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Abstract: This paper reports the fundamentals and the SPICE implementation of the Dynamic
Memdiode Model (DMM) for the conduction characteristics of bipolar-type resistive switching (RS)
devices. Following Prof. Chua’s memristive devices theory, the memdiode model comprises two
equations, one for the electron transport based on a heuristic extension of the quantum point-contact
model for filamentary conduction in thin dielectrics and a second equation for the internal memory
state related to the reversible displacement of atomic species within the oxide film. The DMM
represents a breakthrough with respect to the previous Quasi-static Memdiode Model (QMM) since
it describes the memory state of the device as a balance equation incorporating both the snapback
and snapforward effects, features of utmost importance for the accurate and realistic simulation of
the RS phenomenon. The DMM allows simple setting of the initial memory condition as well as
decoupled modeling of the set and reset transitions. The model equations are implemented in the
LTSpice simulator using an equivalent circuital approach with behavioral components and sources.
The practical details of the model implementation and its modes of use are also discussed.

Keywords: memristor; resistive switching; memory; memdiode

1. Introduction

Selecting a suitable generic model for an electron device is far from being simple
and straightforward. The model should be able to cover not only the basic and common
features of the system under study but must also have the necessary capacity of adaptation
for incorporating its distinctive behavior. For circuit simulation-oriented models, this
adaptation capability must be achieved by means of a few numbers of simple and robust
equations driven by a reduced set of parameters, if possible, with physical origin, if not, with
some degree of electrical meaning. This is the signature of a compact behavioral approach,
in which the central objective is not to outperform the microscopic level models (for instance
the kinetic Monte-Carlo and Finite Element models such as those reported in [1–4]) in terms
of accuracy and fidelity to the device physics, but matching observations and simulations
as close as possible. Clearly, accurate representation of the electron transport across the
investigated device under arbitrary input signals is two-fold: first, it encourages the design
and assessment of more complex circuits and systems, and second, it allows to identify
and establish links among the elementary modeling pieces that lead to the variety of
observed behaviors (conduction characteristics). Since the first practical description of a
memristive device by HP in 2008 [5], a number of compact models for the current-voltage
(I-V) curves of resistive switching (RS) devices has been proposed [6]. Because of the
hysteretic nature of the phenomenon (see Figure 1a), the electron transport model involves
complementary information about the previous history of the device. Here is where Prof.
Chua’s theory of memristive devices comes into play [7]. According to this theory, a
physical or electrical variable expressed as a first order differential equation controls the
current flow through the structure. Based on this framework, a plethora of memristor
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models have been proposed, such as the general phenomenological models (Yakopcic [8],
TEAM [9], VTEAM [10], Eshraghian [11], etc.). Despite having a proven capability to
successfully fit experimental data, these models rely on various internal equations or
artificial window functions (commonly used for modelling the SET/RESET transitions)
that can seriously affect the model’s convergence [12,13]. The reader can find further details
for each model in the corresponding paper or in review papers [11,13–18].Micromachines 2022, 11, x FOR PEER REVIEW 3 of 20 
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Figure 1. (a) Hysteretic behavior of the filamentary-type I-V characteristic. Filament stages: (A)
barrier-controlled, high resistance state (HRS), (B) completion, (C) expansion, (D,E) low resistance
state (LRS), (F) partial dissolution, (G) rupture and (H) HRS (b) Schematic of the filamentary structure:
fixed (red) and dynamic (green, blue) sections. (c) Schematic of the tunneling barrier/gap. λ is the
barrier height. (d) Representation of the QPC model using an equivalent circuit approach.

Many of these models almost exclusively focus on the popular quasi-static, pinched
I-V loop, ignoring the associated time-related dependencies. However, the latter has special
relevance when considering real case application scenarios such as those described in [19],
where the programming and reading of the device is made in terms of voltage pulses of
varying frequency/duty cycle. In this regard, we aim to report the fundamentals and the
SPICE implementation of a revised Dynamic Memdiode Model (DMM) for bipolar RS
devices capable of incorporating the time-related dependencies, as well as the guidelines
for its usage. Since this new version incorporates a dynamic balance equation for the
memory state and a higher level of details in terms of modelling accuracy, we consider
that it is a breakthrough with respect to the previous models proposed by our group: the
Quasi-static Memdiode Model (QMM) [20–22] and a first version of the DMM [19]. The first
one relies on the double-diode circuit controlled by the Krasnosel’skii-Pokrovskii hysteresis
operator [23]. The main advantage of that simplified approach is the elimination of the
time integration step in favor of the use of the so-called hysteron or memory map (i.e.,
the low-voltage conductance exhibited by the device as a function of the applied signal).
However, even though a time module can be added to the base model [24], this is in essence
a quasi-static approach in the sense that the memory state of the device does not change
unless a hard threshold condition is met. The QMM can be used for arbitrary input signals,
but the memory state is unable to evolve in the subthreshold regime. Seeking to overcome
this limitation, we introduced the original DMM in [19].

In this work, we presented a revised version of the DMM. Compared to the previous
version, the current one incorporates modifications capable of representing a variety of
details that could not be modeled by its predecessor. These are: (i) the simulation of the
electroforming event, which implies a first cycle different from its subsequent stationary
cycles, (ii) the modelling of the snapback (SB) effect, experimentally observed in memristors
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during the SET event, (iii) the modelling of the snapforward (SF) event (low current tail)
during the RESET event, and (iv) the de-coupling of the SET and RESET equations, which
simplifies the fitting. The paper is organized as follows: Section 2 discusses the physical
background of the model for both the transport and memory equations, as well as for the
resulting switching dynamics. The dependences of the model with the fitting parameters
are evaluated in Section 3, focusing on the memory equation, the switching dynamics, and
the particular case of Complementary Resistive Switching (CRS) devices. Then, Section 4
presents an overview of the DMM capability for reproducing different sets of experimental
data, from the quasi-static I-V loops as well as from the potentiation and depression
dynamics for neuromorphic applications. Finally, Section 5 reports the conclusions of
this work.

2. Dynamic Memdiode Model (DMM)

In this Section, the two equations that define the DMM are presented and discussed.
They are: (i) the current-voltage (I-V) relationship, and (ii) the memory state equation
(λ-t). The very basic idea behind the DMM is that the current flows through a kind of
filamentary structure embedded in the oxide layer in which some of its atomic constituents
can reversibly move in and out according to the forces exerted by the external field. This
changing configuration alters in turn the overall transmission properties of the structure,
leading the system to a hysteretic behavior. Since this is at the end a behavioral approach,
the model can be appropriately modified so as to cover non-filamentary-type conduction
as well.

2.1. Current-Voltage Characteristic

According to the quantum point-contact (QPC) model [25–28], the current that flows
through a single nanosized filamentary structure (see Figure 1b) can be calculated using
the finite-bias Landauer formula for a monomode conductor [29]:

I(VC) =
2e
h

∫ +∞

−∞
T(E)

[
f
(

E− eVC
2

)
− f

(
E +

eVC
2

)]
dE (1)

where VC = V − IRI is the potential drop across the constriction, V the applied voltage,
RI the internal/external series resistance (permanent section of the filament/wire resis-
tance), E the energy, f the Fermi-Dirac function, and T the transmission coefficient for the
confinement barrier. e and h are the electron charge and the Planck constant, respectively.
Equation (1) can be extended to the case of asymmetric potential drops at the two ends
of the constriction using a coefficient different from 1

2 for the energy window. Assuming
an inverted parabolic potential barrier for the constriction’s bottleneck (scatterer), T(E) is
expressed as:

T(E) =
1

1 + e−θ (E−ϕ)
(2)

where θ is the barrier shape factor and ϕ the barrier height (see Figure 1c). In the pure
tunneling regime (ϕ� E) and zero-temperature limit, Equations (1) and (2) yield [30]:

I(VC) ≈
4e
θ h

e−θϕsinh
(

θeVC
2

)
(3)

Notice that, if the barrier width collapses ( θ → 0) because of the completion of the filament,
Equation (3) results in the standard Landauer formula I = G0VC, where G0 = 2e2/h is the
quantum conductance unit. The effect of θ on the I-V curve is illustrated in Figure 2a. As θ
increases, the current decreases, and the I-V changes its dependence from linear to linear-
exponential. Combining Equation (3) in the linear regime (eVc � 2/θ) with Equation (2),
we obtain:

VC ∼
1

G0
eθϕ I =

1
G0

(
1− T(E = 0)

T(E = 0)

)
I (4)
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Since in a mesoscopic system, the constriction resistance RC can be regarded as the sum of
the contact resistance RL and the scatterer resistance RB as [29]:

RC =
1

G0T
=

1
G0

+
1

G0

(
1− T

T

)
= RL + RB (5)

we can associate Equation (4) with RB. However, it is clear from Equation (5) that not
only the confinement barrier contributes to the constriction resistance but also the way the
constriction is attached to the charge reservoirs (or thermalizing region) through RL. This is
a well-known result [29] and is the consequence of the funneling effect of the electron wave
function caused by the mismatch in the number of available energy states when passing
from the reservoir to the constriction and vice versa.
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Figure 2. (a) Single filament conduction characteristic and effect of the parameter θ. (b) Multiple
filament conduction characteristic and effect of the parameter λ.

Since, in general, for a wider constriction formed by a bunch of conducting channels
neither the number N of elemental filamentary structures involved is known nor their
specific barrier parameters θi and ϕi can be accessed individually [31], we extrapolate
Equation (3) to that case using the heuristic approximation:

I(VC) = I0sinh[α(VC − RS I)] (6)

which has the same functional asymptotes as the original Equation (3) for large I0 values
(RS I ≈ VC) and low applied voltages (RS I � VC) (see Figure 2b). While RS in Equation (6)
accounts for the contact resistance, the hyperbolic sine function expresses the barrier
resistance as illustrated in Figure 1d. RPP in the same figure deals with the device resistance
before the forming event. A central difference between RS and RI , is that RS will be
allowed to change (if necessary) according to the memory state of the device (movement
of ions/vacancies). Notice also that Equation (6) does not correspond strictly to N times
the current flowing through a single filament, otherwise a parallel shift of Equation (3)
towards higher current values would be obtained [32]. In addition, Equation (6) complies
with the pinched condition I(V = 0) = 0 and, because of its heuristic nature, overcomes
the physical limitation on the voltage drop eVC/2 ≤ ϕ imposed by Equation (3). Physically,
the moving species in Figure 1b represent the hopping of ions/vacancies induced by the
external applied field. As schematically illustrated in Figure 1c, the opening (RESET) or
closing (SET) of the atom chain raises or lowers the top of the confinement barrier for the
electron flow [33,34]. According to this picture, ballistic transport would not be required
along the whole filament structure but just at the narrowest section of the constriction. For a
complete discussion about conductance quantization effects in RS devices, see Refs. [35–43].
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From the electrical viewpoint, Equation (6) can be envisaged as two opposite biased
diodes in parallel with a single series resistance [6] (see Figure 1d). Since these are not real
diodes, inverse saturation currents are disregarded. This was the approach followed in
our previous works and justifies the origin of the name memdiode [23], i.e., a diode with
memory. The main point is that Equation (6), as shown in Figure 2b, self-rectifies the I-V
curve as the device switches from HRS (linear-exponential) to LRS (linear), which is in
agreement with many experimental observations. Equation (6) is implemented in LTSpice
XVII from Linear Technologies using two resistors (RS and RI) in series with a behavioral
voltage-controlled hyperbolic sine current generator with the amplitude factor given by
the expression:

I0(λ) =
(

Ion − Io f f

)
λ + Io f f (7)

where 0 ≤ λ ≤ 1 is the memory state variable, and Io f f , Ion are calibration parameters
(OFF and ON currents). λ = 0 and λ = 1 correspond to HRS and LRS, respectively. The
linear relationship between I0 and λ is a key feature of the model and likely reflects the
connection between the memory state and the density of conducting sites in the filamentary
structure [44,45]. The effect of λ on the I-V curve is illustrated in Figure 2b. As λ increases,
the I-V curve becomes more linear as expected for a fully formed conducting channel.
Notice that, at low biases, the HRS I-V is in the linear tunneling regime (which must not be
confused with ohmic conduction). Importantly, Io f f and Ion control the barrier resistance
and do not refer directly to the minimum and maximum currents that flow through the
device. This will be ultimately determined by the whole system’s dynamics (hysteresis
effect and series resistances). For the sake of completeness, α and RS in Equation (6) receive
a similar treatment in the LTSpice script as that given to I0(λ). Both parameters can be
swept from a minimum (OFF) to a maximum (ON) if required. If not, α and RS remain
fixed. In the following Section, the memory state equation and its circuital implementation
are discussed.

2.2. Memory State Equation

As reported in [46], a very convenient differential equation for the memory state
variable λ that complies with a number of experimental observations in memristive struc-
tures is:

dλ

dt
=

1− λ

τS(λ, VC)
− λ

τR(λ, VC)
(8)

where τS,R are characteristic times associated with the SET (V > 0) and RESET (V < 0)
transitions, i.e., with the ionic/defect movement within the dielectric film in one or the
opposite direction. Equation (8) can be simply regarded as the normalized version of a
birth-death process for a two-state system with transition rates τ−1

S and τ−1
R :

X
τ−1

S
�
τ−1

R

Y (9)

in which there are n1 particles in the state X and n2 particles in the state Y, with n1 + n2 = N
the total number of particles. This comes to represent for example the REDOX process in
VCMs [47]. Notice that τS,R in Equation (8) are expressed as a function of VC and λ. In our
case, where SET and RESET only occur for biases with opposite signs, Equation (8) can
be treated as two separate differential equations, one for V > 0 and one for V < 0. This is
not mandatory but simplifies the model calibration since the SET and RESET processes
are completely disentangled. Under this consideration, Equation (8) can be represented
by the equivalent circuit schematically depicted in Figure 3. λ corresponds to the voltage
drop across the capacitor C = 1 F. Notice that the memory state behavior during the RS
cycle is nothing but the alternate action of two current sources that charge and discharge
a capacitor. The green and red arrows in Figure 3 indicate the position of the switches
as a function of the sign of VC. In practice, the switches are modeled by a behavioral if



Micromachines 2022, 13, 330 6 of 18

statement in the LTSpice script (Algorithm 1). The initial condition for the memory state
is introduced through the initial voltage drop across the capacitor as V(t = 0) = λ0. In the
LTSpice script, λ is represented by the capital letter H (for hysteron). In fact, λ = V(H) is
the voltage at the H node. For the sake of completeness, and to help the reader in the use of
the DMM, Supplementary Figures S1–S3 illustrates three simulation exercises in LTSpice
obtained with the script reported in Algorithm 1.
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sources and one capacitor. The switching τS and τR can be regarded as variable resistances. The state
of the switches depends on the sign of the applied voltage. The memory state λ is the voltage across
the capacitor. λ0 is the initial memory state.

Algorithm 1: Memdiode script for LTSpice XVII. + and − are the device terminals. H is the
memory state output. The colors indicate the different sections: parameter values, memory
equation, I-V characteristic, and auxiliary functions.

1 .subckt memdiode + − H
2 *created by E.Miranda, F. Aguirre and J.Suñé, revised January 2022
3 .params
4 + H0 = 0 ri = 50 RPP = 1E10
5 + etas = 50 vs = 1.4
6 + etar = 100 vr = −0.4
7 + ion = 1E-2 aon = 2 ron = 10
8 + ioff = 1E-7 aoff = 2 roff = 10
9 + vt = 0.4 isb = 2E-4 gam = 1; isb = 1/gam = 0 no SB/SF
10 *Memory Equation
11 BI 0 H I = if(V(+,-)> = 0, (1-V(H))/TS(V(C,-)),-V(H)/TR(V(C,-)))
12 CH H 0 1 ic = {H0}
13 *I-V
14 RI + C {ri}
15 RS C B R = K(ron,roff)
16 BF B - I = K(ion,ioff)*sinh(K(aon,aoff)*V(B,-))
17 RB + - {RPP}
18 *Auxiliary functions
19 .func K(on,off) = off+(on-off)*limit(0,1,V(H))
20 .func TS(x) = exp(-etas*(x- if(I(BF)>isb,vt,vs)))
21 .func TR(x) = exp(etar* if(gam = = 0,1,pow(limit(0,1,V(H)),gam))*(x-vr))
22 .ends

Both in the SET and RESET regions, the corresponding characteristic switching times
can depend implicitly or explicitly on λ. This property is used to include the so-called
snapback (positive bias) and snapforward (negative bias) effects in the RS I-V loop. These
effects are typically present in VCM-based structures [48]. In this work, we introduce the
memory state λ in the characteristic times as:

τS(λ, VC) = e−ηS(VC−VS(λ)) (10)
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and
τR(λ, VC) = eηRλγ(VC−VS) (11)

where ηS,R and VS,R are the transition rates (ηS, ηR > 0) and the reference switching voltages
(VS > 0, VR < 0), respectively. γ ≥ 0 is referred to as the SF coefficient. The exponential
dependences of Equations (10) and (11) on VC are a consequence of the ions/vacancies dy-
namics associated with the hopping mechanism [49,50]. Deviations from these exponential
laws in the low and high voltage regions have also been reported but are disregarded in
this work [51].

If for any reason, the SB and SF effects do not need to be considered, taking VS(λ) = VS
a constant reference SET voltage and λγ = 1 in Equations (10) and (11), respectively,
the switching dynamics becomes exclusively voltage-controlled, as originally assumed
in [46]. This behavior is typical of ECM cells in which abrupt RESET transitions are
observed [47]. Under these latter conditions, Equation (8) has an analytic solution both
for the constant and ramped voltage input signal cases. In any other case, because of the
mathematical complexity involved, Equation (8) must be numerically solved with the help
of a differential equation solver (in our case the circuit simulator itself). In the following
Section, the practical implementation and the consequences of the above-mentioned effects
on the I-V curve are discussed.

3. Simulation Results and Discussion

In order to test the ability of the proposed model to deal with realistic simulations, a
number of evaluation criteria must be adopted and assessed. In this work, we basically
consider Linn’s criteria [52] to which we add some very specific features not included in
the referred work. These criteria are: (i) capability of the compact model to reproduce the
RS I-V characteristics including the SB and SF effects, (ii) realistic switching dynamics for
the SET and RESET transitions including the ability of the model to deal with arbitrary
input signals (continuous and discontinuous), and (iii) multi-device connectivity in the
form of Complementary Resistive Switching (CRS). These three major issues are discussed
in detail next. Before entering the discussion, it is worth mentioning that because of
the complexity of the numerical problem involved, caution should be exercised with the
selection of the model parameter values, as it happens with any other model. Although the
DMM is robust enough, a certain combination of parameters could lead to fatal errors of
convergence or to extremely long simulation times. Sometimes the numerical problems
disappear by simply changing the maximum simulation timestep (shorter or longer) or
numerical integration method used (trapezoidal, modified trap, gear). Depending on the
required accuracy, simplifying the model equations by eliminating unnecessary details (SB,
SF, resistances, limiting functions, etc.) is also a good strategy to follow. The roles played
by parameters I0, α, and RS in the HRS and LRS I-V curves are not analyzed here since
they were discussed elsewhere in connection with the QMM [24]. Notice that the QMM
can always be used as the starting point of any simulation exercise. The main difference
between both models resides in how the SET and RESET transitions are modeled. While
QMM requires a threshold voltage/current to induce the memory state evolution, DMM
does not. The I-V expression in Equation (6) is common to both models.

3.1. Memory State Equation

To begin with, Figure 4 illustrates typical I-V and λ-V loops obtained using Equations
(6) and (8). The LTSpice script and model parameters for this particular exercise can be
found in Algorithm 1. While in Figure 4a, the sinusoidal input voltage, the memory state,
and the current flowing through the structure are plotted as a function of time, Figure 4b
illustrates the current evolution and the memory map (hysteron) of the device as a function
of the applied voltage [53]. More in detail, the SB effect is recognized by the sudden
current increase in the SET region (red line in Figure 4c) caused by the reduction of the
constriction resistance that occurs when the tunneling gap or confinement barrier vanishes
(the CF is completely formed). During this phase the current also grows as a function
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of VC but following approximately the load line of the circuit (slope~1/RI), and next at
an almost constant voltage called the transition voltage VT (blue line in Figure 4c) [48].
This second phase corresponds to the accumulation of ions/defects in the constriction (or
alternatively to its lateral expansion) with the consequent progressive resistance reduction.
This behavior has been reported many times in the literature [54] but has received scarce
attention in the compact simulation field. VT is the minimum voltage required to activate
the ions/vacancies movement and its value seems to be not only a characteristic parameter
of each material but also a function of measurement variables such as the voltage ramp rate
or signal frequency [55].
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Figure 4. (a) Simulation example for the current and memory state as a function of time of a sinusoidal
signal. (b) Evolution of the memory state (hysteron) and current as a function of the applied voltage.
(c) Original I-V curve (red line) and its snapback correction I-VC (blue line). VT is the transition
voltage, VR the reset voltage, VS the set voltage, RI the internal series resistance, and ISB the snapback
triggering current.

The SB effect is incorporated into the model equations by modifying the SET reference
voltage VS (>VT) in (10) according to the rule:

VS(I) =

{
VT I ≥ ISB

VS I < ISB
(12)

where I is the current flowing through the device. Equation (12) is a switching rule based
on the current value, but other rules related to the applied voltage, dissipated power,
or memory state, are also admissible [56]. ISB is a threshold current for the SB effect.
Equation (12) is written as an if statement for the SET voltage in the LTSpice script and
expresses a collapse of the nominal SET voltage VS to a lower value VT after reaching the
threshold condition ISB. This event generates a sudden current increase compatible with
the voltage drop along the load line of the circuit. It is worth mentioning that the SB effect is
not always observable in practice since its detection depends on a number of factors linked
to the specific features of the device under test and to the measurement conditions (current
magnitude, current compliance, etc.). When combined with other parameters (Ioff and RPP),
VS can also be used to represent the forming step (see the Supplementary Material). This
may require code edition for a specific conduction mechanism (Schottky, Fowler-Nordheim,
etc.) in the fresh device [57].

For the opposite polarity (V < 0), after the SF event (current decrease following the
circuit load line with slope~1/RI), the main difference appears at the low current region,
once the filament is almost dissolved. In this case, since λ approaches zero as the current
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drops, the factor λγ gains weight in Equation (11), reducing the RESET characteristic
time. The result is remarkable since the current deviates from the load line generating a
lobe. In other words, as the current decreases, larger voltages are required to deplete the
constriction from conducting atomic species up to the point in which the initial gap or
tunneling barrier is completely restored. The referred protuberance is clearly visible in
many VCM-type devices but is rarely observed in ECM-type structures, which exhibit more
abrupt transitions [58,59]. Although VR is considered an independent model parameter in
the LTSpice script, in general VR = −VT is found, which is consistent with a field-induced
activation of the SET/RESET processes in bipolar RS devices.

Figure 5 illustrates the effects of some of the model parameters on the I-V curve. The
analysis is carried out on the second I-V loop, i.e., once the transient effects associated with
the initial loop or forming process plays no role. As shown in Figure 5a, RI mainly affects
the slope of the LRS I-V curve and the apparent RESET voltage. The small shift in the SET
voltage is a consequence of the modifications that occurred in the RESET region of the first
loop (not shown). Remarkable changes are also observed in the I-VC curve (see below).
Figure 5b illustrates the effects of the threshold current ISB. As this parameter increases, the
completion of the filament takes place at a higher voltage, thus reducing the observable
effects associated with VT. No change is detected in the RESET transition since the LRS I-V
remains unaltered. Figure 5c illustrates the effects of the SF parameter γ. The main effect
on the RESET transition is the change of the triggering point of the current lobe. Since the
HRS current in the RESET region is also affected by this change, γ also alters the triggering
point in the SET region. It is also important to mention that the observation of the SB effect
in the simulated curve strongly depends on the memory state initial condition (λ0). As
shown in Figure 6a, depending on the HRS current magnitude, the SB triggering point can
differ (because the same current value is reached at different voltages). Once the device
reaches LRS, the RESET process becomes independent of the initial condition. Subsequent
loops do not carry on information about the initial state of the device.
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Figure 5. Effect of the DMM parameters on the I-V characteristic: (a) internal/external series
resistance RI, (b) snapback triggering current ISB, and (c) snapforward coefficient λ.

A remarkable property of the I-VC curve, which results from the SB transformation
(V-R·I) of the original I-V curve (see Figure 6b,c), is that in addition to the current increase
at a constant voltage VT occurring in the SET region, the minor I-VC loops also peak at -VT
in the RESET region (see Figure 6d) for VR = −VT. This has been experimentally verified
in [60] and indicates that the constriction voltage or alternatively the field and not the
current magnitude are responsible for triggering the RESET process. As another example
of the switching dynamics that can be achieved with the DMM, Figure 6e shows the case
in which the SB effect is not considered. Notice the hard threshold voltage for the SET
condition. The I-V curve (red line) shows the intermediate current states (minor loops) for
a damped sinusoidal input voltage. These states are generated by the hysteron (λ) shown
in green.
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3.2. Switching Dynamics

As the second criterion for assessing the model behavior, the DMM switching dy-
namics is discussed next. It is worth emphasizing that the switching properties of the
memory Equation (8) for constant and ramped voltage signals were reported in [46]. Briefly,
Equation (8) complies with the expected characteristic switching times (SET and RESET)
for a constant bias condition (Figure 7a):

τS,R(V) = τ0S,Re∓V/V0S,R (13)

and with the switching voltage value as a function of the applied signal ramp rate (RR)
(Figure 7a):

VS,R = VS,R0 ln(RR) + VS,R0 ln
(

τS,R0

VS,R0

)
(14)

where τS,R0 and VS,R0 are the fitting constants. As shown in Figure 7a, as the constant
applied voltage increases, the maximum reachable current not only increases but also
the SET switching time reduces in an exponential manner (see the inset in Figure 7a).
This has been experimentally demonstrated to occur in many material systems [61]. A
similar behavior is obtained for the RESET transition of the device. Although no close-
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form expression for a sinusoidal input is available, the phenomenology is similar to that
expressed by Equation (14) for a voltage ramp. Figure 7b illustrates the effects of the signal
frequency on the I-V curve. As the frequency increases, the SET and RESET voltages shift
to higher values. This effect is consistent with Equation (14) and has been experimentally
observed using ramp rates varying orders of magnitude [62]. Physically, the reason behind
this behavior is the voltage-time combined action in the characteristic switching times for
the ionic/vacancy hopping represented by Equations (9) and (10). The current increase
observed in the RESET transition region (V < 0) of Figure 7b has also been observed, as it is
a consequence of the increment of the current lobe triggering point [62].

Micromachines 2022, 11, x FOR PEER REVIEW 12 of 20 
 

 

behavior is obtained for the RESET transition of the device. Although no close-form ex-

pression for a sinusoidal input is available, the phenomenology is similar to that expressed 

by Equation (14) for a voltage ramp. Figure 7b illustrates the effects of the signal frequency 

on the I-V curve. As the frequency increases, the SET and RESET voltages shift to higher 

values. This effect is consistent with Equation (14) and has been experimentally observed 

using ramp rates varying orders of magnitude [62]. Physically, the reason behind this be-

havior is the voltage-time combined action in the characteristic switching times for the 

ionic/vacancy hopping represented by Equations (9) and (10). The current increase ob-

served in the RESET transition region (V < 0) of Figure 7b has also been observed, as it is 

a consequence of the increment of the current lobe triggering point [62]. 

 

Figure 7. (a) Effect of a constant voltage input signal on the I-t characteristic. The inset shows the 

time-to-switch as a function of the applied voltage. (b) Effect of a sinusoidal signal with frequency f 

on the I-t characteristic. 

Concerning the switching dynamics for discontinuous signals, Figure 8 illustrates the 

effects of a sequence of equal amplitude voltage pulses (Vapplied = 0.1, 0.3, 0.4, 0.5 V) and 

period (T = 1 s with duty cycle = 0.5 s) on the current magnitude. As shown in Figure 8a, 

for a device with an initial memory state λ0 = 0 (HRS), the current increases as function of 

voltage and time. This corresponds to the so-called potentiation effect in neuromorphic 

devices [63]. In addition, for higher voltages, as shown in Figure 8b, the current not only 

progressively increases but also switches to LRS after reaching the threshold condition 

dictated by the SB effect (pulse-induced switching). For negative voltages (see Figure 8c), 

the current behaves in a similar fashion. First, the current decreases monotonically but as 

soon as the RESET condition is met, the current exhibits an abrupt reduction. In this latter 

case, the device memory state starts at λ0 = 1 (LRS). 

   

Figure 8. (a) Effect of a pulsed signal on the SET I-t characteristic, (b) similar to (a) but with a higher 

voltage, and (c) similar to (a) but for a RESET I-t curve. 

0 20 40 60 80 100

0

1

2

3

4

5

C
u
rr

e
n
t 
[m

A
]

Time [s]

 0.5V

 0.4V

 0.3V

 0.1V

V
applied

a)

0 20 40 60 80 100

0

2

4

6

8

10

C
u
rr

e
n
t 
[m

A
]

Time [s]

 0.88 V

 0.87 V

 0.86 V

 0.85 V

V
appliedb)

0 20 40 60 80 100

0

1

2

3

4

5

6

7

C
u
rr

e
n
t 
[m

A
]

Time [s]

 -0.63

 -0.64

 -0.65

 -0.66

V
applied

c)

Figure 7. (a) Effect of a constant voltage input signal on the I-t characteristic. The inset shows the
time-to-switch as a function of the applied voltage. (b) Effect of a sinusoidal signal with frequency f
on the I-t characteristic.

Concerning the switching dynamics for discontinuous signals, Figure 8 illustrates the
effects of a sequence of equal amplitude voltage pulses (Vapplied = 0.1, 0.3, 0.4, 0.5 V) and
period (T = 1 s with duty cycle = 0.5 s) on the current magnitude. As shown in Figure 8a,
for a device with an initial memory state λ0 = 0 (HRS), the current increases as function of
voltage and time. This corresponds to the so-called potentiation effect in neuromorphic
devices [63]. In addition, for higher voltages, as shown in Figure 8b, the current not only
progressively increases but also switches to LRS after reaching the threshold condition
dictated by the SB effect (pulse-induced switching). For negative voltages (see Figure 8c),
the current behaves in a similar fashion. First, the current decreases monotonically but as
soon as the RESET condition is met, the current exhibits an abrupt reduction. In this latter
case, the device memory state starts at λ0 = 1 (LRS).
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Figure 8. (a) Effect of a pulsed signal on the SET I-t characteristic, (b) similar to (a) but with a higher
voltage, and (c) similar to (a) but for a RESET I-t curve.
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3.3. CRS Devices

Complementary Resistive Switching consists in the anti-serial combination of two
memristive devices [64,65]. This is the third criterion selected for evaluating the DMM.
This is an emblematic problem to demonstrate the connection capacity of the model de-
vices. CRSs are intended to be used as selector devices in crossbar arrays with the aim
of reducing the crosstalk effect [55,66]. Different behaviors are experimentally observed
depending on the voltage and current window investigated including progressive and
abrupt transitions [67–71]. Most of the RS models published to date are unable to cope
with all these behaviors within a single framework.

As shown in Figure 9a, the top device (DMM1) is initially in HRS (λ0 = 0) and the
bottom device (DMM2) in LRS (λ0 = 1). Figure 9 illustrates the combined action of both
memdiodes in the stationary loop. The current behavior is characterized by the appearance
of two bumps (transmission windows) at opposite voltages. The high current state is
reached when both devices are in LRS. Remarkably, different behaviors can be achieved
depending on the specific features selected in the simulation model. Figure 9a illustrates
three cases of particular interest. In general, the inclusion of the SB effect yields abrupt
HRS/LRS transitions, while the absence of the SB effect leads to progressive transitions.
The inclusion of the SF effect with λγ 6= 1 in Equation (11) results in the appearance of
a lobe current in the LRS/HRS transition. In order to understand the complexity of the
analyzed problem, Figure 9b illustrates the potential drop distribution across each device
as a function of time for the circuit shown in the inset of Figure 9a when a sinusoidal signal
is applied. The figure illustrates the cases with SB and without SF effects.
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function of time.

4. Experimental Validation

The model discussed in the previous sub-sections was put under test by fitting experi-
mental data extracted from different published works, both for Valence Change Memories
(VCM) and Electrochemical Memories (ECM). In particular, Figure 10a,b shows the results
obtained for two different VCM-type RRAM structures with HfO2 [72] and TaOX [73] as
the dielectric layer. Figure 10c presents the fitting results for a commercially available
ECM device [74] comprising a W dopped Ge2Se3 active layer. In all the cases the I-Vs
were measured at room temperature and under voltage sweeps. The experimental data
were fitted using the SPICE model described in Algorithm 1 based on Equations (6) to (11)
and applying driving signals as described in the corresponding references. The fitting
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parameters are listed in Table 1 as a reference. It should be mentioned that the DMM
does not only provide a simple SPICE-compatible implementation for the resistive mem-
ory devices but also a versatile one, as it can accurately fit the I-V loops experimentally
measured in different RRAM devices, while accounting for their particular features (as
the current limitation in Figure 10b and the snapback effect in Figure 10c). Note that in
Figure 10c, the x-axis accounts for the voltage effectively applied to the memristive device,
(V-IR) that results after subtracting the voltage drop in the series resistance (RS, which in
the experiments is reported to be 46.25 kΩ [75]).
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Figure 10. Experimental I-V loops of different memristor structures reported in the literature fitted
with the DMM model: (a) Ta/HfO2/Pt [72], (b) TaOX [73], and (c) W dopped Ge2Se3 [74,75]. As
reference, the HRS and LRS curves are indicated in (a). Note that in (b) a current compliance of
1 mA was imposed to prevent permanent dielectric breakdown, which can be also represented
by the DMM and SPICE. (d) Experimental and simulation results for the reset characteristics of
SiOX from UCL (data from [76]) using the QMM model. The inset shows the input signal. CRS:
Experimental and simulated I-V characteristics. The arrows indicate the direction of the applied
bias: (e) Pt/Ta2O5/Ta [69] and (f) Pt/Ta2O4.7/TaO1.67/Pt [77]. (g) Pulse-enabled LTP and LTD data
from [73] was also used to test the suitability of the DMM to replicate the potentiation and depression
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behavior of memristor with multiple intermediate states. (h) LTP dependence on the pulses ampli-
tude [78] can also be captured with the DMM. (i) The versatility of the DMM also allow fitting the
current measured during the LTP of a Ag/ZnO/Pt nanowire memristive device [79].

Table 1. List of parameters used to fit the data presented in Figure 10.

Work Material Imin
[A]

Imax
[A]

αmin
[a.u.]

αmax
[a.u.]

RSmin
[Ω]

RSmax
[Ω] ηSET ηRESET

VSET
[V]

VRESET
[V]

ISB
[A] Gam VT

[V]

[72] Ta/HfO2/
Pt 80 µ 1.1 m 2 2.75 100 150 8 10 600 m −575 m 300 µ 0 350 m

[73] TaOX 75 µ 1.5 m 2.4 4 120 120 40 7 375 m −130 m 1 0.05 350 m

[74] W-Ge2Se3 500 n 50 µ 4.3 1.75 10 10 50 250 200 m −20 m 700 n 0.35 50 m

[76] SiOX 1 µ 60 µ 3 3 1k 1 20 20 395 m −395 m 1 1 350 m

[69] Pt/Ta2O5/
Ta

3 µ 0.9 m 3 1.75 160 160 50 50 2.4 −1.35 60 µ 0.3 0

2 µ 0.9 m 4 3 160 160 50 50 1.15 −1.05 40 µ 0.3 0

[77] Pt/Ta2O4.7/
TaO1.67/Pt

24.5 µ 200 µ 2 2 10 10 15 50 900 m −670 m 30 µ 2 600 m

17 µ 140 µ 2 2 100 100 100 50 750 m −820 m 50 µ 3 650 m

[79] Ag/ZnO/
Pt 450 p 3.5 n 2 2 200 200 2.4 10 1 −1 1 0 1

A critical requirement for analog memristors is to account for intermediate states
between the HRS and LRS regimes, which allow for a fine -tuning of the synaptic conduc-
tance in neuromorphic circuits and the storage of more than one bit per device in memory
applications. This is experimentally presented in Figure 10d for a RRAM stack comprising
a SiOx dielectric layer [76], which is accurately modelled by the DMM model. In order
to fully represent the intermediate states from LRS to HRS altogether with the major I-V
loops, seven successive ramped voltage pulses with increasing amplitude were considered,
as shown in the inset of Figure 10d. As previously discussed, the model also allows to
represent CRS devices, which describes the combination of two bipolar memristive regimes
with opposite polarities in a single device (as proposed by Linn et al. [64]). Figure 10e
shows the experimental and simulation results for the I-V characteristic observed for the
Pt/Ta2O5/Ta structures considered in [69]. Note the sharp opening of the ON-state window
caused by the inclusion of the SB effect. For the particular case of symmetric systems (that
is, those presenting two similar metal/oxide memristive structures), the representation
of the device resistance as a function of the applied voltage results in the so-called “table
with legs” shape [80]. In these cases, the two interfaces of the active switching layer behave
in a complementary way [81]: when one switches from LRS to HRS, the other switches
inversely. Such a shape can also be described by using memdiode devices, as shown in
Figure 10f, for the case of the Pt/Ta2O4.7/TaO1.67/Pt stack studied in [77].

Moreover, we have tested the capability of the DMM to replicate the Long-Term
Potentiation (LTP) and Depression (LTD) of memristive synapses used in neuromorphic
hardware. This kind of evolutionary behavior is required to achieve gradual conductance
changes upon pulse applications. Figure 10g shows the LTP and LTD measurements
reported in [73] for TiN/(25 nm)TaOX/Pt-based devices (the experimentally measured
I-V loop is plotted in Figure 10b altogether with the corresponding fit with the DMM)
by the application of 300 identical pulses of 1 V (LTP) followed by 300 identical pulses
of –1.1 V (LTD). All pulses have the same width (100 ns, tON) and they are applied every
20 msec. During the time in between pulses, a low voltage (0.1 V) pulse is applied to
read the conductance (memory) state of the device. These measurement conditions were
replicated in the SPICE simulations shown in Figure 10b. The simulated LTP and LTD trends
are superimposed to the measurements shown in Figure 10g, showing a good fit of the
experimental trends. There is also a voltage acceleration of the LTP/LTD trends, as reported
for instance for the TiN/(3-nm)HfO2/Pt-based devices measured in [78], which can be
reproduced by the DMM, as shown in Figure 10h. Finally, the versatility and capability
of the DMM to reproduce the evolutionary behavior of memristive devices is shown (see
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Figure 10i) by also fitting the gradual current increase during LTP of Ag/ZnO/Pt-based
nanowire memristors [79] by considering the same stimuli (pulses with an amplitude of
2.5 V and a duration of roughly 2 msec.). Thereby, the DMM is suitable to model the
response of RRAM devices with a large number of incrementally accessible conductance
states. For the sake of completeness, the fitting parameters for all the cases covered in
Figure 10 are summarized in Table 1.

5. Conclusions

A compact behavioral model for the I-V characteristic of bipolar resistive switching
devices was presented. The Dynamical Memdiode Model relies on the combined action
of two equations, one for the electron transport based on an extension of the quantum-
point contact model and a second one for the internal memory effect that represents the
ion/vacancy displacements. It was shown how the snapback and snapforward effects play
a fundamental role in the SET and RESET processes, respectively. The model equations
were implemented in the LTSpice simulator but can be easily translated to any other
specific simulation language. The model can deal with arbitrary input signals, continuous
or discontinuous, derivable or not. Fine tuning of the model equations could be required
for specific situations. In summary, the proposed model is simple, robust, and accurate, as
required for a fast and reliable simulation involving resistive switching devices.
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with current compliance”.
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