (Pa)
pn Normal pressure on the tensioned web (Pa)
R Roller radius (m)
T Web tension (N m−1)
t Elastomeric layer thickness (m)
u Elastic deformation in x (m)
u1 Roller surface imprint velocity (m s−1)
u2 Substrate surface imprint velocity (m s−1)
w Elastic deformation in z (m)
W Effective imprint load per unit length (N m−1)
x Space coordinate in horizontal direction (m)
z Space coordinate in vertical direction (m)
zroller Roller height profile (m)
η Resin dynamic viscosity (Pa s)
θ Cavity fraction (1− f ) (-)
κ Curvature of the tensioned web (m−1)
λ Lamé’s first parameter (Pa)
µ Lamé’s second parameter (Pa)
ν Poisson ratio (-)
σn Normal component of the stress tensor (Pa)
σt Tangential component of the stress tensor (Pa)
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