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Abstract: This study discusses entropy generation analysis for a peristaltic flow in a rotating medium
with generalized complaint walls. The goal of the current analysis is to understand the fluid flow
phenomena particular to micro devices. Nano materials with a size less than 100 nm have applications
in micro heat exchangers to cool electronic circuits, blood analyzers, biological cell separations, etc.
For this study, we considered the effects of radiation, viscous dissipation and heat flux on the flow
of nanomaterial inside a cylindrical micro-channel. To investigate the slip effects on the flow, the
second order slip condition for axial velocity, the first order slip condition for secondary velocity
and the thermal slip conditions were used. The flow was governed by partial differential equations
(PDE’s), which were turned into a system of coupled ordinary differential equations (ODE’s) that
were highly non-linear and numerically solved using the NDSolve command in Mathematica. The
impacts of different involved parameters on the flow field were investigated with the aid of graphical
illustrations. Entropy generation and the Bejan number were given special attention, and it was
found that they decreased as the Hartman number, rotation, and radiation parameters increased.

Keywords: entropy; peristaltic flow; heat flux; radiation; generalized complaint walls

1. Introduction

Peristalsis mainly refers to fluid flows driven by pressure gradients resulting from
the movement of a wave along channel boundaries. The compression and expansion of
the domain due to the propagation of the wave generates the flow. In the human body,
urine flow, food transport through the digestive system, blood circulation (and others), all
are due to peristalsis. Its application is also found in targeted drug delivery by the use of
nano magnetic particles. The application of peristalsis can also be found in engineering,
where it enables the construction of heart lung machines that operate on the principles of
peristalsis. The study of thermal effects in peristaltic flows is motivated by its application
to tumor growth, transportation of medical substances, such as a pill, or the transportation
of nutrients to brain cells.

The research in this field can be traced back to pioneer works of Latham [1] and Shapiro
et al. [2]. These studies provided a basic theoretical framework for investigating peristaltic
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flows with long wavelengths and low Reynolds numbers. Following their work, a great deal
of research has been carried out by considering different flow configurations and a variety
of Newtonian and non-Newtonian fluids. Yin et al. [3] studied the peristaltic flow of a
viscous fluid in a circular tube. The mean flow and mean pressure gradients were reported
to be proportionate with the square of the amplitude ratio in the absence of any wall
motion. According to the numerical results, the mean axial velocity was dominated by the
mean pressure gradient and the no-slip boundary condition. Asghar et al. [4] investigated
the peristaltic flow of a reactive viscous fluid in a 2D setting, assuming viscosity to be
temperature dependent. The existence of the Hartman layer, due to the presence of a
magnetic field, and its consequent effects on the flow dynamics, were reported in [5]. Some
other recent studies considering deforming walls and heat transfer effects in a peristaltic
flow include [6–9] and references therein.

The issue of heat transfer arises in a wide range of engineering processes that use
fluids such as refrigerants, water, engine oil, ethylene glycol, etc., as heat exchangers to
maintain a desired working temperature. The poor thermal conductivity of the coolant
fluids limits the effectiveness of these heat exchangers. It has been shown [10] that in-
creasing the thermal conductivity of a fluid by introducing nanometer size particles into
the base fluid used as a coolant can improve its thermal conductivity. The study of heat
transfer in a peristaltic flow is motivated by its application in oxygenation and hemodial-
ysis. Buongiorno [11] report their observations on convective transports in nanofluids,
investigating various slip mechanisms attributed to the generation of relative velocity
amongst the nanoparticles and the base fluid. Turkyilmazoglu [12] and Khan et al. [13]
studied heat transfer effects in a nanofluid flow along stretching surfaces. Awais et al. [14]
investigated the dynamical influence of nanoparticles on the flow of Oldroyd-B model
polymeric liquids in the presence of nanoparticles. Other studies [15–17] consider flows in
different geometrical configurations, investigating Brownian motions and thermophoresis
effects on the flow dynamics and characteristics. In the existence of hydrodynamic slip and
radiation impacts, Shashikumar et al. [18] conducted a thermodynamic study of Casson
nanofluid in a porous microchannel. The Brownian motion and thermophoresis effects for
Casson fluid on a stretched surface with non-Fourier heat flow were recently explored by
Sreelakshmi et al. [19]. Fluid flow in small channels involving micro/nano materials holds
importance in the study of micro ducts, micro pumps and valves, etc. Many scholars have
studied these challenges in recent years as a result of these applications [20–24].

Complaint wall is defined as a wall that is deformable but is also stretchable, flexible
and elastic in nature, with the ability to contain liquid in it. When a deforming force acts on
this wall, it comes back to its original position due to its flexible and elastic nature. Elasticity
is a characteristic of a body to restore itself once external deforming forces are removed,
e.g., sponge, spring, rubber, etc. In contrast, plasticity is a material characteristic wherein
material does not revert back to its original position when deforming force is removed,
e.g., wood and glass. Deforming force is a force which brings change in shape, length or
volume of the wall when applied. The amount of change is directly proportional to the
force applied to the body. Every wall/medium has a limit to being elastic, which is termed
as elastic limit; it means that a wall can bear a limited deformation force that is different
for each medium to remain elastic, otherwise the deformation will be permanent. In
complaint wall, all of these aspects are monitored. Movement of fluid is greatly dependent
on complaint wall, as it manages the geometry of sinusoidal waves during peristalsis flow.
The peristaltic flow of non-Newtonian fluid in a complaint walls channel was described
by Ali et al. [25]. The analysis for MHD Jeffery fluid in a complaint walls channel was
presented by Hayat et al. [26]. Heat transfer analysis of peristaltic flow in a complaint walls
channel for viscous fluid was reported by Hayat et al. [27]. Nadeem et al. [28] discussed
the trapping phenomenon in a rectangular channel with complaint walls for viscous fluid.
The hall current investigations on peristaltic flow in a rotating medium were presented
by Hayat et al. [29]. They considered the nanoparticles inside the channel of complaint
walls. Recently, Awais et al. [30] presented the rheology of copper water nanomaterial in
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a channel by considering the generalized complaint walls and variable viscosity effects.
In the branches of science, physiology and biology, magnetohydrodynamic (MHD) effect,
which is critical for physiological liquids of peristaltic motion, has been discussed. Electric
current causes a magnetic field due to the movement of conducting fluid particles changes
in the fluid flow because of mechanical forces [31]. It has many applications in engineering,
e.g., in aerodynamics, control of boundary layer, studies of plasma, energy removing from
geothermal processes, MHD generator and inspection of oil; because of these applications,
many inspectors focused on electrically conducting fluid passed through a porous medium
with the magnetic field effects in peristalsis along transfer of mass and heat [32]. Kumar
et al. [33] used the KKL model to investigate the effect of a magnetic dipole on the flow of a
radiative nanofluid across a stretched surface. Alhumade et al. [34] examined the effects
of nonlinear radiation on the flow over a stretched cylinder with the Cattaneo–Christove
heat flux.

Heat transmission effects with the generation of entropy have been studied extensively
since the pioneering work of Bejan [35], in which he presented a way to maximize the
system’s destruction, heat-transmission effects with the formation of entropy. Entropy is a
measure of arbitrariness inside a system or the degree of molecular disorder. In a thermo-
dynamic system, entropy generation could result in a loss of energy attributed to various
processes, e.g., friction, viscosity and chemical reactions. In diverse processes, counting
chemical vapor testimony instruments, combustion, turbo machinery, electronic cooling
devices, heat exchangers, and solar collectors, entropy plays a vital role. Entropy generation
minimization is essential to increase the system performance in terms of heat conductivity.
Hayat et al. [36] explored the entropy generation phenomenon for peristaltic flow in a
rotating medium. The entropy generation investigation on magnetohydrodynamics peri-
staltic flow of copper–water nanofluid under slip effects was described by Ali et al. [37].
They claim that when slip parameters are used, entropy production diminishes. Shashiku-
mar et al. [38] studied slip effects and performed an entropy generation study for the flow
of a nanofluid in a microchannel employing aluminium and titanium alloy nanoparticles.
Entropy-generating processes are investigated in a number of energy-related applications,
including geothermal energy and modern refrigeration equipment [39–44].

As the entropy generation and compliant walls consideration can affect the flow
dynamics and thermal characteristics for a peristaltic flow, we conducted this investigation
to incorporate these effects, which were missing in the previously reported theoretical
investigations. Motivated by this, the objective of this research was to analyze the entropy
generation on the peristaltic flow in a rotating medium with generalized complaint walls.
The entropy analysis was used to study the thermodynamic irreversibility, which destroys
the available energy. Further, we also used nanoparticles in this analysis due to their vast
engineering applications, as discussed above. The effects of radiation, viscous dissipation,
and thermal flux on the flow of nanofluid inside a micro-channel are investigated. The
second order slip condition for axial velocity, first order slip condition for secondary velocity,
and thermal slip conditions are used to explore the effects of slip parameter on the flow.
The flow was governed in non-dimensional form by highly non-linear PDE’s, which were
then translated into a coupled system of ODE’s. Mathematica’s NDSolve tool was used to
numerically solve the transformed system of coupled ODE’s. Graphs are used to explore
the effects of several key parameters on the flow field.

2. Mathematical Modelling

Consider an unsteady peristaltic nanofluid flow in a porous, rotating medium with
angular speed along the z−axis. 2d is the width of the channel with generalized complaint
walls having temperatures T1 and T0. The peristaltic flow arises due to the expansion of
waves with wavelength λ, speed c, amplitude a, time t, and half channel width d aligned to
the wall at z = ±η expressed through the relation.

z = ±η(x, t) = ±
[

d + a sin
(

2π

λ

)
(x− ct)

]
.
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Physically the problem is presented in Figure 1.
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For incompressible flow, the mass, momentum and energy equations are [29,30]:

∇·V = 0, (1)

ρn f

(
dV
dt

)
+ ρn f [Ω× (Ω× r) + 2(Ω×V)] = ∇·τ + J× B− µn f

K V
+g(ρβ)n f (T − Tm),

(2)

(
ρcp
)

n f

(
dT
dt

)
= κn f∇2T + τ·L−∇qr −

1
σn f

J·J + Q0, (3)

where, d
dt is material time derivative, V = V[u(x, z, t), v(x, z, t), w(x, z, t)] is velocity field,

ρn f is nanofluid density, Ω = Ωk̂ is angular velocity, τ is Cauchy stress tensor, B is
magnetic field, J is current density, J× B is Lorentz force, µn f is nanofluid viscosity, (ρβ)n f
is coefficient of thermal expansion,

(
ρcp
)

n f is heat capacity of nanofluid, κn f is thermal
conductivity of nanofluid, T is temperature of fluid, τ·L is viscous dissipation term, qr is
thermal radiation term, (σ)n f is electric conductivity of nanofluid, J·J is joule heating term,
and Q0 is heat generation/absorption parameter. The Cauchy stress tensor is expressed as:

τ = −PI + µn f A, (4)

where P is pressure. A is Rivilin Ericksen tensor and is defined by the relation:

A = (∇·V) + (∇·V)t.

The modified Ohm’s law is given as:

J = σn f

[
E + (V× B)− 1

ene
(J× B)

]
, (5)

In above equations, 1
ene

is the hall factor where e the electron charge and ne is the
density of free electron. When there is electric field E, the Lorentz force becomes:

J× B =

 σn f B2
0

1 +
(

σn f B0
ene

)2

(
−u +

(
σn f B0

ene

)
v
)

,−
σn f B2

0

1 +
(

σn f B0
ene

)2

(
v +

(
σn f B0

ene

)
u
)

, 0

. (6)
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The expression for rotational force is:

Ω× (Ω× r) + 2(Ω×V) = −Ω(Ωx + 2v)î−Ω(Ωy− 2u) ĵ + 0k̂. (7)

The radiative diffusion in the Rosselend approximation is defined as:

qr = −
4σ∗

3k∗
∂T4

∂x
, (8)

where σ∗ is the Stefan–Boltzmann constant, whereas k∗ is the mean absorption coefficient.
When the Taylor series expansion is applied to the T4 about mean temperature of nano-
material Tw, we get:

∇qr =
∂qr

∂x
+

∂qr

∂z
= −16σ∗T3

m
3k∗

[
∂2T
∂x2 +

∂2T
∂z2

]
. (9)

The relation of viscous dissipation is:

τ·L = µn f

[
2

{(
∂u
∂x

)2
+

(
∂w
∂z

)2
}
+

(
∂u
∂z

+
∂w
∂x

)2
]

. (10)

We obtain the following system of equations in components form by substituting
Equations (4), (6), (7), (9) and (10) into fundamental Equations (1)–(3):

∂u
∂x

+
∂w
∂z

= 0, (11)

ρn f

(
du
dt − 2Ωv

)
= − ∂P̂

∂x + µn f

(
∂2u
∂x2 +

∂2u
∂z2

)
+

σn f B2
0

1+
(

σn f B0
ene

)2

(
−u +

(
σn f B0

ene

)
v
)

− µn f
K u + g(ρβ)n f (T − Tm),

(12)

ρn f

(
dv
dt + 2Ωu

)
= − ∂P̂

∂y + µn f

(
∂2v
∂x2 +

∂2v
∂z2

)
− σn f B2

0

1+
(

σn f B0
ene

)2

(
v +

(
σn f B0

ene

)
u
)

− µn f
K v,

(13)

ρn f
dw
dt

= −∂P̂
∂z

+ µn f

(
∂2w
∂x2 +

∂2w
∂z2

)
, (14)

(
ρcp
)

n f
dT
dt = κn f

(
∂2T
∂x2 + ∂2T

∂z2

)
+ µn f

[
2
{(

∂u
∂x

)2
+
(

∂w
∂z

)2
}
+
(

∂u
∂z + ∂w

∂x

)2
]

+ 16σ∗T3
m

3k∗

[
∂2T
∂x2 + ∂2T

∂z2

]
+

µn f
K u2 + Φ.

(15)

The centrifugal effect with modified pressure P̂ can be expressed as:

P̂ = p− 1
2

ρΩ2
(

x2 + y2
)

. (16)

The values for ρn f , µn f ,
(
ρcp
)

n f , κn f , (ρβ)n f and σn f are presented in Table 1 where
subscript p denotes particle of copper and f for base fluid. The numerical values of these
quantities for nanoparticles has been provided in Table 2.
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Table 1. Expressions for thermal features of nanofluid Ali et al. [38].

Properties Nanofluid

Density ρn f = (1− φ)ρ f + φρp,
Viscosity µn f =

µ f

(1−φ)2.5 ,

Heat capacity
(
ρcp
)

n f = (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

p,

Thermal conductivity κn f
κ f

=
κp+2κ f−2φ(κ f−κp)
κp+2κ f +φ(κ f−κp)

,

Thermal expansion (ρβ)n f = (1− φ)(ρβ) f + φ(ρβ)p,

Electric conductivity σn f
σf

= 1 +
3φ

(
σp
σf
−1
)

(
σp
σf
+2
)
−φ

(
σp
σf
−1
) ,

Table 2. Numerical values of thermal properties of nanomaterial Ali et al. [37].

Physical Properties Water (H2O) Copper (Cu)

ρ
(
kgm−3) 997.1 8933

cp

(
Jkg−1K−1

)
4180 385

κ
(

Wm−1K−1
)

0.613 401

β
(

K−1
)
× 10−5 21 1.67

σ(Ωm)−1 0.05 5.96× 107

2.1. Thermo-Physical Properties

The important relations for nano-material fluid are given in Table 1.
The expression for generalized complaint wall is:

L(η) = P− P0 (17)

and

L(η) =
[
−τ

∂2

∂x2 + m′
∂2

∂t2 + d′
∂

∂t
+ β′

∂4

∂x4 + k
]

η, (18)

where, τ is the wall velocity, m′ is the plate mass, d′ is the wall-damping coefficient, β′ is
the stiffness in flexure, k is the stiffness effects.

∂L
∂x

=
∂p
∂x

∂L
∂x = µn f

(
∂2u
∂x2 +

∂2u
∂z2

)
+

σn f B2
0

1+
(

σn f B0
ene

)2

(
−u +

(
σn f B0

ene

)
v
)

− µn f
K u + g(ρβ)n f (T − Tm)− ρn f

(
du
dt − 2Ωv

)
.

(19)

To convert Equations (11)–(15) into non-dimensional form, we utilize the following set
of non-dimensional variables:

x∗ = x
λ , y∗ = y

λ , z∗ = z
d , p∗ = d2 P̂

cµλ , t∗ = ct
λ , u∗ = u

c , v∗ = v
c ,

w∗ = w
c , η∗ = η

d , δ = d
λ , Tm = T1−T0

2 , θ = T−Tm
T1−T0

, K1 = K
d2 ,

T∗ = ReΩd
c , u = ∂ψ

∂z , w = −δ
∂ψ
∂x .

(20)

where ψ is the stream function, Tm is the mean temperature, T1 is the upper wall temper-
ature, T0 is the lower wall temperature. Utilizing these non-dimensional variables and
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stream function defined in (20) into Equations (11)–(15), the continuity Equation (11) is
satisfied identically, while momentum and heat equations becomes:

Reδ
(

ρn f
ρ f

)
d
dt

(
∂ψ
∂z

)
− 2T′

(
ρn f
ρ f

)
v = − ∂p

∂x + Gr
(
(ρcp)n f

(ρcp) f

)
θ

+
(

µn f
µ f

)[
δ2 ∂3ψ

∂x2∂z +
∂3ψ

∂z3 − 1
K1

∂ψ
∂z

]
−

(
σn f
σf

)
M2

1+
((

σn f
σf

)
m
)2

(
∂ψ
∂z −

(
σn f
σf

)
mv
)

,
(21)

Reδ
(

ρn f
ρ f

)
dv
dt + 2T′

(
ρn f
ρ f

)
∂ψ
∂z = − ∂p

∂y

+
(

µn f
µ f

)[
δ2 ∂2ψ

∂x2 + ∂2v
∂z2 − v

K1

]
−

(
σn f
σf

)
M2

1+
((

σn f
σf

)
m
)2

(
v + A1m ∂ψ

∂z

)
,

(22)

− Reδ2

(
ρn f

ρ f

)
d
dt

(
∂ψ

∂x

)
= −∂p

∂z
+

(
µn f

µ f

)[
δ3 ∂3ψ

∂x3 − δ
∂3ψ

∂z2∂x

]
, (23)

δRePr
(

ρn f
ρ f

)[
∂θ
∂t +

∂ψ
∂z

∂θ
∂x + v ∂θ

∂y −
∂ψ
∂x

∂θ
∂z

]
=

Gr
(ρβ)n f
(ρβ) f

[
δ2 ∂2θ

∂x2 +
∂2θ
∂z2

]
+
(

µn f
µ f

)
Br
K1

(
∂ψ
∂z

)2
+ 4Rd

3

[
δ2 ∂2θ

∂x2 +
∂2θ
∂z2

]
+ε1 +

(
µn f
µ f

)
Br
[

2δ2
{(

∂2ψ
∂x∂z

)2
+
(

∂2ψ

∂z2

)2
}
+
(

∂2ψ

∂z2 − δ2 ∂2ψ

∂x2

)2
]

.

(24)

In above non-dimensional Equations (21)–(24), M, Re, Ec, Pr, Rd, ε1, m, Gr, and Br
are the Hartman number, the Reynolds number, the Eckert number, the Prandtl number,
the radiation parameter, the heat generation/absorption parameter, the Hall parameter,
the Grashof number, and the Brinkman number, respectively, which are non-dimensional
parameters and are mathematically defined as:

M = B0d
√

σf
µ f

, Re =
ρ f cd
µ f

, Ec =
d2µ f

(cp) f (T1−T0)
, Pr =

µ f (cp) f
κ f

, Rd = 4σ∗T3
m

k∗κ f
,

ε1 = d2Φ
κ f (T1−T0)

, m =
σf B0
ene

, Gr =
g(ρβ) f d2

cµ f
(T1 − T0), Br = EcPr.

(25)

We get the following simplified form of Equations (21)–(24), when we apply the
assumption of long wavelength and modest inertial forces to momentum and energy
equations:

−2T′
(

ρn f
ρ f

)
v = − ∂p

∂x +
(

µn f
µ f

)[
∂3ψ

∂z3 − 1
K1

∂ψ
∂z

]
−

(
σn f
σf

)
M2

1+
((

σn f
σf

)
m
)2

(
∂ψ
∂z −

(
σn f
σf

)
mv
)
+ Gr

(
(ρcp)n f

(ρcp) f

)
θ,

(26)

2T′
(

ρn f

ρ f

)
∂ψ

∂z
= −∂p

∂y
+

(
µn f

µ f

)[
∂2v
∂z2 −

v
K1

]
−

(
σn f
σf

)
M2

1 +
((

σn f
σf

)
m
)2

(
v + A1m

∂ψ

∂z

)
, (27)

∂p
∂z

= 0, (28)

Gr
(ρβ)n f
(ρβ) f

[
∂2θ
∂z2

]
+ 4Rd

3

[
∂2θ
∂z2

]
+
(

µn f
µ f

)
Br
K1

(
∂ψ
∂z

)2

+ε1 +
(

µn f
µ f

)
Br
(

∂2ψ

∂z2

)2
= 0.

(29)
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Now, η amplitude ratio parameter with wall properties gives non-dimensional bound-
ary conditions:

∂ψ
∂z ± α1

(
µn f
µ f

)
∂2ψ

∂z2 ± α2

(
µn f
µ f

)
∂3ψ

∂z3 = 0 at z = ±η[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t + E4
∂5

∂x5 + E5
∂

∂x

]
η = ∂p

∂x at z = ±η

v± β1

(
µn f
µ f

)[
∂v
∂z

]
= 0 at z = ±η

θ ± β2

(
µn f
µ f

)[
∂θ
∂z

]
= ± 1

2 at z = ±η

(30)

Here, α1, α2, β1, and β2 are first order, second order, secondary velocity slip, and ther-
mal slip parameters. The main aim was to eliminate the pressure from x and y components
of the momentum equation; thus, the author used Equation (28), which already represented
that pressure does not depends on z. Secondary flow is due to rotation, so pressure can be
ignored from Equation (27). Thus, we have

(
µn f
µ f

)[
∂4ψ

∂z4 − 1
K1

∂2ψ

∂z2

]
−

(
σn f
σf

)
M2

1+
((

σn f
σf

)
m
)2

(
∂2ψ

∂z2 −
(

σn f
σf

)
m ∂v

∂z

)
+2T′

(
ρn f
ρ f

)
∂v
∂z + Gr

(
(ρcp)n f

(ρcp) f

)
∂θ
∂z = 0,

(31)

(
µn f

µ f

)[
∂2v
∂z2 −

v
K1

]
− 2T′

(
ρn f

ρ f

)
∂ψ

∂z
−

(
σn f
σf

)
M2

1 +
((

σn f
σf

)
m
)2

(
v +

(
σn f

σf

)
m

∂ψ

∂z

)
= 0, (32)

At the end the simplified form of non-dimensional equations with boundary conditions
is:

A0

(
∂4ψ

∂z4 −
1

K1

∂2ψ

∂z2

)
− A1M2

1 + (A1m)2

(
∂2ψ

∂z2 − A1m
∂v
∂z

)
+ 2T′A2

∂v
∂z

+ A3
∂θ

∂z
= 0, (33)

A0

(
∂2v
∂z2 −

v
K1

)
− A1M2

1 + (A1m)2

(
v + A1m

∂ψ

∂z

)
− 2T′A2

∂ψ

∂z
= 0, (34)

(
A4 +

4
3

Rd
)

∂2θ

∂z2 + A0
Br
K1

(
∂ψ

∂z

)2
+ A0Br

(
∂2ψ

∂z2

)2

+ ε1 = 0. (35)

With boundary conditions:

∂ψ
∂z ± α1 A0

∂2ψ

∂z2 ± α2 A0
∂3ψ

∂z3 = 0 at z = ±η[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t + E4
∂5

∂x5 + E5
∂

∂x

]
η = ∂p

∂x at z = ±η

v± β1 A0
∂v
∂z = 0 at z = ±η

θ ± β2 A0
∂θ
∂z = ± 1

2 at z = ±η

(36)

In the above equations, the constants that are used are given below:

A0 =
µn f
µ f

, A1 =
σn f
σf

, A2 =
ρn f
ρ f

, A3 = Gr·
(ρcp)n f

(ρcp) f
, A4 =

(ρβ)n f
(ρβ) f

,

E1 = − τd3

λ3µ f c , E2 =
m1cd3

λ3µ f
, E3 = d′d3

λ2µ f
, E4 = β′d3

λ3µ f c , E5 = kd3
λµ f c .

(37)
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2.2. Entropy Generation Analysis

An irreversible process in which two phenomena occur, i.e., thermal diffusion and
fluid friction, results in entropy generation, which is basically loss of ability to do work.
The volume fraction entropy generation for two-phase nanomaterial is:

Ngen =
κn f

θ2
0

[(
∂T
∂x

)2
+
(

∂T
∂z

)2
]
+

µn f
θ0

[
2
(

∂u
∂x

)2
+
(

∂w
∂z

)2
+
(

∂u
∂z + ∂w

∂x

)2
]

+ 16σ∗T3
m

3k∗θ0

[
∂2T
∂x2 + ∂2T

∂z2

]
+

µn f u2

Kθ0
+ Φ

θ0
.

(38)

The first term on the right side is irreversible heat transfer, the second term is irre-
versible viscous dissipation, the third term is radiation effects, the fourth term is heat
transfer analysis for convection, and the fifth term is heat generation/absorption effects.
The entropy generation number in non-dimensional form is:

Ns =
Ngen

Ng
=

(
A4 +

4
3

Rd
)(

∂θ

∂z

)2
+ A0BrΛ

[
1

K1

(
∂ψ

∂z

)2
+

(
∂2ψ

∂z2

)2]
+ ε1 (39)

where Ng is the rate of entropy generation and Λ is the temperature ratio, defined as:

Ng =
κ f (T1 − T0)

2

θ2
0d2

, Λ =
θ0

(T1 − T0)
(40)

2.3. Bejan Number Analysis

The Bejan number was introduced by professor Adrian Bejan from Duke Univer-
sity. The Bejan number is the proportion of heat transfer irreversibility to total entropy
generation. Mathematically,

Be =

(
A4 + 4

3 Rd
)(

∂θ
∂z

)2

(
A4 +

4
3 Rd

)(
∂θ
∂z

)2
+ A0BrΛ

[
1

K1

(
∂ψ
∂z

)2
+
(

∂2ψ

∂z2

)2
]
+ ε1

(41)

The variation of the Bejan number is 0 < Be < 1, which implies that total entropy gen-
eration dominates heat transfer irreversibility in one case and that total entropy generation
equals heat transfer irreversibility in the other.

3. Graphical Discussion

The focus of this work is on the analysis of entropy generation of dual-stage nano-
material in a peristaltic motion considering thermal fluxes and radiation, along with the
boundary condition of the generalized complaint wall in a rotating channel. The governing
equations, derived in the preceding section, were solved in Mathematica using built-in
solver NDSolve. In this section, we discuss the physical impacts of various parameters
(Hall parameter (m), radiation parameter (Rd), permeability parameter (K1), heat genera-
tion/absorption parameter (ε1), Hartman number (M), rotation parameter (T′), first and
second order velocity slip parameters (α1, α2), secondary velocity slip (β1), and thermal slip
parameters (β2) on axial and secondary velocities (u and v), temperature distribution (θ),
entropy production (Ns), and Bejan number (Be) for the given values of t = 0.1, x = 0.2,
φ = 0.01, ε = 0.3, E1 = 0.03, E2 = 0.02, E3 = 0.01, E4 = 0.03, E5 = 0.02).

3.1. Axial Velocity Analysis

The effects of various flow parameters, such as Hartman number (M), nanoparticles
volume fraction (φ), permeability parameter (K1), first order velocity slip (α1), second
order velocity slip (α2) and rotation parameter (T′) on the axial velocity u are presented
in Figures 2–7. The results are calculated for ε = 0.3, m = 1, Gr = 3, Rd = 0.1, Br = 0.01,
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K1 = 0.5, M = 2, β1 = 0.02, β2 = 0.02, α1 = 0.01, and β1 = −0.01. Figure 2 shows
curves representing spatial distribution of axial velocities u computed for several Hartman
numbers M, ranging from 0 to 3. It is noted that, as the Hartmann number increased, the
axial velocity decreased. Furthermore, the velocity gradients in the interior domain also de-
creased as M increased. These observations are consistent with the physical characteristics
of magnetic force, i.e., Lorentz force is a decelerating force, and also with the previously
reported experimental and theoretical observations. Figure 3 depicts that the axial velocity
decreased with the increase in the values of volume fraction φ, due to strong resistive forces.
The small change was observed at the starting and end points; however, at the middle of
the graph, axial velocity distribution had great loss.
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Figure 4 shows axial velocity plots for numerous values of permeability parameter
K1, representing the permeability of the porous medium. The plotted results show that
the axial velocity rose with increasing values of the permeability parameter since, with
increased permeability of porous medium K1, frictional forces decreased, hence, the fluid
accelerated because of higher energy budgets. The effects of slip parameter α1 on the
axial velocity distributions are shown in Figure 5. The results plotted in the figure, for
different values of α1, shows that the slip parameter affects flow dynamics in the locality of
the boundary as expected. It is noted that increase in slip parameter α1 had accelerating
effects on the axial velocity; therefore, axial velocity increased with increasing α1. When
the slip effects were incorporated in the applied boundary condition, the energy losses at
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the boundaries decreased, which is why the slip parameter α1 exhibited accelerating effects
on the flow dynamics.

Similar observations are made in Figure 6, showing axial velocity for different values
of second slip parameter α2. In contrast to α1, the second slip parameter α2 is linked with
the spatial change in the velocity gradients. It is, therefore, seen in plotted results that the
axial velocities decreased in the lower half, since velocity gradients were decreasing in z,
and increased in the upper half due to increasing velocity gradients. In Figure 7, we show
axial velocities for different values of the rotation parameter T′. The results show that the
increase in the values of rotational parameter T′ resulted in a decrease in axial velocity,
exhibiting an inverse relation between the velocity and rotation. Notice that the maximum
velocity in the axial direction was achieved when rotation was zero, as, in that case, the
retarding effects of the magnetic field were minimal.

3.2. Secondary Velocity Analysis

The dynamical effects of different parameters such as the Hartman number, the
Hall parameter, the nanoparticle volume fraction, the permeability parameter, and the
secondary slip parameter, and rotation parameter on the secondary velocity are given in
Figures 8–13. The decelerating effects of the Hartman number M, quantifying magnetic
field strength, on the secondary velocity v are given in Figure 8. Consistent with the
observations made in Figure 2, the secondary velocity also decreased with an increase
in Hartman number M because of increased Lorentz force, which impeded the flow, as
discussed above. Figure 9 illustrates velocity profiles generated for various values of the
Hall parameter m to investigate the influence of the Hall parameter on secondary velocity.
The results revealed that the Hall parameter had an accelerating influence on the flow, as
seen by the increasing trend in velocities as the Hall parameter increased. By the decay of
magnetic damping forces, the thermal conductivity of two-stage nanomaterial decreased,
which resulted in higher secondary velocities.

Hall effect is necessary for the manufacturing of secondary velocity because m = 0
means having no secondary velocity. To analyze the effects of nanoparticle volume fraction
φ on the secondary velocity, we plotted velocity curves corresponding to different values of
φ, shown in Figure 10. The results showed that the secondary velocity decreased for increas-
ing values of φ. This is consistent with the physical effects associated with volume fraction
φ, i.e., for higher values of volume fractions φ, the inter-particle interactions increased,
resulting in a loss of energy. Figure 11 shows velocity curves plotted, corresponding to
different values of the permeability parameter K1. The velocity curves may be observed in
the figure to have a rising tendency when the permeability parameter K1 increased. The
increment in fluid velocities resulted from decreased hindrance experience by the fluid at
large values of permeability parameter K1.
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In Figure 12, we show results in terms of secondary velocity for several values of the
secondary slip parameter. In agreement with the observations made in Figure 5, secondary
velocity increased with increasing values of the slip parameter. As shown in Figure 5, the
effect of the slip parameter was observed to be localized for secondary velocities as well.
This sketch represents a very different trend compared to the other parameters. Figure 13
depicts the influence of the rotation parameter T′ on secondary velocity. The secondary
velocity rose as the rotation parameter grew larger, due to greater inertial forces, as shown
in the displayed figure.

3.3. Temperature Analysis

As discussed in the introduction, thermal properties of the base fluids could be consid-
erably enhanced with the presence of nanoparticles. In this section, we explore the effects
of the Hartman number M, the nanoparticle volume fraction φ, the permeability parameter
K1, the thermal slip parameter β2 and the radiation parameter Rd on thermal characteristics
of the flow. Figure 14 shows temperature profiles for diverse values of the Hartman number.
As the values of the Hartman number increased, fluid velocities decreased, as shown in
Figures 2 and 8. This decrement in velocities resulted in less inter-particle interaction,
due to which temperature profiles showed a decreasing trend with increasing values of
the Hartman number. The effects of the volume fraction φ on the thermal profiles were
investigated, as shown in Figure 15. The results showed a drop in temperature profiles at
higher values of the volume fraction φ. For higher volume fractions, the effective viscosity
of the mixture increased, due to which the thermal conductivity was reduced; hence, the
temperatures dropped at large values of the volume fraction φ. The main point is that the
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absence of copper and the addition of nanoparticle volume fraction in base fluid resulted
in increased thermal conductivity of the fluid; thus, by enhancing nanoparticles, the fluid
capacity was increased to accumulate the consequent temperature fall.
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Figure 15. Effects of volume fraction φ on θ.

The effect of the permeability parameter on temperature was observed. It can be
observed in Figure 16 that temperature differences enlarged at the center of the graph. By
increasing the porosity, the system leaves the temperature. Figure 16 shows temperature
profiles at different porosity levels. Notice the decreasing trend in temperature curves
corresponding to increased values of the permeability parameter. This is due to the fact
that fluid experiences less resistance for large porosity. Notice that the two parameters,
the Hartman number M and the volume fraction φ, have similar trends for velocities
and temperature distribution, whereas permeability of porous medium shows different
behavior for temperature compared to that of axial and secondary velocities. The effects of
the slip parameter β2 on the thermal characteristics of the fluid is shown in Figure 17. The
plotted results show that the slippage condition enhanced the heat transfer rate. This is
because, for large values of the slip parameter, the velocity gradients rose, which, in turn,
enhanced inter-particle interactions, generating more heat. For the radiation parameter Rd,
the temperature profiles showed a decreasing trend, as is depicted in the results plotted in
Figure 18. The temperature in the inner domain lowered when the radiation parameter Rd
increased because energy absorption reduced as the radiation parameter increased.
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3.4. Entropy Generation Analysis

The impact of entropy generation on different parameters, i.e., the nanoparticle vol-
ume fraction parameter, the radiation parameter, the Hall parameter, the heat genera-
tion/absorption parameter, the rotation parameter, and the Hartmann number (φ, Rd, m, ε1,
T′, and M) is discussed in Figures 19–24. The results plotted in Figure 19 show the entropy
production number Ns for diverse values of the Hartmann number M. In the plotted
results, the entropy generation number exhibited an inversely proportional association
with the Hartmann number, i.e., Ns dropped as the value of M increased. Notice that, for
diverse values of the Hartmann number, the difference between the entropy was maximum
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at the boundaries, whereas, in the center of the domain, this difference was the lowest.
Figure 20 shows spatial variation of the entropy parameter Ns for dissimilar values of the
Hall current parameter m. As shown above, velocity gradients increased at higher values
of m; it is, therefore, seen in the figure that the entropy generation number Ns increased
with m.
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Figure 24. Effects of heat generation ε1 on Ns.

To understand the effect of the nanoparticle volume fraction φ on the entropy produc-
tion number Ns, results were plotted for different volume fractions φ. It is noted that, by
increasing the value of the nanoparticle volume fraction φ, the entropy generation number
Ns decreased. Similarly for the radiation parameter Rd, the entropy generation number
decreased due to small thermal gradients resulting from a loss of thermal energy due
to radiation.

It is depicted in Figure 23 that Ns reduced for rising values of the rotation parameter
T′, which means that the entropy generation number increased in the absence of rotation.
The results in Figure 24 show that, for large values of heat generation or the absorption
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parameter ε1, Ns increased at the boundaries but remained constant at the center of the
domain. Notice that the difference was minimal for smaller values of ε1, evident from
the observation that the black and yellow curves resided very close to each other. It is
also worth noting that the entropy generation trend for all of the parameters showed a
decreasing trend, with the exception of the heat generation/absorption parameter, which
showed an increasing trend. Furthermore, the Hartman number, the volume fraction and
the rotation influence axial velocity and entropy generation changed in a similar manner.

3.5. Bejan Number Analysis

Figures 25–30 are portrayed to depict the influence of the Bejan number Be on various
parameters, including the heat generation/absorption parameter, the volume fraction, the
Hall parameter, the rotation, the Hartman number and radiation. Figure 25 shows the
inverse relation of the Bejan number against the Hartman number M, i.e., by increasing
values of M across the channel, the Be values dropped. It is clearly seen that the Bejan
number decreased at the starting and ending point, but it remained the same at the region
from −0.5 to 0. Figure 26 shows that Be magnified across the boundaries with increasing
values of the Hall parameter m but Be was reduced in the middle of the channel due to
reduced strengths of the magnetic field, which reduced the fluid acceleration.
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The plot in Figure 27 revealed that the Bejan number Be decelerated for greater values
of nanoparticle volume fraction φ. It is so because of the irreversibility of heat transfer,
total entropy generation is greater than entropy generation. At the center of the channel,
the trend changes whereas at the right end of channel Bejan number is almost constant for
increasing values of φ. In Figure 28, it is noted that the increasing value of the radiation
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parameter Rd resulted in a reduced Bejan number Be due to the fact that temperature
gradients drop as the radiation parameter Rd increased.
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Rotation parameter T′ has similar behavior, such as the Hartman number M having an
inverse relation with the Bejan number due to angular velocity across the boundaries of the
channel. It is seen in Figure 30 that the heat flux parameter ε1 increased the Bejan number
Be along the boundaries, whilst the dependence remained constant in the center of the
channel. The Bejan number had an increasing and decreasing trend for the Hall Effect and
the volume fraction, respectively. Rotation, radiation and the Hartman number affected the
Bejan number and entropy generation number in a similar manner. Furthermore, changes
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in the temperature distribution, entropy production and the Bejan number due to the
Hartman number was similar.
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4. Conclusions

The peristaltically moving flow of nanomaterial in a porous rotating channel with gen-
eralized complaint walls was investigated in this article. The impact of the magnetic field,
the Hall parameter, the heat source/sink, thermal radiation, Joule heating, and boundary
slip on the velocity and temperature profiles was discussed in detail. The major goal of
this research was to look at how entropy generation and the Bejan number are affected by
varying physical conditions. The following are the most important consequences:

• The axial velocity was inversely proportional to the Hartman number, the volume frac-
tion of nanoparticles, and the rotation parameters. It decreased when these parameters
were increased.

• The axial velocity increased when the porosity and first order slip parameters
were increased.

• Secondary velocity decreased with the increase of the Hartmann number and the
nanoparticle volume fraction.

• Increasing the Hall parameter, porosity parameter, secondary velocity slip parameter,
and rotation parameter improved secondary velocity.

• The temperature profile was enhanced for only the thermal slip parameter, demon-
strating temperature rises due to slip effects.

• The temperature dropped for increasing values of the Hartman number, the Hall
parameter, porosity, and the radiation parameters.

• Increasing the Hall parameter and the heat generation/absorption parameter enhanced
the amount of entropy generation.

• Entropy was reduced for large values of the Hartman number, the nanoparticles
volume fraction, the radiation parameter, and the rotation parameter.

• The alternative behavior for the Hall parameter and the nanoparticles volume fraction
was represented by the Bejan number.

• Due to the pressure drop throughout the length of the channel, the Bejan number rose
in relation to the heat generation/absorption parameter.

• The Bejan number and entropy generation had the same behavior when it came to
physical parameters such as the rotation parameter, the radiation parameter, and the
Hartman number.
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Nomenclature

List of Symbols Greek Symbols
T Fluid temperature (K) φ Nanoparticles volume fraction
T0 Lower wall temperature (K) ρ Fluid density (kg m−3)
T1 Upper wall temperature (K) ψ Stream function (m2 s−1)
Tm Mean Temperature of nanofluid µ Dynamic Viscosity (kg m−1 s−1)
cp Specific heat (J kg k−1) υ Kinematic Viscosity (m2 s−1)
Ω Angular speed σ Electric conductivity (Sm−1)
Ns Entropy generation κ Thermal conductivity (W m−1 k−1)
Be Bejan number R Dimensionless heat flux parameter
Pr Prandtl number ε1 Heat generation/absorption parameter
Ec Eckert number δ Wave number
Br Brinkman number Subscript
M Hartmann number n f Nanofluid
u, v, w x, y, z velocity component (m s−1) F Base fluid
Re Reynolds number P Particle of nanofluid
Bo Strength of magnetic field (T) eff Effective
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