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Abstract: The fast tool servo (FTS) control strategy is the control core of high-speed noncircular
turning. This method should ensure high-speed and precision positioning and have the corresponding
anti-interference ability in the micro-stroke motion with dynamic changes of tool feed and load. Most
of the previous FTS control studies used the repetitive control and speed feedforward control strategy,
which achieved promising results under ideal machining conditions. However, this strategy showed
some defects in the real-world complex and changeable working conditions such as time-varying
cutting force, intermittent cutting and fluctuating machine spindle speed. This paper proposed
and implemented a compound proportional integral derivative control strategy based on input
feedforward and dynamic compensation in noncircular turning. This technique successfully met the
motion requirements of the high responsiveness of micro-stroke in noncircular turning and overcame
disturbances from complex time variations of the cutting force, intermittent cutting case of the product
and fluctuations of machine spindle speed. According to the findings, the machining tracking error
was less than ±2 µm. Experimental results demonstrated the excellent tracking performance and
machining effect of this control strategy.

Keywords: feedforward; PID; dynamic compensation; noncircular turning

1. Introduction

The motion characteristics of high-speed noncircular turning necessitate that the
fast tool servo (FTS), which performs cutting feed, have high positioning accuracy and
dynamic response performance. Importantly, the most challenging control criterion is that
the FTS should not only ensure high speed and precision positioning but also have the
anti-interference ability in the micro-stroke motion with dynamic changes of tool feed
and load. Therefore, the control strategy of FTS in noncircular turning is crucial. Figure 1
shows the FTS structure. The FTS is equipped as the U-axis on the X-axis of a typical CNC
lathe, with the X-axis performing the preliminary motion and the U-axis performing the
high-frequency micro-motion that is synchronised with the spindle rotation and the motion
of the Z-axis to cut the noncircular part.

Researchers have studied FTS in various ways. Some scholars proposed novel FTS
mechanisms to facilitate noncircular turning. They developed a new piezoelectric actuator
(PEA)-based FTS mechanism to incorporate additional functions to the general CNC sys-
tem [1]. Different motor devices, such as noise voice coil motor and linear motor, among
others, have also been studied as FTS drivers [2]. Some scholars investigated processing
technology and parameter optimisation in noncircular turning to assess the processing
performance of FTS [3,4]. In fact, all designs eventually require servo control, which

Micromachines 2022, 13, 341. https://doi.org/10.3390/mi13020341 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13020341
https://doi.org/10.3390/mi13020341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13020341
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13020341?type=check_update&version=3


Micromachines 2022, 13, 341 2 of 14

emphasises the need for more control strategy research. Proportional integral derivative
(PID) regulation is often used in traditional control strategies [5–8]. Many scholars have
improved the basic PID principles in various applications [9–11]. Moreover, servo control
directly affects the precision of non-circular machining; many studies have focused on the
FTS control strategy [12]. For example, Zhang Y et al. proposed a PID controller based on
feedforward and feedback PID control strategy; the controller was designed and embedded
in the motion controller applied in noncircular piston turning [13]. Wang H et al. proposed
some control solutions of fast tool servo in noncircular piston turning, they used new
mechanisms as fast tool servo to meet requirements of turning [14]. Ma et al. presented a
fast tool servo (FTS) system based on piezoelectric (PZT) voltage feedback and topology
optimization, which was done to reduce the mass and compliance of the structure [15].
Mikalsen R et al. proposed the predictive piston motion control strategy in the free-piston
internal combustion engine [16]. Wu D et al. designed repetitive control and feedforward
control to obtain FTS frequency and load to meet noncircular machining requirements,
with some of them considering the effects of velocity fluctuations [17].
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Figure 1. Fast tool servo structure. (a) Fast tool servo architecture; (b) Fast tool servo physical structure.

Most previous FTS control studies based on various control strategies, such as speed
feedforward control strategy, achieved good results under ideal machining conditions.
However, when these strategies were applied to machining in actual working conditions,
the machining effect was not ideal due to time-varying cutting forces, intermittent cutting
and poor machining accuracy. After comparing the advantages and disadvantages of the
speed feedforward control strategy, this paper proposed and applied a compound PID
control strategy based on input feedforward and dynamic compensation in noncircular
turning. This strategy successfully meets the motion requirements of the high response of
micro-stroke in noncircular turning and overcomes disturbances from the time-varying
complexities of the cutting force, the intermittent cutting case of the product and fluctua-
tions in the machine spindle speed.

2. Mathematical Model of FTS

Figure 1 shows that the tool servo unit is used as the U-axis and mounted on the
rough-positioned X-axis. Notably, the tool position along the X-axis must be properly
synchronised with the spindle position for cutting the noncircular cross-section, which
requires a high-speed, high-precision and high-frequency performance of the cutter control
device. It is necessary to study the mathematical models of the motor and cutting force for
effective control of the FTS.



Micromachines 2022, 13, 341 3 of 14

2.1. Mathematical Model of the Motor

The mathematical model of the linear motor includes the voltage equation, the electro-
magnetic thrust equation and the mechanical motion equation.

A closer look at the motor structure reveals that a rotating motor can be referred to to
construct a mathematical model of a permanent magnet synchronous linear motor. The
specific idea is to use Clarke transformation to transform the system variable abc from
the three-phase stationary coordinate system to the α− β two-phase stationary coordinate
system according to the principle of coordinate transformation, and then use Park trans-
formation to transform to the d− q two-phase synchronous rotating coordinate system.
Finally, the mathematical relationship between output thrust and motor variables of the
magnet synchronous motor (PMSM) is obtained [18,19]. Figure 2 shows the correspondence
between the abc, α− β and d− q coordinate systems.
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(1) Voltage equations for a linear motor
According to the conversion relation of the three coordinate systems shown in Figure 2

and the principle of vector control, the d− q voltage equation of the mathematical model of
a permanent magnet synchronous linear motor can be expressed as follows [20]:{

ud = Rsid + Ld
did
dt −

π
τ vϕq

uq = Rsiq + Lq
diq
dt + π

τ vϕd
(1)

where ud and uq represent the primary voltages of the d and q axes of the linear motor,
respectively; RS is the equivalent resistance of a primary winding of the linear motor; id
and iq are the currents of the d and q axes, respectively; Ld and Lq are the inductances of
the d and q axes, respectively; v is the speed of the linear motor; τ is the pole distance of
permanent magnet of the linear motor; and ϕd and ϕq are the flux chains of the d and q
axes, respectively, whose flux formula is shown in the following equation.{

ϕd = Ldid + ϕ f
ϕq = Lqiq

(2)

where ϕ f is the permanent magnet excitation fundamental flux chain of the linear motor.
(2) Electromagnetic thrust equation of the linear motor
The electromagnetic thrust equation of a permanent magnet synchronous linear motor

can be expressed as follows:

Fe = K
[

ϕ f iq +
(

Ld − Lq
)
idiq
]

(3)

where Fe is the electromagnetic thrust of the linear motor and K = 3π
2τ is the inverse electric

system constant of the linear motor.
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Ideally, the inductances of the d and q axes could be considered equal, Ld = Lq = L.
Hence, Equation (3) could be converted into Equation (4) as follows:

Fe = K f iq (4)

where K f =
3π
2τ ψ f is the electromagnetic thrust coefficient of the linear motor.

(3) Mechanical motion equation of the linear motor
According to the analysis of the motion force of the linear motor, the mechanical

motion equation can be expressed as follows:

ms
dv
dt

+ Bv + Fl = Fe (5)

where ms is the moving mass of the linear motor, v is the speed of the linear motor, B is
the friction coefficient, Fl is load resistance and Fe is the electromagnetic thrust of the linear
motor.

To sum up, Equations (1), (4) and (5) constitute a brief mathematical model of the
permanent magnet synchronous linear motor.

The FTS system is a closed-loop system with position feedback driven by a linear
motor. The control system uses a three-ring control structure of position, speed and current,
with PID/PI/PI as the control mode, respectively. The basic PID control model of the FTS
can be obtained via the linear motor mathematical model, as in Figure 3.
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In Figure 3, Kpp is a scale factor, Kpi is an integral coefficient, Kpd is a differential
coefficient, Kvp is a scale coefficient, Kvi is an integral coefficient and Kip is a proportional
coefficient. Furthermore, R(s) and Y(s) are the input and output signals of the system,
respectively, and E(s) is the deviation signal of the system. The stability of the system and
the nature of dynamic response can be proved by analysing the dynamic characteristics of
current, velocity and position rings.

2.2. Mathematical Model of the Cutting Force

Because the cross-section of the noncircular part is usually elliptical, its high-frequency
noncircular turning uses the multi-axis control feed mode, as in Figure 4a. Figure 4a shows
that FTS micro feed is performed for every differential resolution angle according to the
real-time feedback angle of the spindle encoder. The tool trajectory approximates the
noncircular contour with a segment of tiny arc (Figure 4b).
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The equation of the polar diameter R with an angle of θ on elliptical contour is shown
as follows [21]:

R =
√

a2 cos2 θ + b2 sin2 θ (6)

In Equation (6), θ ∈ [0, 2π], a is the length of the long axis, b is the length of the short
axis. Equation (6) can be transformed into time-based equations of motion as follows:

R =
√

a2 cos2(2πnt) + b2 sin2(2πnt) (7)

where n is the speed of the spindle.
The tool’s starting position is set at the long axis vertex of the elliptical contour and

its initial value is set to zero. The motion trajectory equation of the tool can be deduced
as follows:

x = a− R

= a−
√
(a cos(2πnt))2 + (b sin(2πnt))2 (8)

Based on Equation (8), the velocity and acceleration mathematical model of the tool
can be calculated further.

The turning force of the noncircular surface part is the main interference force, which
directly affects the motion control of the cutting tool. In noncircular turning, the cutting
force of the tool is uneven and dynamic. However, the force on a static point is similar to
that on a normal circular section, which contains tangential force Fc, radial force Fp and
axial force Ff . The exponential empirical equations for cutting forces are as follows:

Fc = KFc · axFc
p · f yFc · (60vc)

nFc

Fp = KFp · a
xFp
p · f yFp · (60vc)

nFp

Ff = KF f · a
xF f
p · f yF f · (60vc)

nF f
(9)

where KFc, KFp and KF f are the influence coefficients of the workpiece material on the
cutting force; xFc, xFp and xFf are the influence coefficients of back feed on the cutting
force; yFc, yFp and yFf are the influence coefficients of feed on the cutting force; nFc, nFp
and nFf are the influence coefficients of cutting speed on the cutting force; ap is the back
engagement of the cutting edge (mm); f is feed (mm/r); vc is the cutting speed (m/s).

Equation (9) shows that, although the force analysis of noncircular turning is the
same as that of the normal turning at a particular moment, the ap and vc values of each
elliptical cross-section are constantly changing in the actual machining process, meaning
that the cutting force is also constantly changing. Equation (9) can be converted into
Equation (10), which is based on time t. For noncircular turning, the radial force Fp acts
directly on the radial motion of the tool, which is the main interference force. Therefore,
the electromagnetic driving force of the FTS system should be greater than the sum of the
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radial partial force Fp and the moving inertial force when the radial friction force is ignored.
The force equation is shown as follows:

F = Fp + ma
= KFp · ( a−b

2 (1− cos 4πnt))
xFp · f yFp·

(60(2π(r− a−b
2 (1− cos 4πnt))n/1000))

nFp

+m( 4π2n2(a2−b2) cos(4πnt)
R +

π2n2(a2−b2)
2 sin2(4πnt)

R )/1000

(10)

where m is the mass of the moving part of the noncircular feed system and n is the speed of
the spindle.

3. Compound PID Control Strategy Based on Speed/Acceleration Feedforward
3.1. Compound Feedforward PID Control Principle

Many researchers combined feedforward and PID control to solve the problem of
control lag and improve the tracking effect of the system on the input signal. Figure 5
shows the structure of the compound feedforward PID control in which F(s) is the transfer
function of the feedforward control, G(s) is the transfer function of the PID feedback
control, P(s) is the transfer function of the control object, R(s) is the input signal, Y(s) is
the output signal and E(s) is the deviation of the input and output signals.
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The closed-loop transfer function of compound feedforward PID control can be ex-
pressed as follows:

Gb(s) =
Y(s)
R(s)

=
P(s)(F(s) + G(s))

1 + G(s)P(s)
(11)

The transfer function of the system control deviation E(s) can be expressed as follows:

E(s) =
1− F(s)P(s)
1 + G(s)P(s)

R(s) (12)

It is necessary to make the control deviation E(s) = 0 to achieve no lag between the
output and input of the system.

3.2. Application of Velocity/Acceleration Feedforward PID Control in Noncircular Turning

The compensation signal of the speed feedforward is used for improving the response
precision of system speed in the control of FTS based on the combination of PID control
and speed and acceleration feedforward. The compensation signal of the acceleration
feedforward can effectively suppress the overshoot caused by the speed feedforward
control.

Figure 6 shows the controller model for speed and acceleration feedforward, in which
Kv f is the speed feedforward and Ka f is the acceleration feedforward.
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Figure 6. Speed/acceleration feedforward controller model.

The PID control strategy of velocity and acceleration feedforward can achieve a good
control effect when there is no load and no consideration of cutting force. Figure 7 shows a
waveform diagram of the tracking error under no load machining, with a feed speed of
240 mm/min, a spindle speed of 1200 rpm, an ellipse of 0.5 mm and a profile of 0.1 mm.
The maximum tracking error is ±1.3 µm.
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Figure 7. Tracking error of velocity and acceleration feedforward control under no-load machining
(xPE is the abbreviation of tracking error).

However, the cutting force acting as the main interference constantly changes in the
actual turning process. As a result, the PID control strategy of velocity and acceleration
feedforward cannot effectively deal with these disturbances. Figure 8a shows that the
tracking performance of the arc top deteriorated. The tracking error map of Figure 8b
shows that the maximum tracking error is up to 14 µm, with a significant fluctuation in the
tracking error at the peak.

The above experiment analysis shows some nonlinear factors, such as time-varying
cutting force and broken cutting, among others, in the noncircular turning process. The PID
control strategy with speed and acceleration feedforward is not ideal under load machining;
hence, the nonlinear factors in noncircular turning must be considered and solved.
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4. Compound PID Control Strategy Based on Input Feedforward and
Dynamic Compensation

Compound feedforward can be divided into feedforward control that is compensated
by input and feedforward control that is compensated by disturbance [22]. The input
compensation can improve the ability and precision of the system to reproduce the input
signal and reduce the steady-state error. The disturbance compensation can suppress the
effects of various measured disturbance signals and improve the anti-interference ability
and robustness of the system.

The input compensation feedforward control with speed feedforward and acceler-
ation feedforward can achieve a good control effect without considering disturbance in
high-speed noncircular turning. In contrast, the cutting tool’s most important disturbance
signal (cutting force) can be used for the feedforward control of disturbance compensation
according to the pre-calculated dynamic model. Therefore, the compound PID control strat-
egy based on input feedforward and dynamic compensation can achieve a good tracking
control effect in high-speed noncircular turning while also meeting the requirements of
high response motion control of high-speed noncircular turning.
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4.1. Perturbation Model

In the noncircular turning process, the cutting force disturbance is compensated on
the current ring of the PID controller to achieve a more rapid and effective control effect
based on the original input feedforward compensation. Figure 9 shows the overall model
of the controller. Figure 10 shows the disturbance compensation model.
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At the same time, based on the analysis of cutting force in Section 2.2, the formula 
of cutting force is expressed as follows: 
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As depicted in Figure 10, the transfer function Gdy(s) based on the estimable distur-
bance tc(s) and the output V(s) is expressed as follows:

Gdy(s) =
V(s)
tc(s)

=
Gc(s)K f KI − KI − (Ls2 + Rs)

(ms + B)(Ls2 + Rs + KI) + K f Kes
(13)

where KI = Kips + Kii. The transfer function Gdy(s) must be zero to compensate for the
disturbance tc(s) in the system processing. For Equation (13), the molecule can be set to
zero and the following equation can be obtained:

Gc(s)K f KI − KI − (Ls2 + Rs) = 0 (14)

According to Equation (14), the transfer function Gc(s) from tc(s) to the disturbance
compensation output equivalent current Ic(s) can be obtained as follows:

Gc(s) =
tc(s)
Ic(s)

=
KI + (Ls2 + Rs)

K f KI
=

1
K f

+
Ls2 + Rs

K f [Kips + Kii]
(15)

At the same time, based on the analysis of cutting force in Section 2.2, the formula of
cutting force is expressed as follows:

Fp = KFp · xxFp · f yFp · (60(2π(r− x)n/1000))nFp (16)

where KFp is the influence coefficient of the material of the tool and the material of the
workpiece on the cutting force; xFp is the influence coefficient of the back feed; yFp is the
influence coefficient of main feed; nFp is the influence coefficient of cutting speed on the
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cutting force; x is the cutter quantity (mm); f is the feed speed (mm/r); r is the workpiece
turning radius (mm); and n is the spindle speed (rpm).

This paper only studied the cutting force of noncircular turning, which is expressed
as follows:

d(s) = tc(s) = KFp · x(s)xFp · f yFp

·(60(2π(r− x(s))n/1000))nFp (17)

If the workpiece is a middle convex variable elliptical piston, then Equation (17) can
be further expressed as follows:

d(s) = KFp · ( a−b
2 (1− cos 4πnt))

xFp · f yFp

·(60(2π(r− a−b
2 (1− cos 4πnt))n/1000))

nFp (18)

where a is the long axis of the cross-section ellipse and b is the minor axis of the cross-section
ellipse.

4.2. Application of Compound PID Control with Input Feedforward and Dynamic Compensation in
High-Speed Noncircular Turning

This section details the machining test based on the compound PID control strategy of
input feedforward and dynamic compensation. The dynamic prospective compensation is
directly compensated before the current loop of the servo driver after real-time calculation.
In the experiment, the middle convex variable elliptical piston of aluminium alloy is taken
as the machining object whose main parameters are shown in Table 1. Figure 11 shows the
machine tool that performs the control strategy in its control system.

Table 1. Experiment parameters of cutting force and machining parameters.

Name Parameter

material aluminum alloy
KFp 606.36
xFp 0.76
yFp 0.7
nFp 0.04

S (spindle speed (rpm)) 1500
F (Z feed (mm/min)) 250

maximum ovality (mm) 1
maximum profile (mm) 0.5Micromachines 2022, 13, x 11 of 15 
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Figure 11. Machine tool.

Figure 12a shows the curve of instruction position and feedback position of load ma-
chining that used the compound PID control of input feedforward and dynamic prospective
compensation with overall good tracking performance. Figure 12b shows the tracking error
curve of load machining in this control mode. The maximum tracking error is ±1.9 µm,
which is much better than the previous tracking error used in the control of speed and
acceleration feedforward PID.
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Figure 12. Position curve and tracking error based on compound PID control of feedforward and
dynamics compensation under load machining. (a) Position and feedback curve of compound
PID control based on input feedforward and dynamic prospective compensation (PCMD is the
abbreviation of instruction position, PFB is the abbreviation of feedback position). (b) Tracking error
curve based on compound PID control of input feedforward and dynamic prospective compensation
(xPE is the abbreviation of tracking error).

The compound PID control strategy with input feedforward and dynamic compen-
sation can effectively improve the tracking performance of machining under complex
and changeable noncircular turning conditions. Figure 13 shows the improvement of
the surface pattern of the piston machined by experiment. Figure 13a shows the piston
surface machined by the speed and acceleration feedforward PID control. The tracking
error is too large to reach ±14 µm, the surface roughness is 1.01 µm and the depth and
the shallow consistency of piston skirt are poor. Figure 13b shows the piston machined by
the compound PID control of input feedforward and dynamic prospective compensation.
The tracking error is less than ±2 µm, the surface roughness is 0.61 µm and the depth and
the shallow consistency of piston skirt are of high quality. Furthermore, the experimental
processing of other speed and size parameters shows that the control strategy is equally
superior, Table 2 shows processing results of different speed parameters, Table 3 shows
processing results of different ovality and profile parameters.
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Figure 13. Comparison of Surface patterns machined by different control methods. (a) Piston surface
controlled by speed and acceleration feedforward compensation. (b) Piston surface controlled by
compound PID of input feedforward and dynamic compensation.

Table 2. Processing results of different speed parameters.

Name 1 2 3 4 5

S (spindle speed (rpm)) 1500 1350 1200 1050 900
F (Z feed (mm/min)) 250 225 200 175 150

maximum ovality (mm) 1 1 1 1 1
maximum profile (mm) 0.5 0.5 0.5 0.5 0.5

tracking error (µm)
(general control) 14 13.5 13.2 13 12.9

tracking error (µm)
(compound PID control) 2 2 1.9 1.8 1.8

surface roughness (µm)
(general control) 1.01 0.96 0.96 0.92 0.91

surface roughness (µm)
(compound PID control) 0.61 0.58 0.58 0.57 0.56
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Table 3. Processing results of different ovality and profile parameters.

Name 1 2 3 4 5

S (spindle speed (rpm)) 1500 1500 1500 1500 1500
F (Z feed (mm/min)) 250 250 250 250 250

maximum ovality (mm) 1 0.9 0.8 0.7 0.6
maximum profile (mm) 0.5 0.4 0.3 0.2 0.1

tracking error (µm)
(general control) 14 13.8 13.7 13.5 13.5

tracking error (µm)
(compound PID control) 2 2.05 2 1.9 1.9

surface roughness (µm)
(general control) 1.01 0.95 0.92 0.91 0.91

surface roughness (µm)
(compound PID control) 0.61 0.60 0.60 0.58 0.58

5. Conclusions

The control strategy of an FTS is the control core of high-speed noncircular turning.
Based on the mathematical model of FTS and a comparison of the advantages and disadvan-
tages of the repetitive control and the speed feedforward PID control in noncircular turning,
a compound PID control strategy based on input feedforward and dynamic compensation
is proposed in this paper to meet the motion characteristics of high-speed noncircular
turning with high response and micro-stroke. The main contributions of this study are
summarised as follows:

(1) The mathematical model of the FTS is proposed to investigate the control method
and cutting force. The PID control model of the FTS is derived from the analysis of a
mathematical model of a linear motor that includes voltage equation, electromagnetic
thrust equation and mechanical motion equation. The force analysis shows that the
cutting force is constantly changing because of the changes in speed and acceleration.
It can be concluded that noncircular turning is more complex than ordinary turning.

(2) The test results show that the machining tracking error is improved from ±14 µm
to less than ±2 µm by using the compound PID control strategy based on input
feedforward and dynamic compensation. The depth and shallow consistency of the
piston skirt are neat and compliant. The findings demonstrate that this strategy fully
considers the time-varying complexity of the actual cutting force, the diversity of
intermittent cutting and fluctuations in the machine spindle speed. The experimental
results also demonstrate that the strategy has a very good tracking performance and
machining effect.
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