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Abstract: Electrodialysis using anion-exchange membranes (AEMs) and cation-exchange membranes
(CEMs) has been widely used for water desalination and the management of various ionic species.
During commercial electrodialysis, the available area of an ion-exchange membrane is reduced by
a non-conductive spacer that is in contact with the AEM/CEM. Although multiple reports have
described the advantages or disadvantages of spacers, fewer studies have explored the effects of
spacers on the mass transport effect of the reduced membrane area excluding the fluid flow change.
In this paper, we present our experimental studies concerning mass transport in microfluidic elec-
trodialysis systems with partially masked ion-exchange membranes. Six different types of masking
membranes were prepared by the deposition of non-conductive films on parts of the membranes. The
experimental results showed that the overlapped types (in which masking was vertically aligned in
the AEM/CEM) exhibited a larger electrical conductance and better current/energy efficiency, com-
pared with the non-overlapped types (in which masking was vertically dislocated in the AEM/CEM).
We also observed that a reduction in the unit length of the unmasked ion-exchange membrane
enhanced overall mass transport. Our results demonstrate the effects of patterned membranes on
electrical resistance and desalination performance; they also identify appropriate arrangements for
electromembrane systems.

Keywords: ion exchange membrane; electrodialysis; desalination; nanofluidics; electroconvection

1. Introduction

Ion-exchange membranes featuring many nanopores have attracted considerable at-
tention from researchers in various fields; such membranes exhibit unique mass transport
characteristics and ion selectivity. Workers in the field of eco-friendly and renewable
energy commonly use ion-exchange membranes during the analysis of fuel cells, redox
flow batteries, electrodialysis, and reverse electrodialysis [1–4]. Electrodialysis is a mature
technology; desalination employs ion-exchange membranes [2–4]. Electrodialysis (which is
driven by electrical energy) is simple, scalable, and easily controllable; it efficiently treats
brackish water [5]. A conventional electrodialysis system features ion-exchange mem-
branes, electrodes, a spacer, and fluidic compartments; it operates via the electrophoretic
migration of cationic/anionic species (driven by an electric field) through permselective
membranes [2]. A spacer embedded between the anion-exchange membrane (AEM) and
the cation-exchange membrane (CEM) is typically used to separate the membranes, thus
providing a physical space for fluid flow [6–8]. The spacer (if meshed) also promotes
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electrolyte mixing in the fluidic channel [9]. Woven or non-woven meshes fabricated from
non-conductive polymer materials are commonly used; the winding and complicated flow
becomes turbulent, enhancing bulk electrolyte mixing [8,10–12]. Such mixing (caused by
geometrical features) mitigates concentration polarization near the membranes, thus re-
ducing the electrical resistance of the fluidic channel [6,7,9]. Considering these advantages,
several experimental and numerical studies have sought to modify the geometry of the
net to change the flow patterns and further alleviate concentration polarization [9,13–17].
Studies regarding multi-layer spacers (i.e., a middle spacer and two thin outside spacers)
revealed that such spacers exhibited Sherwood numbers that were 30% higher (at the same
crossflow power consumption) than the Sherwood numbers of commercial, non-woven
single-meshed spacers [11,18]. Although the spacer mitigates concentration polarization
(as described above), the intrinsic limitation of the shadow effect (also termed the screening
effect; i.e., the reduction in membrane area involved in ion exchange) has been a consid-
erable problem [19,20]. Alternative approaches include the use of an ion-exchange resin
or a profiled membrane without a spacer [20–27]. A spacer coated with ion-exchange
resin performed better as compared to a non-coated spacer because ion conductivity was
enhanced [21]. Another study presented a novel ion-exchange membrane that protruded
from the membrane surface; the membrane exhibited lower hydraulic friction (and hence,
a higher Reynolds number) than did a conventional spacer stack [22–27].

Although many efforts have been made to overcome the shadow effect and improve
the electrical performance in electrodialysis, few experimental studies concerning the
shadow effect itself (not the coupling results after chaotic flow changes in meshed struc-
tures) have been performed. It is impossible to decouple the effects of ion-exchange
membrane screening when a spacer embeds between the AEM and CEM. When perform-
ing fundamental studies of partially masked ion-exchange membranes (i.e., experiments
decoupled from changes in physical flow), it is essential to use a microscale electrodialysis
device with partially masked ion-exchange membranes and no spacer between the AEM
and the CEM.

In this study, we examined the electrical responses of a microfluidic electrodialysis
system with partially masked ion-exchange membranes. We prepared six microscale elec-
trodialysis devices in which the AEM/CEM masked lengths, locations, and vertical overlap
ratios differed. The current–voltage responses associated with the various types of masking
are presented. In addition, we conducted a comparison of the desalination performance
in terms of current efficiency and the energy required for ion removal. We visualized the
fluidic channels to observe the flow behaviors on the AEM/CEM masked surfaces; we
added fluorescent dye to the feed solution. Our results should aid in electromembrane-
mediated desalination.

2. Materials and Methods
2.1. Concept

Electrodialysis features two types of ion-exchange membranes. Depending on the
surface charge polarity, a CEM allows only cations to pass; an AEM allows only anions to
pass. Figure 1a shows a schematic of electrodialysis; the cations/anions migrate toward
the cathodic and anodic sides of the electric field, respectively. Considering the ion-
selective membrane properties, local ion-depleted and -enriched streams are generated,
thus triggering ion concentration polarization across the ion-exchange membranes. Because
of the opposite polarities of the charged surface, ion depletion zones develop on the CEM
surface of the anodic side and on the AEM surface of the cathodic side. Therefore, as flow
develops, the salt concentration (i.e., the salinity) of the main channel (the second channel
from the top) is diluted by the two depletion streams, whereas the salt concentrations of
the side channels (the first and third channels from the top) become more concentrated
because they host the two enrichment streams. This is the basic principle of electrodialysis.
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two PDMS blocks featured four and two pairs of deep slots for the membranes and elec-
trodes, respectively. After the membranes (AMHPP/CMHPP; MEGA Inc., Hodonín, 
Czech Republic, USD 173/m2) and electrodes (Spectracarb 2050A-1550; Fuel Cell Store, 
College Station, TX, USA) were added, the bottom PDMS block was bonded immediately 
after plasma treatment (Cute; Femto Science, Hwaseong, Korea). 
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Figure 1. A schematic of electro-membrane desalination and the ionic current path. (a) Electrodialysis
and (b) the ionic current path when an ion-exchange membrane is partially masked. Blue and red
arrows indicate the transport of cations (alpha) and anions (beta) by the electric field. The less bright
region shows the ion depletion zone and the darkest region shows the ion enrichment zone. An
anion-exchange membrane (AEM) and a cation-exchange membrane (CEM) are used for counter-ion
transport. Section A (red dotted box in the depletion zone near the CEM) is magnified on the right; it
shows the modified cation path.

During conventional electrodialysis, a spacer is embedded between the ion-exchange
membranes to accommodate fluid flow in a fluidic channel, although this partially shields
the membrane surfaces if the spacer is non-conductive. As shown in Figure 1b, such
local membrane screening creates several problems related to the so-called “shadow ef-
fect”, including non-uniform ionic current flux and decreases in the effective membrane
areas. However, it is difficult to evaluate the effect of partial membrane masking on ion
transport in the absence of the spacer because the flow pattern is changed by the spacer.
Thus, we fabricated microfluidic channels containing masked ion-exchange membranes
without spacers.

2.2. Fabrication and Experimental Setup

Figure 2a shows a schematic of the fabrication of polydimethylsiloxane (PDMS)-
based microscale electrodialysis systems with partially masked ion-exchange membranes.
To ensure that commercial ion-exchange membranes and electrodes of high aspect ratio
(i.e., with deep slots) could be placed between shallow microfluidic channels, the PDMS
mold was fabricated using a three-dimensional printer (SLA ProJet 7000 HD, 3D systems,
Rock Hill, PA, USA) that readily creates microstructures of high aspect ratio [5,28–33].
The two PDMS blocks featured four and two pairs of deep slots for the membranes and
electrodes, respectively. After the membranes (AMHPP/CMHPP; MEGA Inc., Hodonín,
Czech Republic, USD 173/m2) and electrodes (Spectracarb 2050A-1550; Fuel Cell Store,
College Station, TX, USA) were added, the bottom PDMS block was bonded immediately
after plasma treatment (Cute; Femto Science, Hwaseong, Korea).

We modified two ion-exchange membranes (one CEM/one AEM); four and two
unmasked ion-exchange membranes were used in their original states. The non-conductive
layers on the ion-exchange membrane were created by using non-conductive masking
film (TP-1031BSM; Nitto Denko, Osaka, Japan) of 30 µm thickness. Note that the partially
masked membranes were placed in front of the main channel (i.e., in the dilute channel, the
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second channel from the top) to ensure that they dramatically affected the ionic current
flux; the electrical resistance of electrodialysis is dominated by the depletion zone.
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Figure 2. (a) Schematics of PDMS-based microscale electrodialysis fabrication and the masked
ion-exchange membranes. Masking film of 30 µm thickness was deposited onto the ion-exchange
membranes (a pair of AEM/CEM) to physically block the nanopores. The masked membranes were
embedded in the second channel (the main channel) from the top; the unmasked membranes were
embedded in the first and third channels. The Ag/AgCl electrode was inserted between the first and
second channels to measure the electrical responses in the main channel (red dotted box at bottom).
(b) A photograph of the overall experimental setup.

Figure 2b shows the experimental setup for microfluidic electrodialysis; this allows
visualization of flow/concentration and measurement of electrical responses. To apply
electric potential and measure the current between the electrodes (i.e., from the anode to
the cathode), we used a source measurement unit (SMU, Keithley 236; Keithley Instruments
Inc., Cleveland, OH, USA) when shear flow (1 mm/s) was applied by a syringe pump
(Fusion 200-X; Chemyx Inc., Stafford, TX, USA). To measure the specific potential of the
dilute channel, Ag/AgCl electrodes were connected to a multimeter (34401A; Agilent
Technologies, Inc., Santa Clara, CA, USA). We used a fluorescent dye (Alexa 488 triethy-
lammonium; Thermo Fisher Scientific, Waltham, MA, USA) as a salt concentration tracer
when visualizing flow and mass transfer. In addition, a benchtop conductivity meter (Star
A215 pH/conductivity meter; Orion/Thermo Fisher Scientific) was used to monitor con-
centration changes in the dilute channel; flow-thru conductivity probes (16-900 flow-thru
conductivity electrode, Microelectrodes Inc., Bedford, NH, USA) were placed downstream.
Sodium chloride solution (NaCl, 10 mM) served as the feed in all experiments while sodium
sulfate solution (Na2SO4, 5 mM) was used as rinsing solution.

2.3. Ion-Exchange Membranes with Non-Conductive Masking Films

To investigate the effects of the masking pattern and masking itself on the ion-exchange
membranes, we prepared five different types of AEM/CEM membranes that differed in
terms of masked length, position, and vertical overlap. Figure 3 shows a schematic of
all five types. The intermembrane distance between the AEM and CEM is represented
as “d”; this was kept constant at 1.5 mm. The masked and unmasked lengths of the
membranes are denoted as “Lm” and “LIEM”, respectively; their sum is the total channel
length (L), which, in this study, was held constant at 10 × d (i.e., 10 d) = 15 mm. Most ion
transport occurred through the unmasked surfaces of the membranes (LIEM), not through
the masked regions (Lm); the non-conductive film totally blocked the nanopores. To ensure
a fair comparison of the different masked lengths (Lm = 5d, 2.5d), we held the effective
(unmasked) membrane length (5d, the summation of LIEM) constant at 50% of the total
membrane length. We also considered the vertical masking alignment; masking overlap on
the AEM and CEM can enhance or hinder ion transport, depending on the configuration.
Thus, we distinguished whether the masking positions of the AEM/CEM were the same
or different using the descriptors “Lm,ov” (overlapped) and “Lm,non-ov” (non-overlapped),
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respectively. For Lm = 5d, we defined two different types of masking depending on the
positions of the masking film; Lm,ov = 5d (C) and Lm,ov = 5d (R) indicated that the film was
in the center or on the right side of the membrane, respectively. A reference (no masking
film, Lm = 0) was also prepared.
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Figure 3. Schematic of the main channel with the five types of masking. All membranes were
prepared using non-conductive masking film to cover the same areas, but the patterns differed in
terms of unit masking length and local position. “d” is the intermembrane distance between the AEM
and the CEM, and thus, represents the width of the fluidic flow channel. “LIEM” and “Lm” are the
unmasked and masked lengths, respectively. The total length, “L” (= 10d = 15 mm), is the sum of the
masked and unmasked lengths. Lm,ov and Lm,non-ov differed according to the vertical alignment of
the masked regions of the AEM/CEM. Of the Lm = 5d membranes, the masking film was located on
the right side (Lm,ov = 5d (R)) or the center of the membrane (Lm,ov = 5d (C)).

3. Results and Discussion
3.1. Fluorescent Visualization of the Flow Channel

After device fabrication, we visualized the main dilute channels of the six different
membrane types. We used a fluorescence microscope and NaCl solution with a fluorescence
dye to observe the behavior of the ion-depletion zone in each dilute channel. Figure 4
shows the fluorescent visualization of the six different membrane types under the same
shear flow velocity (1 mm/s). The yellow and green regions indicate the unmasked AEM
and CEM regions, respectively; the black regions are the masked regions. As shown in
Figure 4a, it was difficult to distinguish existence and block of ionic current flow through
unmasked and masked IEMs, respectively, due to the stable laminar stream at relatively
low voltage (4 V, Ohmic-limiting regime). Accordingly, a comparatively high voltage (30 V,
overlimiting regime) was applied in all cases to observe electroconvection; it is convenient
to assess membrane masking and ion transport by creating electroconvective vortices, such
as that shown in Figure 4b. Specifically, vortices arise on membrane surfaces because strong
ionic currents pass through the membranes at the overlimiting regime. On the other hand,
growing vortices are not observed on the masked surfaces (non-conductive film deposited)
of ion-exchange membranes; the vortices develop near the membranes. In general, vortices
no longer grow when the feed flow enters masked membrane regions; vortices grow again
when they meet the unmasked membrane regions. We thus confirmed that the masking
film prevented ion transport through the membranes by physically blocking the nanopores.
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on the membrane surfaces (green and yellow dotted boxes) but not in the masked areas (white dot-
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Figure 4. Fluorescence images of the main channel (i.e., dilute channel) at a constant voltage
(a) V = 4 V (top, limiting regime) and (b) 30 V (bottom, overlimiting regime)) under shear flow
velocity (u = 1 mm/s) for the six different membranes. Electroconvective vortices were created
to explore whether the membranes were adequately masked by the non-conductive film. Vortices
developed on the membrane surfaces (green and yellow dotted boxes) but not in the masked areas
(white dotted boxes).
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3.2. Current Density–Voltage Response

Figure 5a shows the electrical responses of the system for the various membrane types
(reference, Lm,ov = 5d (R), Lm,ov = 5d (C), Lm,ov = 2.5d, Lm,non-ov = 5d, and Lm,non-ov = 2.5d).
We measured the current between the anode and the cathode at a voltage sweep rate of
0.2 V/30 s and a constant shear flow velocity (1 mm/s). To monitor only the voltage
drop of the main channel (thus excluding the voltage drops of the anodic/cathodic rinsing
channels), we installed Ag/AgCl electrodes that measured only the effective voltage
(Veff). As shown in the current density and voltage curves, the Ohmic (Veff < 0.5 V) and
overlimiting (Veff > 0.5 V) regimes were readily distinguishable in all cases; the Ohmic
conductances and limiting current densities are summarized in Figure 5b.
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Figure 5. Electrical responses of the six different types as revealed by (a) current density–voltage
curves. The current was measured between the anode and the cathode at a voltage sweep rate of
0.2 V/30 s, from 0 to 3 V. The voltage (Veff) was measured by Ag/AgCl electrodes; this was the cell
voltage of the main (dilute) channel. (b) Ohmic conductances and limiting current densities (LCD).
The Ohmic conductances were calculated from the experimental data (the J–V curve) of the Ohmic
(Veff < 0.5 V) regime at a limiting current density of Veff = 0.5 V. All experiments were repeated at
least three times; the results were similar. The Ohmic conductances indicated that the mass transports
of Lm,ov membranes were higher than the mass transports of the other patterned (Lm,non-ov) and
reference membranes.

The electrical responses demonstrated two clear tendencies. First, the Ohmic conduc-
tance of the Lm,non-ov = 5d membrane was considerably lower than the Ohmic conductances
of the other membranes. Dislocation of the AEM/CEM masked regions apparently hin-
dered uniform ion transport and, thus, increased the electrical resistance of the main
channel. Notably, dislocation of the masked regions did not always greatly increase the
electrical resistance; the Ohmic conductance of the Lm,non-ov = 2.5d membrane remained
higher than the Ohmic conductance of the Lm,non-ov = 5d membrane and was similar to
the Ohmic conductance of the other overlap types. Therefore, pattern dislocation itself
does not dominate Ohmic conductance, although it can be important when the masked
length is long. It is reasonable to consider the masked length relative to the intermembrane
distance; ion transport is determined by both the horizontal and vertical length. Second, a
short unmasked length (LIEM) enhanced mass transport; the Ohmic conductance rose in the
following order: reference (Lm = 0), Lm,ov = 5d (R), Lm,ov = 5d (C), and Lm,ov = 2.5d. It was
previously reported that a longer the ion-exchange membrane leads to higher electrical re-
sistance and lower areal efficiency, considering the increasing thickness of the ion-depletion
zone [5]. Thus, to enhance ionic current through an ion-exchange membrane, the unit
membrane length exposed to the electrolyte should be short because the total membrane
length is constant. In our experiments, the unit unmasked length (LIEM) values of the
reference, Lm,ov = 5d (R), Lm,ov = 5d (C), and Lm,ov = 2.5d membranes were 10d, 5d, 2.5d,
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and 2.5d, respectively. Thus, the trend that we observed is consistent with the cited report.
We also provide overlimiting conductance for all types, but their values are relatively small
and do not show significant differences.

3.3. Desalination Performance

We next examined the desalination performances of the various masked membranes.
Figure 6 shows the experimental current efficiencies (CEs) and energy per ion removal
(EPIR) at a constant current density (J = 2 mA/cm2) for all masked patterns. We now
introduce CE and EPIR as follows:

CE =
zFQdesalted(C 0−Cdesalted)

NI
(1)

EPIR =
IVeff/Qdesalted

zkBT(C 0−Cdesalted)
∝

Veff
CE

(2)

where z, F, kB, and T indicate the ion valence, Faraday’s constant (96,500 C·mol−1), Boltz-
mann constant and temperature, respectively. Veff is the effective voltage, I is the current, N
(=1) is the electrodialysis cell number, and C0 is the feed bulk concentration. Cdesalted and
Qdesalted are the concentration and volumetric flow rate of the desalted channel (i.e., the
main channel), respectively. CE indicates how efficiently current is used for the ion’s
removal from desalted streams, and the EPIR is the amount of energy consumed when
rejecting the unit ion. Ideally, CE = 1, because all electrical current should reflect counter-ion
transport through the ion-exchange membranes. However, the CE becomes < 1 in practical
use because of current leakage, the imperfect permselectivities of the CEM/AEM, and
back-diffusion [34].

At the same current density (J = 2 mA/cm2), the feed concentration (10mM) was de-
salted to dilute the output with concentration ranging from 9.06 to 9.2mM, and we observed
that most partially masked membranes (except the Lm,non-ov = 5d membrane) exhibited
higher CE values compared with the reference membrane (Lm = 0). Thus, although the
area of the ion-exchange membrane (LIEM) was reduced by the masking film, the current
efficiency improved, consistent with the current–voltage responses (Section 3.2). This is
principally because a short membrane length (LIEM) is associated with less electrical resis-
tance, thereby enhancing mass transport. Furthermore, we found that the non-overlapped
membranes (Lm,non-ov = 5d) exhibited higher EPIR values (red bars) than did the overlapped
types (Lm,ov = 5d). As shown above, the non-overlapped membranes were associated with
larger voltages and increased electrical resistance in the fluidic channel, eventually increas-
ing the EPIR, which is known to be dominated by the effective voltage (Veff). It is assumed
that the masking pattern was probably longer relative to the intermembrane distance
since the Lm,non-ov = 2.5d membrane exhibited a better EPIR than did the Lm,non-ov = 5d
membrane, although the Lm,non-ov = 2.5d membrane was a non-overlapped membrane. As
discussed in Section 3.2, because the Lm,non-ov = 2.5d is a lower ratio (Lm/d = 2.5) than
Lm,non-ov = 5d (Lm/d = 5), the ion transport of the non-overlapped membrane was not sig-
nificantly compromised. Based on the assumption, we added two cases (Lm,non-ov = 1.67d,
1.25d) to determine critical Lm values at which this overlap effect became negligible. As
can be seen Figure 6, it is reasonable to assume that Lm,non-ov = 2d would be the critical
masking length for the overlap effect.
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Figure 6. Desalination performances afforded by partially masked ion-exchange membranes. The
CE and EPIR values were calculated from desalination experiments performed at constant current
density (J = 2 mA/cm2). The CE values of Lm,ov membranes were enhanced to a greater extent than
the CE values of the other membranes (Lm,non-ov, reference). In terms of the EPIR values (expressed
as functions of CE and voltage (Veff)), the values for the non-overlapped membranes were almost
twofold greater than the values for the Lm,ov and reference types, principally because the EPIR values
are dominated by voltage increments rather than the CE values.

4. Conclusions

We experimentally explored the effects of partially masked ion-exchange membranes
on the electrical responses and current/energy efficiency of electrodialysis. Non-conductive
masking film was patterned onto membranes with or without vertical alignment (over-
lapped or non-overlapped) of the AEM/CEM. We found that the overlapped membranes
exhibited larger Ohmic conductances, compared with the non-overlapped and reference
types. In particular, the Lm,ov = 2.5d membrane exhibited the largest conductance because
its masking and unmasking unit lengths were smaller than the masking and unmasking
unit lengths of the other types; this enhanced mass transport through an AEM/CEM.
Similar to the Ohmic conductance findings, the limiting current density of the Lm,ov = 2.5d
membrane type was also large (70% greater than the reference value). In contrast, the
non-overlapped membranes exhibited lower Ohmic conductances compared with the
overlapped and reference types. In terms of current/energy efficiency, the overlapped
membranes exhibited larger current efficiencies and better EPIRs than did the other types,
considering the enhanced ion transport through the AEM/CEM (as mentioned above).
Thus, our results suggest that shortening of the masking length and overlapping of the
masking pattern improved mass transport, as compared with transport in the absence of
masking (i.e., the reference type). Regarding the masking length, although it was a little bit
larger than those in the actual electrodialysis (~0.1 mm) and a previous numerical study
with smaller pattern size has been reported [35], this is a first experimental demonstration
of partially masked ion-exchange membranes, and follow-up studies with more exquisite
screening patterns can be expected. Based on the scientific studies on microfluidic systems,
it is also meaningful to apply real industrial electrodialysis system. Therefore, we believe
that our work will serve as the basis of future studies exploring geometrical factors that
further enhance electromembrane performance.
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