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Abstract: To achieve the optimum use and efficient thermal management of two-layer electroosmosis
pumping systems in microdevices, this paper studies the transient hydrodynamical features in two-
layer electroosmotic flow of power-law nanofluids in a slit microchannel and the corresponding heat
transfer characteristics in the presence of viscous dissipation. The governing equations are established
based on the Cauchy momentum equation, continuity equation, energy equation, and power-law
nanofluid model, which are analytically solved in the limiting case of two-layer Newtonian fluid
flow by means of Laplace transform and numerically solved for two-layer power-law nanofluid
fluid flow. The transient mechanism of adopting conducting power-law nanofluid as a pumping
force and that of pumping nonconducting power-law nanofluid are both discussed by presenting
the two-layer velocity, flow rates, temperature, and Nusselt number at different power-law rheology,
nanoparticle volume fraction, electrokinetic width and Brinkman number. The results demonstrate
that shear thinning conducting nanofluid represents a promising tool to drive nonconducting samples,
especially samples with shear thickening features. The increase in nanoparticle volume fraction
promotes heat transfer performance, and the shear thickening feature of conducting nanofluid tends
to suppress the effects of viscous dissipation and electrokinetic width on heat transfer.

Keywords: transient two-layer flow; electroosmotic flow; power-law nanofluid; heat transfer; Laplace
transform; nanoparticle volume fraction

1. Introduction

It is well known that in microchannels the contact between the electrolyte solution
and the solid surface of the channel wall leads to the rearrangement of charged ions,
inducing an electric double layer (EDL) near the channel wall. In the presence of EDL,
a layer of conducting fluid under a tangentially-applied electric field moves forward,
forming electroosmotic flow (EOF); this phenomenon is called electroosmosis. Due to such
favorable attributes as its ease of integration, plug-like profile, and the independence of
its non-mechanical parts, the electroosmosis pumping mechanism has become a common
transport phenomena in microfluidic devices [1]. In order to meet the growing demand
for electroosmosis-based applications, a large number of works have theoretically studied
EOF from different point of view. The transport characteristics of EOF in containers
with different geometries, including slit microchannels [2], microtubes [3,4], rectangular
microchannels [5], elliptic microchannels [6], and T-shaped microchannels [7] have been
investigated. Several working liquids in microdevices, such as biomedical lab-on-a-chip,
show nonlinear rheological behaviors, which is where the use of non-Newtonian fluid
modeling becomes relevant. The nonlinear relationship between the shear stress and
shear rate has been carefully treated using the power-law model [8,9], Casson model [10],
Maxwell model [11], Carreau model [12], etc. The power-law model was first proposed by
Das and Chakraborty [8] to describe the rheological behavior of blood, which has received
great attention due to its wide coverage and the simple rheological relation [2,13]. The

Micromachines 2022, 13, 405. https://doi.org/10.3390/mi13030405 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13030405
https://doi.org/10.3390/mi13030405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13030405
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13030405?type=check_update&version=2


Micromachines 2022, 13, 405 2 of 26

various aspects of power-law fluid for EOF have been discussed; the power-law model
incorporates the shear thinning rheological behavior encountered in DNA solutions, and
shear thickening rheological behavior encountered in cornstarch solution [14]. Recently,
external environmental effects on EOF, such as a rotating frame or peristalsis, have been
considered. In microchannel flow, a rotating environment induces Coriolis force, which
causes a secondary flow; this is applied in biofluid transportation, drug delivery, and DNA
analysis [15]. The theoretical analysis of rotating EOF was first studied by Chang and
Wang [16], and has subsequently been extended in literature [17,18]. In order to obtain a
comprehensive understanding of the intricate mechanism of rotational flow for biofluid
flow, Kaushik et al., engaged in a transient analysis of the rotational electrohydrodynamics
of power-law fluids under the effect of EDL [19]. Moreover, in the application of EOF
to biomedical and biochemical analysis, peristalsis is introduced to assist in the EOF
of biofluids, and thus electroosmosis-modulated peristaltic flow has recently become a
frequently-studied research topic [20].

Owing to the application of external electric fields in electroosmosis-driven flow sys-
tems, the applied electric voltage leads to an inherent byproduct of the Ohmic resistance of
electrolytes, namely, the Joule heating effect. Joule heating-induced heat transfer exerts an
influence on transport performance by altering the electric properties of working liquids,
especially for certain thermally-liable samples, which has been widely discussed in numer-
ous works [21–25]. To optimize the hydrodynamic transport process and minimize the
Joule heating effect, combined electric and magnetic fields are applied to working liquids
in order to improve the actuation mechanism in microfluidics, which has the advantage
of lower voltage operation, convenient manufacture, and the independence of moving
parts [26,27]. On the other, to promote heat transfer and reduce entropy generation in
the heat exchange equipment of microfluidics, nanofluid is created by adding nanosized
metal particles, which possesses boosted thermal conductivity compared to conventional
pure fluids, to the sample [28–30]. Nanofluid flow has been extensively applied in dif-
ferent fields, as it has none of the usual drawbacks such as sedimentation, blockage, and
pressure drop [31–33]. AI2O3–water Nanofluid is used for cooling microprocessors or
other microelectronic components due to its enhanced thermal conductivity [34], which
exhibits shear thinning rheological behavior in certain ranges of nanoparticle volume frac-
tion [35]. Moreover, in order to provide a better understanding of blood flow and other
non-Newtonian biological flows in biomicrofluidic chips (such as pseudoplastic aqueous
nanoliquid flow driven by electroosmosis and peristalsis and Cu/CuO–blood microvascu-
lar nanoliquid flow under thermal, microrotation, and electromagnetic field effects) were
studied in [36,37], respectively. Carboxymethyl cellulose (CMC) water with γ-AI2O3, TiO2
and CuO particles has been experimentally investigated for the achievement of efficient
thermal management in microelectronics [38]. A comprehensive literature survey of topics
in nanofluid flow indicates that the viscosity of several nanofluids mentioned above shows
a nonlinear dependence on the shear rate and volume fraction of nanoparticles; thus, the
power-law nanofluid model is proposed to precisely describe the rheological behavior of
such nanofluids [39–42]. Regarding the power-law nanofluid, the heat transfer characteris-
tics in magneto-hydrodynamic flow [43], convection flow [44], and EOF [45–47] have been
extensively investigated.

The great advent of technologies in microelectrical mechanical systems (MEMS) en-
ables the delivery, mixing, or separation of multi-liquids at microscales. However, certain
liquids, for instance oil, blood, and ethanol, have low electrical conductivity (<10−6 S m−1)
and are defined as nonconducting fluids [48], which fail to be driven by electroosmosis.
Furthermore, for certain liquids the applied electric voltage leads to undesirable problems
such as the generation of gases, fluctuation of PH value, or electrochemical decomposition.
In this context, Brask et al. developed a two-layer flow system where the conducting fluid
driven by electroosmotic force is adopted as driving mechanism to drag the nonconducting
fluid; this has gained great attention in recent decades [49]. The steady hydrodynamic
behaviors of two-Newtonian fluid EOF in a rectangular microchannel [50], two-power-
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law fluid combined electroosmotics with pressure driven flow in a microtube [51], and
Newtonian–Casson fluid EOF in a microtube [48] have all been theoretically studied in
this context. In terms of transient hydrodynamical behaviors, Gao et al. characterized the
transient two-layer EOF of Newtonian fluids in a rectangular microchannel by presenting
analytical velocities and flow rates at different viscosities and different electroosmotic
properties [52]. Su et al., presented semi-analytical velocities for two-layer combined elec-
troosmotic and pressure driven flow of Newtonian fluids in a slit microchannel at different
electric and hydrodynamic parameters [53]. Time periodic transport characteristics of
two-Newtonian liquid combining electroosmotic and pressure driven flows in a microtube
have been studied numerically [54]. In order to improve transport efficiency and reduce
the Joule heating effect in a two-layer pumping system, a magnetic field can be applied in
addition to the pressure gradient to form a magneto-hydrodynamic EOF; the corresponding
entropy generation analysis has been conducted as well [55,56]. Two-layer EOF assisted
by peristalsis force was proposed by Ranjit et al., who analyzed entropy generation and
heat transfer in such cases [57]. External factors such as a rotating environment [58] or
varying wall shapes together with zeta potential [59] have been considered in two-layer
electroosmotic systems, and the resulting influence on hydrodynamic behavior has been
discussed. Furthermore, because of its desirable thermal conductivity properties, nanoflu-
ids can be applied in two-layer mixed convection flows, which are characterized by the
power-law nanofluid model; the outcomes can help with the promotion of heat transfer per-
formance [60]. Entropy generation and heat transfer in immiscible EOF of two conducting
power-law nanofluid flows through a microtube have been analyzed by computing their
temperature, Nusselt number, and entropy generation at different nanoparticle volume
fractions and different rheological and electroosmotic properties [61]; the rheological effect
of the peripheral fluid plays a dominant role in thermal performance as compared to that
of inner fluid.

The application of chemical mixing/separation in thermofluidic micropumps has
become increasingly frequent; therefore, the corresponding microscale cooling and heat
exchangers need to be carefully designed as working liquids combined with nanoparticles
show nonlinear rheological behavior in nature. To the authors’ best knowledge, the underly-
ing mechanism of the transient transport process as it develops from an unsteady to a steady
state in two-power-law nanofluid EOF in a slit microchannel remains to be discovered.
Therefore, this paper studies transient two-layer flow with one layer of conducting power-
law nanofluid and one layer of nonconducting power-law nanofluid in a slit microchannel,
with consideration of Joule heating and viscous dissipation. The governing equations
are established based on the Cauchy momentum equation, continuity equation, energy
equation, and power-law nanofluid rheological relation, which are analytically solved for
two-Newtonian fluid flow and numerically solved for two-power-law nanofluid flow. For
the hydrodynamic aspect, the mechanisms involved in using power-law nanofluid as a
pumping force as well as those of pumping power-law nanofluid as the system develops
from unsteady to a steady state are carefully discussed by presenting the time evolution of
velocity and flow rate at different parameters. For the thermal aspect, in order to guarantee
efficient thermal performance, the heat transfer characteristics arising from the interplay
of the nanoparticles, power-law rheological behavior, viscous dissipation, and electroki-
netic effects in a two-layer system are analyzed theoretically. The results are relevant for
assisting in determining the operating parameters for optimal performance of microdevices
characterized by multi-fluid delivery, mixing, or cooling.

2. Problem Formulation
2.1. Electric Potential Distribution

A two-layer immiscible EOF of power-law nanofluids in a slit microchannel is consid-
ered where the power-law nanofluid in layer I is conducting and the power-law nanofluid
in layer II is nonconducting (Figure 1). The AI2O3 nanoparticles are suspended and
uniformly distributed in a two-layer power-law base fluid system where carboxymethyl
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cellulose–water (CMC-water) can be represented by shear thinning fluid [38] and, without
loss of generality, the base fluids fall into the categories of a shear thinning fluid and a
shear thickening one. According to previously published work [50], the zeta potential
difference near the two-liquid interface (y* = 0) is negligible. The heights of layer I and
layer II are represented by H. In the two-layer system, the EDL forms near the channel wall
within the region of layer I, which creates the electric potential distribution ψ*. When a
uniform electric field E∗z is tangentially exerted across layer I, the conducting power-law
nanofluid moves forward under the electroosmotic force due to the existence of EDL near
the lower channel wall, which drags the nonconducting power-law nanofluid in layer II
via the interfacial viscous stress, eventually forming a two-layer EOF.
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It is assumed that the zeta potential ζ* is small and the EDL thickness is far less
than the height of microchannel; thus, the EDLs near the channel walls will not overlap.
Eventually, based on electrostatic theory, the electric potential distribution ψ* is governed
by the well-known Poisson–Boltzmann (P-B) equations [50]

d2ψ∗

dy∗2
= −ρe

ε
(1)

ρe = −2n0z0esinh
(

z0eψ∗

kBT0

)
(2)

According to the established model in the scientific literature [32,62], when nanopar-
ticles with an order of nm and with a volume fraction of φ ≤ 10% are distributed in the
channel with µm-sized height, it is physically reasonable to assume that the EDLs around
the nanoparticles are rather small compared to the EDLs near the channel walls, and can
thus be neglected, as well as that there is no electrophoretic force on the nanoparticles.
Correspondingly, the nanoparticles have no influence on the local electric charge density
ρe, which can be governed by the P-B equations, and their influence on liquid property
can be incorporated into the effective viscosity and effective thermal conductivity of the
nanofluid [28–30] such that their importance can be attached to the effect of power-law
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feature and the effect of nanoparticles on the hydrodynamic and thermal characteristics of
transient two-layer flow.

The P-B equations are subject to the following boundary conditions:

dψ∗

dy∗

∣∣∣∣
y∗=0

= 0, ψ∗|y∗=H = ζ∗ (3)

where ε denotes the dielectric constant, n0 denotes the ion density, z0 denotes the valence, e
is the electron charge, and kB and T0 represent the Boltzmann constant and the absolute
temperature, respectively.

Introducing the nondimensional variables ψ = ez0ψ*/(kBT0), ζ = ez0ζ*/(kBT0), and
y = y*/H, K = κH with κ2 = 2e2z0

2n0/(εkBT0), and applying Debye–Hückel approximation
(sinhψ ≈ ψ [50]) to Equations (1)–(3) when |ζ*| ≤ 0.025 V, the nondimensional versions of
the P-B equations can be rewritten as

d2ψ

dy2 = K2ψ (4)

dψ

dy

∣∣∣∣
y=0

= 0, ψ|y=1 = ζ (5)

Solving Equations (4) and (5) yields the electric potential distribution, as below:

ψ =
ζ cosh(Ky)

cosh(K)
(6)

With Equation (6), the electroosmotic force driving the conducting nanofluid can be obtained.

2.2. Two-Layer Velocity Distribution and Flow Rates

Focusing on the hydrodynamical aspects of transient two-layer EOF of power-law
nanofluids in a slit microchannel, the governing equations for velocity distribution are
represented by the Cauchy momentum equation and the continuity equation, as below:

∇ ·→v
∗
= 0 (7)

ρ

[
∂
→
v
∗

∂t∗
+
(→

v
∗
· ∇
)→

v
∗
]
= ∇ ·→τ +

→
f −∇p (8)

where
→
v is the velocity vector, ρ is the liquid density, t* is the time, τ is the shear stress,

→
f

denotes the body force vector, and ∇p denotes the pressure gradient. The channel is open-
ended and no pressure gradient is induced. The following assumptions are made for the
purpose of analysis: (1) the properties of the nanofluids are independent of the external elec-
tric field, ion concentration, and temperature [48,50]; (2) the two-layer flow is immiscible,
laminar, and incompressible, and the two-liquid interface remains distinguishable [48,50];
and (3) the gravity force and buoyancy force of the nanofluids are neglected [32]. As a
result, there is only velocity component along z* direction v*

i (y*,t*), with i = 1,2 and the
body force equal to the electroosmotic force, fz = Ezρe. In a system with two power-law
nanofluids flowing through a slit microchannel, the shear stress of a power-law nanofluid
is τi = ηeffi·∂v*

i/∂y*, where ηeffi implies the effective dynamic viscosity of the power-law
nanofluid, which nonlinearly depends on the shear rate ∂v*

i/∂y* and the nanoparticle

volume fraction φ, namely, ηe f f i = m∗0/(1 + φ)5/2·
∣∣∣∂v∗i /∂y∗

∣∣∣ni−1
[13,28,43,51], where m0

*

is the consistency viscosity coefficient, ni is the flow behavior index, the subscript i = 1
represents the conducting nanofluid in layer I, and i = 2 represents the nonconducting
nanofluid in layer II. Note that ni < 1 corresponds to shear thinning base fluid, ni = 1
corresponds to Newtonian base fluid and ni > 1 corresponds to shear thickening base fluid.
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Accordingly, the modified Cauchy momentum equation for the conducting power-law
nanofluid in layer I under the electroosmotic force is expressed as

∂v∗1
∂t∗

=
m∗0

(1 + φ)5/2ρ1

∂

∂y∗

(∣∣∣∣∂v∗1
∂y∗

∣∣∣∣n1−1 ∂v∗1
∂y∗

)
+

1
ρ1

ρeE∗z for 0 ≤ y∗ ≤ H (9)

The modified Cauchy momentum equation of nonconducting power-law nanofluid in
layer II is expressed as

∂v∗2
∂t∗

=
m∗0

(1 + φ)5/2ρ2

∂

∂y∗

(∣∣∣∣∂v∗2
∂y∗

∣∣∣∣n2−1 ∂v∗2
∂y∗

)
for− H ≤ y∗ ≤ 0 (10)

The velocities and shear stresses of the two-layer liquid satisfy the matching conditions,
the velocities at the channel walls satisfy the no-slip condition, and the two-layer flow is
initially set as motionless [55], thusly:

v∗1
∣∣y∗=0 = v∗2

∣∣
y∗=0, ηe f f 1 ·

∂v∗1
∂y∗

∣∣∣∣
y∗=0

= ηe f f 2 ·
∂v∗2
∂y∗

∣∣∣∣
y∗=0

, v∗1
∣∣y∗=H = 0 , v∗1

∣∣y∗=−H = 0 , v∗i |t∗=0 = 0 (11)

With the introduction of the nondimensional variables t = t*m0/(ρ1H2), vi = v*
i/U, and

y = y*/H, by replacing Equations (2) and (6) with Equations (9)–(11), the nondimensional
versions of the governing equations can be obtained as follow

∂v1

∂t
=

m1

m0

∂

∂y

(∣∣∣∣∂v1

∂y

∣∣∣∣n1−1 ∂v1

∂y

)
− GEzζ

cosh(K)
cosh(Ky) for 0 ≤ y ≤ 1 (12)

∂v2

∂t
= ρr

m2

m0

∂

∂y

(∣∣∣∣∂v2

∂y

∣∣∣∣n2−1 ∂v2

∂y

)
for− 1 ≤ y ≤ 0 (13)

v1
∣∣y=1 = v2

∣∣y=−1 = 0 , v1
∣∣y=0 = v2

∣∣
y=0, m1

∣∣∣∣∂v1
∂y

∣∣∣∣n1−1
·

∂v1
∂y

∣∣∣∣
y=0

= m2

∣∣∣∣∂v2
∂y

∣∣∣∣n2−1
· ∂v2

∂y

∣∣∣∣
y=0

, vi|t=0 = 0 (14)

where mi = (U/H)ni−1m0/(1− φ)5/2, ρr = ρ2/ρ1, G = 2zen0ζ*/(ρ1U2), and Ez = E*
zHRe/ζ*,

with Re = ζ*UH/m0, U the reference velocity.
With the nondimensional transient velocities v1 and v2 solved as in Equations (12)–(14),

the transient flow rates are defined as follows:

Q1 =
∫ 1

0
v1dy, Q2 =

∫ 0

−1
v2dy (15)

As time elapses, the transient velocities for layer I and layer II, namely, v1 and v2, reach
steady status, and are then expressed as vs1(y) = lim

t→∞
v1(y, t) and vs2(y) = lim

t→∞
v2(y, t).

To compare the flow rate of the conducting nanofluid in layer I (flow rate I) and the
nonconducting nanofluid in layer II (flow rate II) with different parameters, the steady flow
rate ratio is defined as

Qr =

∫ 1
0 vs1dy∫ 0
−1 vs2dy

(16)
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2.3. Two-Layer Temperature Distribution and Heat Transfer Rate

With the steady velocity distribution obtained from Equations (12)–(14), the tempera-
ture distribution for the thermally fully developed two-layer flow can be determined from
the following energy equation:

(ρcp)e f f

(
∂T
∂t∗

+
→
v
∗
s · ∇T

)
= ke f f∇2T + λE∗z

2 + ηe f f Φ∗ (17)

where T denotes the temperature distribution,
→
v s means the steady velocity vector, cp

means the specific heat at constant pressure, k is the thermal conductivity, λ is the electric
conductivity of base fluid, Φ* measures the viscous dissipation effect, and the subscript eff
means the nanofluid.

The assumption that the two-layer flow is fully thermally developed leads to the
vanishing of the unsteady part of Equation (17), ∂T/∂t*, hence producing the following
energy equations for the conducting nanofluid and nonconducting nanofluid, respectively,
along with their corresponding boundary conditions [26,55]:

(ρcp)e f f 1v∗s1
∂T1

dz∗
= ke f f 1

d2T1

dy∗2 + λE2
z + ηe f f 1

(
dv∗s1
dy∗

)2
for 0 ≤ y∗ ≤ H (18)

(ρcp)e f f 2v∗s2
∂T2

∂z∗
= ke f f 2

d2T2

dy∗2 + ηe f f 2

(
dv∗s2
dy∗

)2
for− H ≤ y∗ ≤ 0 (19)

T1
∣∣y∗=0 = T2

∣∣
y∗=0, ke f f 1

dT1

dy∗

∣∣∣∣
y∗=0

= ke f f 2
dT2

dy∗

∣∣∣∣
y∗=0

, T1
∣∣y∗=H = Tw , T2

∣∣y∗=−H = Tw (20)

where Tw means the temperature at the channel wall, subscript i = 1 implies the conduct-
ing nanofluid, and i = 2 implies the nonconducting nanofluid. Regarding the thermal
properties of power-law nanofluids, the model of Choi and Yu has been applied [30,63]
as it is capable of predicting the thermal conductivity of nanoliquids suspended with
various kind of nonspherical nanoparticles, namely, (ρcp)effi= φ(ρcp)p + (1 − φ)(ρcp)b and

ke f f i =
kp+2kbi+2(kp−kbi)(1+ω)3φ

kp+2kbi−2(kp−kbi)(1+ω)3φ
kbi, where ω represents the ratio of nanolayer thickness to

the original particle radius and the subscripts p and b mean nanoparticles and base fluid,
respectively. The left-hand side of Equation (18) measures the heat generation due to
axial conduction, while the right-hand sides of Equation (18) measure the heat generation
caused by heat diffusion, heat generation from Joule heating, and heat generation caused
by viscous dissipation. Imposing the constant heat flux boundary condition qw≡const
for the fully thermally developed flow above, namely, ∂[(Tw − Ti)/(Tw − Tm)]/∂y* = 0,
leads to ∂T1/∂y* = ∂T2/∂y* = dTw/dy* = dTm/dy*≡const, in which Tm implies the mean
temperature [26,55]. Furthermore, the overall energy balance condition over an elemental
control volume results in

dTm

dz∗
=

2qw + λHEz
2 + m0

(1−φ)5/2

(∫ H
0

∣∣∣ ∂v∗s1
∂y∗

∣∣∣n1−1 ∂v∗s1
∂y∗ dy∗ +

∫ 0
−H

∣∣∣ ∂v∗s2
∂y∗

∣∣∣n2−1 ∂v∗s2
∂y∗ dy∗

)
H(ρcp)e f f 1v∗ms1 + H(ρcp)e f f 2v∗ms2

(21)

where v∗ms1 =
∫ H

0 v∗s1dy∗/H and v∗ms2 =
∫ 0
−H v∗s2dy∗/H are the dimensional average ve-

locities in layer I and layer II, respectively. Introducing the nondimensional temperature
variable θi = kf1(Ti − Tw)/(qwH) and placing Equation (21) into Equations (18)–(20) yields

d2θ1

dy2 +
k f 1

ke f f 1
(S + BrΦ1) =

k f 1

ke f f 1

(2 + S + BrΓ1 + mrBrΓ2)

vms1 + (ρcp)rvms2
vs1 for 0 ≤ y ≤ 1 (22)
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d2θ2

dy2 +
k f 1

ke f f 2
mrBrΦ2 =

k f 1

ke f f 2

(2 + S + BrΓ1 + mrBrΓ2)

vms1/(ρcp)r + vms2
vs2 for− 1 ≤ y ≤ 0 (23)

θ1
∣∣y=1 = θ2

∣∣y=−1 = 0 , θ1
∣∣y=0 = θ2

∣∣
y=0, ke f f 1

dθ1

dy

∣∣∣∣
y=0

= ke f f 2
dθ2

dy

∣∣∣∣
y=0

(24)

where vms1 =
∫ 1

0 vs1dy, vms2 =
∫ 0
−1 vs2dy, Φi =

∣∣∣dvsi/dy
∣∣∣ni−1(dvsi/dy)2 , Γ1 =

∫ 1
0 Φ1dy,

Γ2 =
∫ 0
−1 Φ2dy, (ρcp)r= (ρcp)eff2/(ρcp)eff1, mr = m2/m1, Br = m1U2/(qwH) is the Brinkman

number, and S = λHEz
2/qw is the Joule heating parameter.

With the two-layer temperature distributions solved from Equations (22)–(24), the
heat transfer performance can be examined by evaluating heat transfer rate as represented
by the Nusselt number, Nu = hDh/keff. With the convective heat transfer coefficient at the
channel surface h = qw/(Tw − Tm) and the characteristic height Dh = 2H [55,57], the further
rearrangement produces

Nu = −
2k f 1

ke f f f 1θm
(25)

where θm = (
∫ 1

0 vs1θ1dy +
∫ 0
−1 vs2θ2dy)/(

∫ 1
0 vs1dy +

∫ 0
−1 vs2dy) is the mean temperature.

2.4. Entropy Generation Analysis

Based on the second law of thermodynamics, a certain amount of energy is inevitably
destroyed during the heat transfer process, that is, thermal irreversibility inherently ac-
companies the thermal behaviors and reduces system efficiency. This irreversibility is
represented by the entropy generation rate, and the thermal performance of system is
thereby assessed. The local entropy generation over a given cross-section of the microchan-
nel can be given for two-layer flow as

S∗l 1(y∗) =
ke f f 1

T1
2

(
dT1

dy∗

)2
+

σE2
z

|T1|
+

me f f 1

|T1|

∣∣∣∣dv∗s1
dy∗

∣∣∣∣ni−1(dv∗s1
dy∗

)2
for 0 ≤ y ≤ 1 (26)

S∗l 2(y∗) =
ke f f 2

T22

(
dT2

dy∗

)2
+

me f f 2

|T2|

∣∣∣∣dv∗s2
dy∗

∣∣∣∣n2−1(dv∗s2
dy∗

)2
for− 1 ≤ y ≤ 0 (27)

in which the right-hand side of Equation (26) implies entropy generation caused by heat
transfer, Joule heating and viscous dissipation, respectively. With the introduction of the
nondimensional groups Sli = H2S*

li/kf1 and Θ = kf1Tw/(qwH), the respective nondimen-
sional local entropy generation is obtained as follows

Sl1(y) =
ke f f 1

k f 1(θ1 + Θ)2

(
dθ1

dy

)2
+

S
|θ1 + Θ| +

Br
|θ1 + Θ|

∣∣∣∣dvs1

dy

∣∣∣∣n1−1(dvs1

dy

)2
for 0 ≤ y ≤ 1 (28)

Sl2(y) =
ke f f 2

k f 1(θ2 + Θ)2

(
dθ2

dy

)2
+

Br
|θ2 + Θ|

∣∣∣∣dvs2

dy

∣∣∣∣n2−1(dvs2

dy

)2
for− 1 ≤ y ≤ 0 (29)

The total entropy generation can be computed by integrating Equations (28) and (29)
over the relevant cross-section area of microchannel:

St =
∫ 1

0
Sl1dy +

∫ 0

−1
Sl2dy (30)

2.5. Solutions of Modelling and Validation
2.5.1. In the Case of Newtonian Fluids

The analytical velocities and analytical temperatures of a two-layer transient EOF of
Newtonian fluids are first solved, and can then be employed to validate the numerical
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algorithm proposed for power-law nanofluid flow. Specifically, when ni = 1 and φ = 0,
Equations (12)–(14) reduce to

∂vN
1

∂t
=

∂2vN
1

∂y2 −
GEzζ

cosh(K)
cosh(Ky) for 0 ≤ y ≤ 1 (31)

∂vN
2

∂t
=

∂2vN
2

∂y2 for− 1 ≤ y ≤ 0 (32)

vN
1

∣∣∣y=0 = vN
2

∣∣∣
y=0

,
∂vN

1
∂y

∣∣∣∣∣
y=0

=
∂vN

2
∂y

∣∣∣∣∣
y=0

, vN
1

∣∣∣y=1 = 0 , vN
1

∣∣∣y=−1 = 0 , vN
1

∣∣∣t=0 = 0 (33)

where the superscript N denotes the special case of Newtonian fluid. Using the method of
Laplace transformation, the analytical expressions of the transient velocities are obtained
as follows:

vN
1 = GEzζ

K2

[
1−cosh(K)
2 cosh(K) (y− 1) + cosh(Ky)

cosh(K) − 1
]

+8GEzζ
∞
∑

P=1

(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

]
+GEzζ

∞
∑

P=1

[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy) for 0 ≤ y ≤ 1

(34)

vN
2 = GEzζ

K2

[
1−cosh(K)
2 cosh(K) (y− 1) + 1

cosh(K) − 1
]

+8GEzζ
∞
∑

P=1

(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

]
+GEzζ

∞
∑

P=1

[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy) for− 1 ≤ y ≤ 0

(35)

for which the solving procedure is presented in the Appendix A in the interest of conciseness
and readability.

As time tends to infinity, the two-fluid velocities reach a steady status as follows:

vN
s1(y) = lim

t→∞
vN

1 (y, t) =
GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

cosh(Ky)
cosh(K)

− 1
]

for 0 ≤ y ≤ 1 (36)

vN
s2(y) = lim

t→∞
vN

2 (y, t) =
GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

1
cosh(K)

− 1
]

for− 1 ≤ y ≤ 0 (37)

which are exactly the solutions to Equations (31)-(33) when the temporal term ∂vi/∂t
vanishes.

Replacing Equations (36) and (37) with Equations (22)–(24), the analytical temperature
distributions are solved by integrating Equations (22) and (23) twice and combining them
with Equation (24):

θN
1 = A1y3 + A2 cosh(Ky) + A3y2 + A4sinh(Ky) + A5

[
cosh (Ky)2

K2 − y2

]
+ D1y + D2 (38)

θN
2 = B1y3 + B2y2 + D3y + D4 (39)

with the coefficients A, B, and D presented in the Appendix A for conciseness.

2.5.2. In the Case of Power-Law Nanofluids

Due to the nonlinearity of a two-layer EOF of power-law nanofluids, Equations (12)–
(14) and (22)–(24) are numerically solved based on the explicit finite difference method. At
first, the following discretization is introduced: tl = l∆t, yj = j∆y, vl

i,j = vi(j∆y, l∆t), and

θl
i,j = θi(j∆y, l∆t), l = 1, 2, . . . , L and j = 1, 2, . . . , J.
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At first, the numerical velocities at the channel walls are easily determined by dis-
cretizing the no slip conditions in Equation (14):

vl
1,J = vl

2,1 = 0 (40)

The numerical velocities at the two-liquid interface are computed using the bisection
method from the discretized version of the two-liquid interface matching conditions in
Equation (14)

vl
1,1 = vl

2,J , m1

(
−3vl

1,1 + 4vl
1,2 − vl

1,3

2∆y

)n1

= m2

(
vl

2,J−2 − 4vl
2,J−1 + 3vl

2,J

2∆y

)n2

(41)

Note that for the proposed numerical algorithm, when ni ≥ 1, let the initial two-layer
velocities be v0

1 = v0
2 = 0, and when ni < 1, to avoid the singularity caused by the zero

denominator, let the initial two-layer velocities be v0
1 = v0

2 = nonzero.
Then, the velocities of the bulk liquid can be computed by means of the following

numerical algorithm:

vl+1
1,j = vl

1,j + [Λl
1,j + GEzζ cosh(Kyj)/ cosh(K)]·∆t (42)

vl+1
2,j = vl

2,j + Λl
2,j·∆t (43)

where Λl
i,j = mi

m0

[
(gl

i,j)
ni−1 vl

i,j+1−2vl
i,j+vl

i,j−1
∆y2 + (ni − 1)(gl

i,j)
ni−2 gl

i,j+1−gl
i,j−1

2∆y
vl

i,j+1−vl
i,j−1

2∆y

]
,

gl
i,j =

∣∣∣∣ vl
i,j+1−vl

i,j−1
2∆y

∣∣∣∣, i = 1, 2, and j = 2, 3, . . . , J − 1. When t is great enough, the tran-

sient velocities reach steady status, i.e., they are examined by ‖vl − vl+1‖ < Er, with Er
being a specified criterion, and the steady velocities vs1 and vs2 are solved numerically.
Consequently, the flow rates can be computed from Equations (15) and (16) by means of
the Simpson composite integration method [61].

The temporal term ∂θi/∂t is introduced to Equations (22) and (23) to allow the same
numerical algorithm to be used to solve both velocity distribution and temperature distribu-
tion. As time approaches to infinity, the fully thermally developed temperature distribution
can be obtained. More specifically, at first the numerical temperatures at the boundaries
and initial condition can be easily determined from

θl
1,J = θl

2,1 = 0, θ0
1 = θ0

2 = 0 (44)

θl
1,1 = θl

2,J , ke f f 1
−3θl

1,1 + 4θl
1,2 − θl

1,3

2∆y
= ke f f 2

θl
2,J−2 − 4θl

2,J−1 + 3θl
2,J

2∆y
(45)

Then, the temperature distributions of the bulk liquid are computed based on the
following numerical algorithm:

θl+1
1,j = θl+1

1,j + (Πl
1,j + k f 1S/ke f f 1) · ∆t (46)

θl+1
2,j = θl

2,j + (Πl
2,j) · ∆t (47)

where Πl
i,j =

[
θl

i,j+1−2θl
i,j+θl

i,j−1
∆y2 + ai

k f 1
ke f f i

Φl
i,j −

k f 1
ke f f i

2+S+BrΓl
1+mr BrΓl

2
bivl

ms1+civl
ms2

vl
si

]
,

Φl
i,j = (gl

i,j)
ni−1

(
vl

si,j+1−vl
si,j−1

2∆y

)2

, a1 = b1 = c2 = 1, a2 = mr, b2 = 1/(ρcp)r, c1 = (ρcp)r, i

= 1, 2, j = 2, 3, . . . , J – 1, and the integrals Γl
1 =

∫ 1
0 Φl

1dy, Γl
2 =

∫ 0
−1 Φl

2dy, vl
ms1 =

∫ 1
0 vl

s1dy,

vl
ms2 =

∫ 0
−1 vl

s2dy are computed using the Simpson composite integration method. As
time grows, if ‖θl − θl+1‖ < Er, the thermally fully developed numerical temperature
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distribution is obtained, based on which the Nusselt number in Equation (25) and total
entropy generation in Equation (30) can be computed and the heat transfer analysis is
conducted.

The physical parameters regarding the hydrodynamic properties of two power-law
nanofluids are: m0

* = 9× 10−4 Nm−2sn, H = 1× 10−4 m, and U = 1× 10−4 m·s−1, which is of
the same order as the Helmholtz–Smoluchowski velocity [52,53,61]. The physical parameters
regarding the electric properties of two power-law nanofluids are : ε2 = 7.08 × 10−10 F/m,
e = 1.6× 10−19 C, z0 = 1, Ez

* = 1× 104 V·m−1, kB = 1.38× 10−23 J·K−1, and ζ* =−0.025 V [61].
To facilitate discussion, let the thermophysical properties of the fluids remain constant; the
thermal conductivity of two base fluids are kb1 = kb2 = 0.618 Wm−1K−1, the thermal conduc-
tivity of AI2O3 is kp = 40 Wm−1K−1, T0 = 293 K, andthe Joule heating parameter S = 1 [61].
Furthermore, it is essential to provide the ranges of important nondimensional governing
parameters based on practical physical uses. From the well-established electroosmotic theory
of power-law modeling, ni = 0.6~1.4 [23] and the width of EDL is far less than the channel
height; thus, K = 10~100 [23,52]. Based on the given order of reference (velocity, viscosity, and
channel height), the Brinkman number ranges from Br = 0~0.1 [31,55], and the nanoparticle
volume fraction φ = 0~0.09 is suitable for the chosen model of effective viscosity and effective
thermal conductivity [44].

Concerning the numerical schemes, let Er = 1× 10−8 in order to assure that the velocity
and temperature reach steady status; then, a test grid dependence is conducted, with a
grid system of 1 × 103 chosen. The good agreement between the analytical solutions and
numerical solutions depicted in Figure 2 shows that the numerical algorithm proposed here
is feasible for computing the two-layer velocity distribution and two-layer temperature
distribution and for carrying out the heat transfer analysis.
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3. Results and Discussion

The transient hydrodynamic behavior of two-layer power-law nanofluid EOF is dis-
cussed by evaluating the transient two-layer velocities at different times and the flow
rates for different governing nondimensional parameters. Then, with the steady velocities
computed, the heat transfer analysis and entropy generation analysis are conducted by
presenting the two-layer temperature profiles, Nusselt number and entropy generation rate
at different governing nondimensional parameters. Specifically, (ρCp)r = 1 and ρr = 1, such
that their importance can be attached to the effects of power-law rheology (represented by
ni), the electroosmotic property (represented by electrokinetic width K), the nanoparticle
volume fraction, φ, and the viscous dissipation effect (represented by the Brinkman number,
Br) on hydrodynamic and thermal behaviors.

3.1. Flow Characteristics in Two-Layer

The time evolutions of two-layer velocities with different types of conducting nanofluid,
i.e., flow behavior index n1 at different electrokinetic width K, are presented in Figure 3.
It can be seen that at first the conducting nanofluid near the channel wall is set in motion
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due to the electroosmotic force, and as time elapses the bulk conducting nanofluid attains
velocity. As opposed to the single-layer EOF, the flow of bulk conducting fluid fails to
form a plug-like profile, as the delivery of momentum via the bulk conducting nanofluid is
dissipated through interfacial viscous stress, causing a deviated parabolic profile in layer
I. Accordingly, the nonconducting nanofluid is driven by interfacial shear stress; thus, in
layer II, the closer to the two-liquid interface the flow, the higher the velocity. No matter
what value K or n1 takes, the conducting nanofluid near the wall at first moves forward and
drags the nonconducting fluid through the interfacial hydrodynamical shear stress, and as
t increases to 5, the transient two-layer velocity reaches its steady state. The comparison
among Figure 3a–c describes the way in which, when the conducting nanofluid is shear
thinning, the transient two-layer velocity is augmented with the increase of K, while as
shown in Figure 3d–f, when the conducting nanofluid is shear thickening, the transient
two-layer velocity shows abatement with the increase of K. The profiles of the steady
velocities in Figure 3b,c show that the remarkable increase in the velocity of the conducting
nanofluid with K results in a subtle turning of the velocity near the two-liquid interface.
Moreover, when pumped by shear thinning nanofluid, the two-layer fluid is more sensitive
to changes in the electrokinetic width K than when pumped by shear-thickening nanofluid.
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indexes of conducting fluid n1 when Br = 0.02, S = 1, ζ = −1, n2 = 1.2, and φ = 0.03. (a) K = 10, n1 = 0.8;
(b) K = 50, n1 = 0.8; (c) K = 100, n1 = 0.8; (d) K = 10, n1 = 1.2; (e) K = 50, n1 = 1.2; (f) K = 100, n1 = 1.2.
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When the conducting nanofluid and nonconducting nanofluid change from shear
thinning to shear thickening, the time evolutions of the two-layer velocities are as delineated
in Figure 4. No matter what type of pumped nonconducting nanofluid is considered, the
decrease in the flow behavior index n1, namely, the shear thinning feature of conducting
fluid, accelerates the flow and consequently enhances the two-layer velocity. From the
comparison between Figures 4a–e, the change in nonconducting nanofluid type from shear
thinning to shear thickening exerts a slight influence on the two-layer flow near the two-
liquid interface, and shows little influence on that far away from the two-liquid interface.
The influence of n1 on two-layer flow far outweighs that of n2 on two-layer flow.
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Because the flow behavior index, n1, plays a crucial role in two-layer velocity, the
time evolutions of flow rates at different flow behavior indexes of conducting nanofluid n1
are presented in Figure 5 when (a) φ = 0 and (b) φ = 0.03. It is obvious that the unsteady
flow rate of conducting nanofluid takes a longer time to reach steady status than that of
nonconducting nanofluid; as the conducting nanofluid near the wall is set in motion first,
the bulk conducting nanofluid moves forward, and eventually the nonconducting nanofluid
is dragged by the bulk conducting fluid. Irrespective of the value of the nanoparticle volume
fraction φ, the shear thinning feature of the conducting fluid enhances the flow rates of
both the conducting and nonconducting nanofluids. A comparison between Figure 5a,b
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shows that the addition of the nanoparticle to the bulk nanofluid reduces the two-layer
flow rate by improving the viscosity of the two fluids, as per Equations (9) and (10).
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When the pumping conducting nanofluid is shear thinning, that is, n1 < 1, flow rate I is 
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conducting nanofluid is shear thickening (i.e., n1 > 1), the two-layer flow is insensitive to 

Figure 5. Time evolutions of flow rates of two power-law nanofluids at different flow behavior
indexes n1 and different volume fractions of nanoparticle φ when Br = 0.02, S = 1, ζ = −1, K = 10 and
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In Figure 6, the time evolutions of flow rates at different electrokinetic widths K
are presented when (a) n1 = 0.8 and (b) n2 = 1.2. From Figure 6a, when the pumping
conducting nanofluid is shear thinning, the flow rates of the two power-law nanofluids
show augmentation with the electrokinetic width K, being consistent with Figure 3; in
contrast, when it is shear thickening, the flow rates of both fluids show abatement with
K, meaning that the change in fluid type of the pumping nanofluid from shear thinning
to shear thickening can reverse the effect of the electrokinetic width. In addition, the flow
rates show a noticeable reduction when n1 increases, irrespective of what value K takes.
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In Figure 7, the variation in the ratio of flow rate I to flow rate II is plotted for a flow
behavior index of conducting nanofluid n1 at different nanoparticle volume fractions φ.
When the pumping conducting nanofluid is shear thinning, that is, n1 < 1, flow rate I is
more than three times higher than flow rate II and two-layer flow is evidently affected
by the change in the nanoparticle volume fraction, φ. In contrast, when the pumping
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conducting nanofluid is shear thickening (i.e., n1 > 1), the two-layer flow is insensitive to
the change in flow behavior index n1 and nanoparticle volume fraction φ. Compared to the
effect of the nanoparticle volume fraction, the effect of n1 dominates in the two-layer flow.
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Figure 7. Variation of the ratio of flow rates with flow behavior index n1 at different nanoparticle
volume fractions φ when Br = 0.02, S = 1, ζ = −1, n2 = 1.2, and K = 30.

In Figure 8, the variation in the ratio of flow rate I to flow rate II is presented for the
flow behavior index of nonconducting nanofluid n2 at different electrokinetic widths K. A
higher flow behavior index of nonconducting nanofluid triggers stronger viscosity, and
thus smaller flow rate of nonconducting nanofluid flow, finally leading to an increase in
the flow rate ratio. When the type of conducting nanofluid is fixed, although a thinner EDL
length improves velocities of both fluids (as shown in Figure 3a–c), the increase in flow
rate I is much greater than that of flow rate II, and thus the increasing trend of flow rate
ratio with K is observed, which is especially obvious for a shear thickening nonconducting
nanofluid. Therefore, when dragging a shear thickening fluid, increasing electrokinetic
width exerts more influence on flow rate I than on flow rate II. Furthermore, in comparison
with Figure 7, the effect of the flow behavior index, n2, on the flow rate ratio is almost linear,
and the increasing rate is enhanced for greater values of the electrokinetic width, K.
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3.2. Heat Transfer Characteristics in Two-Layer Flow

In Figure 9, the temperature profiles at different flow behavior indexes n1 are described
when (a) φ = 0, (b) φ = 0.03, and (c) φ = 0.06. It is noted that the temperature profiles of the
two-layer flow are asymmetric around the two-liquid interface, in which the minimum
value occurs within layer I. The temperature difference between the channel wall and bulk
fluid is reduced, with the conducting nanofluid changing from a shear thinning fluid to
a shear thickening one; therefore, it can be seen that the smaller the velocity gradient of
two-layer flow is, the better the heat transfer performance becomes. On the other hand,
the increase in the nanoparticle volume fraction, φ, leads to an overall increase in the
temperature profiles for all types of conducting nanofluid, meaning that the introduction
of nanoparticles truly improves the heat transfer in two-layer flow.
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Figure 9. Variation of temperature at different flow behavior indexes n1 and different nanoparticle
volume fractions φ when K = 30, n2 = 1.2, ζ = −1, S = 1, and Br = 0.02. (a) φ = 0; (b) φ = 0.03; (c) φ = 0.06.

As shown in Figure 10, the temperature profiles at different electrokinetic widths K are
plotted when (a) n1 = 0.8, (b) n1 = 1, and (c) n1 = 1.2 in order to demonstrate the influence
of n1 on the effect of K. The increase in K, namely a thinner EDL thickness, enlarges the
temperature difference between the channel wall and bulk liquid and shifts the minimum
value of the temperature to the right. This can be explained by the fact that the increase in
K enhances the two-layer velocity and causes a drastic change in velocity near the channel
wall, as described in Figure 3. The comparison among Figure 10a–c indicates that the
shear thickening feature of the conducting nanofluid tends to suppress the effect of the
electrokinetic width, K, on temperature profile.
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Figure 10. Variation of temperature at different flow behavior indexes n1 and different electrokinetic
widths K when φ = 0.03, n2 = 1.2, ζ = −1, S = 1, and Br = 0.02. (a) n1 = 0.8; (b) n1 = 1; (c) n1 = 1.2.

As shown in Figure 11, the temperature profiles with different Brinkman numbers Br
are plotted when (a) n1 = 0.8, (b) n1 = 1, and (c) n1 = 1.2 in order to show the combined
effect of flow behavior index n1 and Brinkman number Br. As the Brinkman number Br
increases, viscous dissipation in the two-layer flow is improved, which further enlarges



Micromachines 2022, 13, 405 17 of 26

the temperature difference between the channel wall and bulk liquid, meaning that the
consideration of viscous dissipation evidently hinders the heat transfer in two-layer flow.
Moreover, as obvious changes in temperature are observed in Figure 11a–c, the Brinkman
number Br has an important effect on the temperature distribution for all types of conduct-
ing nanofluid; in other word, no matter what type of fluid the two-layer flow is driven by,
the effect of Br on temperature cannot be neglected.
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The temperature profiles at different flow behavior indices of nonconducting nanofluid
n2 are described in Figure 12. When the pumped nonconducting nanofluid changes from
a shear thinning fluid to a shear thickening one, the temperature in the vicinity of the
two-liquid interface slightly increases, while far away from the two-liquid interface it
shows little change. This is because the increase in the flow behavior index, n2, causes a
slight change in the two-layer velocity near the two-liquid interface. Therefore, compared
to the influence of the fluid type of the pumping conducting nanofluid, that of the fluid
type of the pumped nonconducting nanofluid (n2) on temperature profile is weak.
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The variation in the Nusselt number Nu with flow behavior index n2 at different
electrokinetic widths K is presented in Figure 13. The Nusselt number, Nu, shows a slightly
ascending trend with flow behavior index n2 no matter the value of the electrokinetic
width. On the other hand, the increase in electrokinetic width, K, leads to the decrease in
Nusselt number, Nu. This is because the rapid change in velocity profile caused by a lower
EDL thickness triggers a widened temperature difference by suppressing the heat transfer
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performance of the two-layer flow. It should be noted that the effect of electroosmotic
property of the fluid and the effect of the type of pumped nonconducting nanofluid do not
interact with each other.

Micromachines 2022, 13, x FOR PEER REVIEW 19 of 27 
 

 

The variation in the Nusselt number Nu with flow behavior index n2 at different 
electrokinetic widths K is presented in Figure 13. The Nusselt number, Nu, shows a 
slightly ascending trend with flow behavior index n2 no matter the value of the 
electrokinetic width. On the other hand, the increase in electrokinetic width, K, leads to 
the decrease in Nusselt number, Nu. This is because the rapid change in velocity profile 
caused by a lower EDL thickness triggers a widened temperature difference by 
suppressing the heat transfer performance of the two-layer flow. It should be noted that 
the effect of electroosmotic property of the fluid and the effect of the type of pumped 
nonconducting nanofluid do not interact with each other. 

 
Figure 13. Variation of Nusselt number with flow behavior index n2 at different electrokinetic 
widths K when ϕ = 0.03, n1 = 0.8, ζ = −1, S = 1, and Br = 0.02. 

In Figure 14, the variation of the Nusselt number Nu with (a) electrokinetic width K 
and (b) Brinkman number Br is presented when choosing different types of conducting 
nanofluid. As shown in Figure 14a, a greater value of the electrokinetic width K reduces 
the heat transfer in two-layer flow, causing the dramatic change in velocity and 
widening temperature difference shown in Figures 3 and 10. Figure 14b shows that the 
Nusselt number Nu decreases with the Brinkman number Br, as the stronger viscous 
dissipation effect represented by greater values of Br enlarges the temperature difference 
between the channel wall and the bulk liquid, impeding heat transfer in two-layer flow. 
As opposed to the interaction between the effects of K and n2 predicted in Figure 13, the 
descending trend of the Nusselt number Nu with K or Br becomes smaller when the 
conducting nanofluid changes from a shear thinning fluid to a shear thickening one, 
meaning that when two-layer flow is driven by a shear thinning fluid the heat transfer 
performance is much more susceptible to changes in electrokinetic width, K, or the 
Brinkman number, Br. 

Figure 13. Variation of Nusselt number with flow behavior index n2 at different electrokinetic widths
K when φ = 0.03, n1 = 0.8, ζ = −1, S = 1, and Br = 0.02.

In Figure 14, the variation of the Nusselt number Nu with (a) electrokinetic width K
and (b) Brinkman number Br is presented when choosing different types of conducting
nanofluid. As shown in Figure 14a, a greater value of the electrokinetic width K reduces
the heat transfer in two-layer flow, causing the dramatic change in velocity and widening
temperature difference shown in Figures 3 and 10. Figure 14b shows that the Nusselt
number Nu decreases with the Brinkman number Br, as the stronger viscous dissipation
effect represented by greater values of Br enlarges the temperature difference between the
channel wall and the bulk liquid, impeding heat transfer in two-layer flow. As opposed to
the interaction between the effects of K and n2 predicted in Figure 13, the descending trend
of the Nusselt number Nu with K or Br becomes smaller when the conducting nanofluid
changes from a shear thinning fluid to a shear thickening one, meaning that when two-
layer flow is driven by a shear thinning fluid the heat transfer performance is much more
susceptible to changes in electrokinetic width, K, or the Brinkman number, Br.
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Variation of the Nusselt number Nu with flow behavior index n1 at different nanopar-
ticle volume fractions φ is shown in Figure 15, revealing the interaction between the effect
of the conducting nanofluid and that of the nanoparticles. As the conducting nanofluid
changes from a shear thinning fluid to a shear thickening one, the Nusselt number Nu is aug-
mented, hence the heat transfer performance of two-layer flow is enhanced. Furthermore,
the ascending trend of Nu with n1 becomes more slight. The increment in the nanoparticle
volume fraction φ tends to improve the variation of Nu with n1 as a whole, thus promoting
the heat transfer of two-layer flow for all types of conducting nanofluid. This means that
the addition of nanoparticles has little influence on the effect of the conducting nanofluid
type on heat transfer (represented by Nu). According to Equation (25), growth in mean
temperature with φ leads to the increase in Nu, implying that the temperature difference
between the bulk fluid and channel walls is narrowed. Therefore, in practical engineering
terms, when a wide temperature difference between the channel wall and the centerline
occurs and might cause undesirable results (such as electrochemical decomposition or
fluctuation of PH value in working liquids), the introduction of nanoparticles can intensify
heat transfer performance and help to avoid the problems mentioned above.
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The variation of total entropy generation St with (a) electrokinetic width K and (b)
Brinkman number Br is presented in Figure 16 for different types of conducting nanofluids.
An almost linear increase of total entropy generation St with electrokinetic width K and
Brinkman number Br can be observed in Figure 16. From Figure 16a, it can be inferred that
a thinner EDL length (represented by a greater value of K) results in a wider velocity gap
between the channel wall and the bulk fluid; therefore, the heat transfer is retarded, and
entropy generation improves accordingly. Figure 16b implies that the viscous dissipation
effect grows stronger with the Brinkman number, leading to an increase in entropy genera-
tion. In addition, the increasing trend with K and Br becomes smaller when nanofluid I
changes from shear thinning to shear thickening.
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The variation of total entropy generation with flow behavior index n1 at different
nanoparticle volume fractions φ is presented in Figure 17. The entropy generation decreases
when the conducting nanofluid changes from a shear thinning type to a shear thickening
one. The shear thinning feature of conducting fluid accelerates the two-layer flow and
enhances velocity distribution, while the increased velocity gradient and temperature
gradient result in greater entropy generation as per Equations (28) and (29). Furthermore,
entropy generation in two-layer flow driven by shear thinning nanofluid is more sensitive
to changes in nanoparticle volume fraction compared to that driven by shear thickening
nanofluid. In practical terms, when the two-layer flow is pumped by shear thinning fluid,
it is more likely to utilize nanoparticles to adjust the thermal performance of the system.
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4. Conclusions

(1) The hydrodynamic behavior of transient two-layer EOFs of power-law nanofluids in
a slit microchannel were investigated by evaluating the transient two-layer velocity
distribution at different times and with different two-layer flow rates.

• When driven by shear thinning nanofluid, the two-layer flow accelerates for thin-
ner EDL thicknesses and decelerates when driven by shear thickening nanofluid.
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The change in fluid type of pumped nonconducting nanofluid exerts only a
slight influence on velocity near the two-liquid interface. It is concluded that
compared to the fluid type of pumped nonconducting nanofluid, the fluid type
of the pumping conducting nanofluid plays a dominant role in two-layer flow
and alters the effect of the electrokinetic width, K.

• In practical terms, the selection of a conducting nanofluid is crucial, as is the use
of electrokinetic width to adjust two-layer flow for different types of conducting
nanofluid.

• As opposed to the variation of the flow rate ratio with n2, the variation with n1 is
nonlinear, and the flow rate of two-layer flow driven by shear thinning nanofluid
is more sensitive to changes in the nanoparticle volume fraction.

(2) With steady two-layer velocity obtained, the thermally developed heat transfer charac-
teristics were discussed by presenting the temperature distribution, Nusselt number,
and total entropy generation at different parameters.

• The fluid type of the pumping conducting nanofluid, Brinkman number, nanopar-
ticle volume fraction, and electrokinetic width all play important roles in the
temperature profile, Nusselt number, and total entropy generation; in contrast,
the influence of the type of pumped nonconducting nanofluid is weak.

• In terms of the interactive influence of the governing parameters, shear thickening
feature of the conducting nanofluid tends to suppress the effects of the Brinkman
number and electrokinetic width on heat transfer and entropy generation.

• No matter what type of conducting nanofluid is considered, increasing the
nanoparticle volume fraction within a specified range truly enhances the heat
transfer performance of two-layer flow.

• Entropy generation in two-layer flow driven by shear thinning nanofluid is more
sensitive to changes in electrokinetic width, Brinkman number, and nanoparticle
volume fraction.
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Appendix A

To obtain the analytical solutions for two-layer EOF in the case of Newtonian fluid,
Laplace transform to two-layer velocity distributions vi is introduced:

Vi(s) = L[vi(t)] =
∫ ∞

0
vN

i (y, t)e−stdt (A1)

Transforming Equations (31)–(33), and letting ρr = 1, the ordinary differential equations
(ODEs) with respect to s can be obtained as follows:

d2V1

dy2 − sV1 =
1
s

GEzζ
cosh(Ky)
cosh(K)

for 0 ≤ y ≤ 1 (A2)
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d2V2

dy2 − sV2 = 0 for− 1 ≤ y ≤ 0 (A3)

V1|y=0 = V2|y=0,
dV1

dy

∣∣∣∣
y=0

=
dV2

dy

∣∣∣∣
y=0

, V2|y=−1 = 0, V1|y=1 = 0 (A4)

The solution to the above ODEs (A2)–(A3) takes the following forms:

V1 = C cosh(Ky) + E cosh(
√

sy) + Fsinh(
√

sy) for 0 ≤ y ≤ 1 (A5)

V2 = M cosh(
√

sy) + Fsinh(
√

sy) for− 1 ≤ y ≤ 0 (A6)

Combining the boundary Equation (A4),

C = GEzζ
s(K2−s) cosh(K) , E = −GEzζ

2s(K2−s) cosh
√

s

(
1 + cosh

√
s

cosh(K)

)
F = GEzζ

2s(K2−s)sinh
√

s

(
cosh

√
s

cosh(K) − 1
)

, M = GEzζ
s(K2−s) cosh(K) + E

(A7)

Applying the Laplace inverse transform to Equations (A5) and (A6) yields

vN
i = L−1[Vi] =

1
2π I

∫ σ+I∞

σ−I∞
Viestds (A8)

in which I is the imaginary unit, σ is a real number satisfying σ > 0, and the integral path is
presented in Figure A1. Based on the residue theorem, Equation (A8) equals

vN
1 = ∑

k
Res[V1(s)est, sk], for 0 ≤ y ≤ 1 (A9)

vN
2 = ∑

k
Res[V2(s)est, sk], for− 1 ≤ y ≤ 0 (A10)

where Res[Vi(s)est, sk] implies the residue of Vi(s)est at the isolated singularities, sk. The
isolated singularities sk are enclosed in the simple closed curve CR + L, as shown in
Figure A1. According to Equations (A5)–(A7), sk = 0, K2, –(2P–1)2π2/4, and –(Pπ)2, with k
= 1, 2, 3, 4 and P = 1, 2, . . . . Consequently, the residues of Vi(s)est are evaluated as follows:

Res[V1(s)est, 0] = lim
s1→0

d[s2 ·V1(s) · est]

ds
=

GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

cosh(Ky)
cosh(K)

− 1
]

(A11)

Res[V2(s)est, 0] = lim
s1→0

d[s2 ·V2(s) · est]

ds
=

GEzζ

K2

[
1− cosh(K)

2 cosh(K)
(y− 1) +

1
cosh(K)

− 1
]

(A12)

Res[Vi(s)est, K2] = lim
s2→K2

(s− K2) ·Vi(s) · est = 0 (A13)

Res
[

Vi(s)est,− [(2P−1)π]2

4

]
= lim

s3P→−
[(2P−1)π]2

4

[
s + [(2P−1)π]2

4

]
·Vi(s) · est

= 8GEzζ(−1)P+1e−(2P−1)2π2t/4

(2P−1)π[4K2+(2P−1)2π2]
cos
[
(2P−1)πy

2

] (A14)

Res
[
Vi(s)est,−(Pπ)2

]
= lim

s4P→−(Pπ)2

[
s + (Pπ)2

]
·Vi(s) · est

= GEzζ[1/ cosh(K)−(−1)P+1]e−(Pπ)2t

Pπ[K2+(Pπ2)]
sin(Pπy)

(A15)
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with i = 1, 2. According to Equations (A9) and (A10), summarizing Equations (A11)–(A15)
produces the analytical velocities for two-layer Newtonian fluid EOF, which are exactly
expressed by Equations (34) and (35).
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In addition, the coefficients in Equations (38) and (39) are presented as follows:

A1 =
k f 1GEzζ[1−cosh(K)]

12K2 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1+(ρcp)rvms2
,

A2 =
k f 1GEzζ

K4 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1+(ρcp)rvms2
,

A3 = − k f 1
2ke f f 1

[
GEzζ[1+cosh(K)]

2K2 cosh(K) · (2+S+BrΓ1+mr BrΓ2)
vms1+(ρcp)rvms2

+ S + Br(GEzζ)2[1−cosh(K)]2

4K4 cosh (K)2

]

A4 = − k f 1Br(GEzζ)2[1−cosh(K)]

K5 cosh (K)2ke f f 1
, A5 = − k f 1Br(GEzζ)2

4K2 cosh (K)2ke f f 1
,

B1 =
k f 1GEzζ[1−cosh(K)]

12K2 cosh(K)ke f f 1
· (2+S+BrΓ1+mr BrΓ2)

vms1/(ρcp)r+vms2
,

B2 =
k f 1

2ke f f 1

[
GEzζ[1−cosh(K)]

2K2 cosh(K) · (2+S+BrΓ1+mr BrΓ2)
vms1+vms2(ρcp)r

−mrBrΦ2

]
,

D1 = − ke f f 2(d1−d2)

ke f f 1+ke f f 2
,

D2 = − ke f f 2
ke f f 1+ke f f 2

( ke f f 1
ke f f 2

d1 + d2

)
,

D3 =
ke f f 1
ke f f 2

(KA4 + D1),

D4 = (A2 + A5/K2 + D2),

d1 = A1 + A2 cosh(K) + A3 + A4sinh(K) + A5

[
cosh (K)2

K2 − 1
]

d2 =
(
−B1 + B2 −

ke f f 1
ke f f 2

KA4 + A2 +
A5
K2

)
.
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