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Abstract: This paper focuses on the fabrication of high-quality novel products using a µEDM process
variant called Reverse-µEDM. The tool plate required for the Reverse-µEDM is fabricated using Nd:
YAG-based laser beam micromachining (LBµM) at the optimized process parameters. The Grey
relation analysis technique is used for optimizing LBµM parameters for producing tool plates with
arrayed micro-holes in elliptical and droplet profiles. Titanium sheets of 0.5 mm thickness were used
for such micro-holes, which can be used as a Reverse-µEDM tool. The duty cycle (a combination
of pulse width and frequency) and current percentage are considered as significant input process
parameters for the LBµM affecting the quality of the micro-holes. A duty cycle of 1.25% and a current
of 20% were found to be an optimal setting for the fabrication of burr-free shallow striation micro-
holes with a minimal dimensional error. Thereafter, analogous protrusions of high dimensional
accuracy and minimum deterioration were produced by Reverse-µEDM using the LBµM fabricated
tool plates.

Keywords: Reverse-µEDM; Nd: YAG LBµM; micro-holes; burrs; protrusions

1. Introduction

The technology for fabricating micro-scale engineering components and features is
of interest to the biomedical, optical, and electronical industries [1]. One of the essential
components is an arrayed protrusion (or micro pin-fins) of complex cross-sectional pro-
files (i.e., elliptical, circular, and diamond shapes), which is used for high heat dissipation
from high-performance microelectronics [2]. The fabrication of such protrusions requires
dedicated technology to achieve high dimensional accuracy and cost-effectiveness in the
products. Amongst the recently developed non-conventional micro-fabrication technolo-
gies, the Reverse-µEDM process has emerged as a promising technique for fabricating
micro-scale protrusions of high aspect ratio [3] and complex cross-sections [4]. Reverse-
µEDM works on reversing the conventional µEDM polarity in which material removal
takes place due to electron work function and electrical resistivity associated with the
discharge energy ratio [5]. These fabricated protrusions have cross-sectional profiles similar
to the shape of the micro-holes on the tool plate fabricated by LBµM. Notably, while fabri-
cating a dense array of unconventional protrusions using the above-said process, issues of
high machining time and damaged tips of the arrayed structures, particularly in the central
zone, are found [6]. Of these two significant issues, the former is related to the process
capability. The latter, which is of particular interest to the present research, is due to the
poor quality of those micro-holes in the tool plate. Kishore et al. [7] explored LBµM as
an auxiliary process used for fabricating tool plates with the desired shape micro-holes in
different arrangements. Both the processes were facilitated on a single CNC machine tool
with an axial resolution of 0.1 µm. Nevertheless, there remains a presence of cleavage burrs
on the side walls of each micro-hole that lead to damaging the subsequently fabricated
protrusions. The reason was anticipated to be a poor selection of process parameters.
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However, LBµM can machine a wide range of difficult-to-cut materials, such as
ceramics [8,9], polymers [10,11], and various metals such as aluminum alloys [12], stainless
steel [13], and titanium alloys [14]. The inherent burrs and recast layer formation, especially
in metallic samples, results in inaccurate dimensions and poor surface quality of fabricated
microcavities. It may be due to the high heat input of an intense laser beam, which directly
vaporizes the molten metal from the localized zone, resulting in the vapor and plasma
pressure generation from the microcavity [15]. Appropriate heat input parameters can
control the excessive burrs and recast layer formation. This includes wavelength [16,17],
pulse duration [18,19], and laser power [20], which are the primary LBµM parameters
that affect the machining characteristics. Several works were carried out to analyze the
effect of these process parameters on microcavity fabrication. Tunna et al. [21] investigated
the impact of varying wavelengths (355 nm, 532 nm, and 1064 nm) and laser intensity
(0.5–57.9 GWm−2) in pulsed Nd: YAG LBµM over the copper foil. They observed the
maximum etch per pulse at 532 nm wavelength while the minimum was at 1064 nm due
to the higher reflectivity of copper. Leitz et al. [22] conducted a detailed comparative
study of pulse durations in micro, nano, pico and femtosecond LBµM. They are followed
by Liu et al. [23], who reported that ultra-short laser pulses result in comparatively better
precision in micromachining in terms of surface quality but with poor machining responses.

The enhanced machinability of the Nd: YAG-pulsed laser has attracted researchers
to investigate other associated process parameters, such as laser intensity, frequency,
scanning speed, and line spacing on the MRR and surface roughness of thin sheet [24].
Demir et al. [19] investigated the pulse width (12 ns and 200 ns) effect of nanosecond pulsed
LBµM on the higher productivity of TiN coatings.

Considering the importance and capability of LBµM, the present work optimizes
Nd: YAG-based pulsed fibre LBµM parameters for fabricating high-quality tool plates for
the Reverse-µEDM process. The quality is considered in terms of burrs, striation marks,
and dimensional accuracy of the machined arrayed micro-holes. The tool plate is then
demonstrated for producing damage-free and dimensionally accurate arrayed elliptical
and droplet protrusions using the Reverse-µEDM process and thus can be considered the
main contribution of the present work.

2. Materials and Methods
2.1. Complete Process Configuration

Schematic for integration of Reverse-µEDM and LBµM for fabrication of the arrayed
protrusions as the final product is shown in Figure 1. The Reverse-µEDM process consists
of an RC discharge circuit with multiple options for capacitance in parallel connections and
discharge voltages, a tool electrode, a workpiece electrode, and a dielectric medium. The
stored energy from the capacitor is released instantaneously, due to which electro-thermal
erosion occurs from the tool and the workpiece leading to material removal.

Here, the Reverse-µEDM is mainly used to fabricate single or arrayed 3D protruded
structures of varying aspect ratios and cross-sectional profiles [25]. The basic tool-work
configuration and polarity alteration of µEDM to achieve Reverse-µEDM is depicted
in Figure 1a. In Reverse-µEDM, generally, a work material (anode) with a flat face is
attached to the non-rotating spindle fed towards the tool plate (cathode). Figure 1b shows
that the tool plate has an array of micro-holes in a pattern similar to the required array
of protruded structures. These micro-holes are fabricated by progressive LBµM head,
customized to gain an identical positional accuracy. Thus, it is possible to fabricate precise
micro-holes using LBµM in any profile, which is almost impossible through any other
mechanical micromachining.
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Figure 1. (a) Schematic representation of the Reverse-µEDM achieved through µEDM drilling,
and (b) (I) the LBµM for producing tool plate, and (II) the Reverse-µEDM for fabricating
arrayed protrusions.

2.2. LBµM Experiments for Fabrication of Reverse-µEDM Tool Plate

The experiments are performed on a commercially available pure titanium (ASTM
Grade 2) sheet of 0.5 mm thickness. The sheet thickness is chosen considering enough
margin after the possible erosion while used as a tool plate in the Reverse-µEDM. At the
same time, it is also ensured that the available LBµM can cut such a difficult-to-cut material
of 0.5 mm thickness. Titanium was chosen for its outstanding high strength, low weight,
and corrosion resistance properties. It has led to a diversified range of fruitful applications
in MEMS devices fabrication [14]. The nanosecond pulsed Nd: YAG fibre laser (Class 4,
iPG Photonics, Yokohama, Japan) is used to fabricate micro-holes of desired shapes (refer
to Figure 2a). Pulse width, pulse frequency, and average laser power expressed as the
percentage of the applied current to the diode lasers are the essential process parameters
considered for optimization study.

Average peak power, resulting in material removal, is an essential parameter for achieving
dimensionally accurate high-quality micro-holes is presented through Equations (1)–(3) [20];

Tp = Duty cycle/f (1)

Ppeak = Pavg/f × Tp (2)

Epulse = Ppeak × Tp (3)

Here (“Tp”) is pulse width and (“f ”) is the pulse frequency. It can be observed from
Equation (2) that the peak power of the laser is a function of average power (“Pavg”)
developed for a given pulse frequency and pulse width. The present work utilizes a
smaller spot size (with a minimum spot diameter of 50 µm) high-intensity laser beam
profile, usually based on the fluence profile of the Gaussian distribution function with two
thresholds beam diameter, as shown in Figure 2d [26]. The irradiated laser beam follows
the trepanning scanning tool path (refer to Figure 2c) in the x-axis on the sheet.
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Figure 2. (a) The LBµM setup, (b) Ongoing LBµM for fabrication of micro-holes, (c) trepanning
scanning pattern, and (d) Gaussian beam profile distribution.

A dedicated fixture is used to hold the sheet (tool plate for Reverse-µEDM) in such a
way that there remains a gap for the free flow of ejected melted material (refer to Figure 3I).
The flow of the molten metal is assisted by a shielding gas (nitrogen), which is coaxially
supplied to the laser head. An illustration of ongoing LBµM for micro-hole fabrication
on the sheet is shown in Figure 2b. Elliptical micro-holes, with the major and minor
axes of 950 µm and 500 µm are fabricated at different LBµM parameters. The different
LBµM process parameters and their levels considered to perform the experimental runs
are summarized in Table 1. A design of experiments (DOE) approach based on Taguchi
L16 orthogonal array is applied to identify the best possible parametric combination with
minimum experimental runs required, as shown in Table 2. The auxiliary parameters viz.
stand-off distance, assisting gas pressure, and scanning speed is kept constant at 300 µm,
9 bar, and 150 mm/min. The quality criterion of LBµM includes the measured machining
responses of each micro-hole in terms of minimum recast layer height, RaT, taper, and
maximum MRRT, along with HAZ microhardness. It is noteworthy that each experiment is
repeated thrice, and the average response values are tabulated.

The optimal LBµM machining parameters are obtained based on the interaction of
multiple responses using Grey relational analysis. The optimal parametric combination
is obtained from the highest grey relational grades obtained by calculating the mean of
all the coefficients associated with the recorded experimental responses [27]. Moreover,
a confirmatory experimental run is conducted to analyze the deviation in the recorded
responses, and the discussion in detail on the recorded responses is presented in Section 3.1.
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Table 1. Factors and their levels.

Input Factors Units
Level

1 2 3 4

Pulse width ms 0.25 0.5 0.75 1
Pulse frequency Hz 50 65 80 95

Current percentage DC (%) 20 40 60 80

The machined micro-holes in the elliptical cross-section are evaluated for detailed
dimensional analysis, chemical composition, and surface characterization alteration. A
2D image acquisition of the fabricated holes is conducted using an optical microscope
(ZEISS Axio Vert. A1, Carl Zeiss Microscopy GmbH, Jena, Germany). It is followed
by microstructural and EDS analysis on the micro-holes surface using SEM (JSM6610LV,
Jeol Ltd., Freising, Germany) equipped with an XFlash 6130 QUANTAX (Bruker Ltd.,
Bremen, Germany) EDS system. Besides these, various essential LBµM responses were
evaluated, such as MRRT, RaT (using roughness tester, Mitutoyo, 178–923E SJ210 Series
(Mitutoyo South Asia Pvt. Ltd., New Delhi, India) (refer to Figure 3III). The top and bottom
kerf width (“Wt”) and (“Wb”), and taper (refer to Figure 3II) are also evaluated for each
micro-hole. For the precise calculation of mass loss, an electronic micro-weighing balance
(MYA 21.4Y Microbalance, RADWAG Balances and Scales Ltd., Radom, Poland) with a
repeatability of 0.1 µg is used. Another response, i.e., HAZ micro-hardness measurements,
is performed using a Vickers hardness testing machine (Wilson Instruments, 402 MVD,
Esslingen, Germany) near the cut edge of each micro-hole (refer to Figure 3IV).

2.3. Reverse-µEDM Experiments for Fabricated Arrayed Protrusions

The obtained optimal LBµM parametric combination is used further to fabricate tool
plate consisting of a single or an array of micro-holes as an essential component in Reverse-
µEDM for producing arrayed protrusions. The machining conditions for Reverse-µEDM
and optimal LBµM are given in Table 3. Three essential output responses, i.e., MRRP, RaP,
TWR, were rigorously monitored and recorded (approaches are depicted in Figure 4) as
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they are significantly affected by the nature of the machining environment. In addition
to geometrical analysis, surface characterization, “RaP” and micro-hardness of tool plates
were also evaluated.

Table 2. Experimental runs and the recorded LBµM responses.

Factors
Responses

A B C D = A × B
× 10−1

Exp No.
Pulse
Width
(ms)

Frequency
(Hz)

Current
(%) Duty Cycle MRRT

(mm3/min)

Height of
Recast Layer

(mm)

RaT
(µm)

Taper
(Rad)

Hv, HAZ
(Micro-Holes)

1 0.25 50 20 1.250 0.738 0.034 1.46 0.01 123
2 0.25 65 40 1.625 0.753 0.042 1.78 0.029 128
3 0.25 80 60 2.000 0.782 0.049 1.91 0.043 130
4 0.25 95 80 2.375 0.807 0.056 2.02 0.051 134
5 0.50 50 40 2.500 0.831 0.062 2.14 0.068 139
6 0.50 65 20 3.250 0.878 0.078 2.58 0.077 145
7 0.50 80 80 4.000 0.911 0.083 2.87 0.112 151
8 0.50 95 60 4.750 0.963 0.107 3.17 0.124 162
9 0.75 50 60 3.750 0.876 0.071 2.47 0.094 156
10 0.75 65 80 4.875 0.942 0.093 2.98 0.132 163
11 0.75 80 20 6.000 1.015 0.111 3.58 0.159 171
12 0.75 95 40 7.125 1.062 0.123 3.95 0.181 179
13 1 50 80 5.000 0.952 0.096 3.02 0.146 165
14 1 65 60 6.500 1.029 0.119 3.70 0.168 173
15 1 80 40 8.000 1.094 0.128 4.35 0.211 183
16 1 95 20 9.500 1.108 0.132 4.68 0.237 188

Table 3. Process conditions of Reverse-µEDM and LBµM (Machine tool: Model: DT110i; Mikrotools
Pte Ltd., Singapore).

Reverse-µEDM Parameters (Based on Expertise
and Availability) LBµM Parameters (Based on GRA Optimization)

Setup RC based LASER
type Nd-YAG YLR-150/1500-QCW-MM-AC-Y11

Resolution (X, Y, Z) 0.1 µm Wavelength 1070 nm
Tool plate Titanium Power 150 W
Workpiece Brass Frequency 50 Hz

Gap voltage 110 V Pulse
width 0.25 ms

Capacitance 10 nF Spot
diameter 55 µm

Electrode Feed rate 5 µm/s current (%) 20
Dielectric oil (type) NICUT LL21 E

Measured Responses after Reverse-µEDM

Reverse-µEDM
Using
Tool Plate Fabricated
(Droplet Protrusions)

Approximately Time
(h)

MRRP
(mm3/min)

TWR
(mm3/min)

RaP
(µm)

Micro-Hardness of
Tool Plate (Hv)

Before
M/cing

After
M/cing

(I) with random
parametric set 32 0.119 0.0053 1.63 118 125

(II) with optimal
parametric set 28 0.142 0.0042 1.46 118 129
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3. Results and Discussion

This section analyzes the recorded responses mentioned in Section 2 and the optimal
parametric combination of LBµM parameters. It is followed by a detailed discussion
regarding the dimensional and surface quality evaluations of Reverse-µEDM fabricated
arrayed protrusions using tool plates fabricated at optimal LBµM parameters in Section 3.2.

3.1. LBµM Experimental Results

The optical images of all the fabricated micro-holes at different duty cycles are shown
in Figure 5. It is observed that the micro-holes fabricated at lower duty cycles have shown
good dimensional accuracy with minimal burr formation than the micro-holes fabricated
at higher duty cycles. It may be due to the better efficiency of molten metal removal from
the cut kerf at lower duty cycles. Post examination of fabricated micro-holes reveals the
striation patterns on the holes’ side wall at lower moderate and higher duty cycles, as
shown in Figure 6. It is a well-accepted fact in LBµM that the formation of either uniform or
non-uniform striation patterns on the holes’ side walls is solely associated with the molten
metal viscosity and purging of assisting gas. The purging gas enhances the cooling effect
and generates the drag force on the molten metal through the cut kerf, which may stick to
the micro-holes’ side walls. The rate of flow of molten metal (fluid strain) also changes due
to the movement of the nozzle head along with the desired holes’ profile, which alters the
amount of molten metal purging outside the cut kerf of the micro-holes. The lesser molten
metal’s viscosity and surface tension along the tool plate thickness results in the retardation
of the molten metal streamlines to accumulate at the bottom of the micro-hole. This results
in better dimensional accuracy and a shallow striation pattern at lower duty cycles than the
ejected melted metal at higher duty cycles, shown in Figure 6 (recorded data are tabulated
in Table 2).



Micromachines 2022, 13, 306 8 of 17

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 17 
 

 

shown in Figure 6. It is a well-accepted fact in LBµM that the formation of either uniform 

or non-uniform striation patterns on the holes’ side walls is solely associated with the 

molten metal viscosity and purging of assisting gas. The purging gas enhances the cooling 

effect and generates the drag force on the molten metal through the cut kerf, which may 

stick to the micro-holes’ side walls. The rate of flow of molten metal (fluid strain) also 

changes due to the movement of the nozzle head along with the desired holes’ profile, 

which alters the amount of molten metal purging outside the cut kerf of the micro-holes. 

The lesser molten metal’s viscosity and surface tension along the tool plate thickness re-

sults in the retardation of the molten metal streamlines to accumulate at the bottom of the 

micro-hole. This results in better dimensional accuracy and a shallow striation pattern at 

lower duty cycles than the ejected melted metal at higher duty cycles, shown in Figure 6 

(recorded data are tabulated in Table 2). 

 

Figure 5. Micro-holes at different parametric combinations (indicated by corresponding duty cycle 

values). 

 

Figure 6. SEM images of holes’ cut-section depicting striation marks. 

 

Figure 5. Micro-holes at different parametric combinations (indicated by corresponding duty cycle
values).

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 17 
 

 

shown in Figure 6. It is a well-accepted fact in LBµM that the formation of either uniform 

or non-uniform striation patterns on the holes’ side walls is solely associated with the 

molten metal viscosity and purging of assisting gas. The purging gas enhances the cooling 

effect and generates the drag force on the molten metal through the cut kerf, which may 

stick to the micro-holes’ side walls. The rate of flow of molten metal (fluid strain) also 

changes due to the movement of the nozzle head along with the desired holes’ profile, 

which alters the amount of molten metal purging outside the cut kerf of the micro-holes. 

The lesser molten metal’s viscosity and surface tension along the tool plate thickness re-

sults in the retardation of the molten metal streamlines to accumulate at the bottom of the 

micro-hole. This results in better dimensional accuracy and a shallow striation pattern at 

lower duty cycles than the ejected melted metal at higher duty cycles, shown in Figure 6 

(recorded data are tabulated in Table 2). 

 

Figure 5. Micro-holes at different parametric combinations (indicated by corresponding duty cycle 

values). 

 

Figure 6. SEM images of holes’ cut-section depicting striation marks. 

 

Figure 6. SEM images of holes’ cut-section depicting striation marks.

3.1.1. Microstructure and EDS

During the LBµM process, the thermal gradient is generated near the cut edge as
the machining progresses. The developed thermal gradient alters the microstructure of
the base metal, as observed in a small zone near the cut edge as HAZ. Figure 7b(I,II)
shows the base metal’s microstructure and HAZ developed at a duty cycle of 1.25% and
a current percentage of 20%. Careful observation of the HAZ microstructure also shows
the difference in the microstructural details compared to the base metal. The grains are
uniformly distributed in the HAZ region compared to the random distribution on the bulk
metal surface at lower duty cycles. Additionally, the amount may be altered due to the
wide range of process parameters and thermal strains generated at high-intensity laser
beam irradiation.
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Figure 7. (a) Tool plate with micro-holes, and (b) microstructure at (I) base metal surface, and ((II) at
HAZ location.

Additionally, the extent of the alteration in the HAZ region is also analyzed through
the elemental distribution of the titanium tool plate. Quantitatively, the elemental data
were presented to better compare the base metal and the HAZ region of the micro-hole
shown in Figure 8a(i,ii). To illustrate both regions on the tool plate surface, the spectrum is
highlighted with a red box in the corresponding SEM image of the micro-holes shown in
Figure 8a.

A significant alteration is found in the elemental composition near the cut edge,
presenting the elements’ details from the EDS plot. The presence of smaller oxidation zones
and carbide formation may be due to the reaction of the molten metal to the environmental
gases present in the machining chamber or surface oxidation. However, the EDS of the base
metal shows only the titanium content. Some micro-sized split boundaries, micropores,
and globular solidification impressions are found at the cut edges, as shown in Figure 8b.
These features might be occurring due to sudden vaporization and bubble formation in the
melted metal layer. A dense recast layer adjacent to the micro-holes cut edge is evidenced,
of which sufficient explanation is provided in the following sub-section.
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the cut edge.

3.1.2. Recast Layer and MRR

The top surface of the workpiece is subjected to focused laser beam irradiation results
in sequential heating, melting, and vaporization, leading to the metal’s removal through
micro-holes. While some portion of the resolidified molten metal gets interlocked at the cut
edge, known as the recast layer. The SEM image of micro-holes confirms the recast layer
formation, shown in Figure 8a,b.

Figure 9a shows the line graph of the recast layer height against the increasing duty
cycle at a constant current of 20% (% of avg. peak power) for all micro-holes. It is observed
that the trend for recast layer height is growing with an increase when the duty cycle and
current percentage lie from 20–80% and between 0.034 and 0.132 mm. This is because of
the longer interaction time between the tool plate and the intense laser beam at a particular
parametric combination. The increasing laser beam energy per unit area, leads to more
melting, causing more recast layer formation at the cut edges. Additionally, the high vapor
pressure generation on the molten metal surface causes a thermal gradient effect from
the adjacent base metal. It generates hot plasma at the top of the cut edge, absorbs laser
energy coming towards the base metal surface, for which the intensity of the laser beam
is somewhat reduced. At higher duty cycles, high thermal gradients occur between the
base metal and cut edge of the tool plate surfaces at a particularly assisting gas pressure
resulting in the thicker recast layer height.

The influence of LBµM parameters on MRRT is also evaluated for the productivity of
the micro-holes. The corresponding MRRT data for each experimental run shown in Table 2
varies from 0.738 to 1.108 mm3/min for lower to higher duty cycles. Figure 9b shows the
variation for MRRT at a constant current of 20% (% of avg. peak power). A similar trend
was observed for the increased MRRT with an increasing current percentage from 20% to
80%. With the increasing current percentage (at the higher duty cycle), the tool plate’s
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top surface is susceptible to intense laser irradiation and faster melting and vaporization,
which leads to an improved MRRT.
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3.1.3. Taper

The micro-holes cut edge and the side wall surface gets slightly modified, causing
the non-identical entrance and exit, producing a taper due to the varying heat input and
assisting gas pressure. Figure 10 exhibits the effect of increasing the duty cycle at a constant
current percentage of 20% (% of avg. peak power) on the taper of the micro-holes. A
similar trend of the increasing taper is observed for every consistent current percentage
from 20% to 80%, showing the dominant contribution among other input parameters. As
the power of the laser beam increases, the thermal energy of the incident beams directly
transfers to the top surface of the tool plate. As a result, the top surface of the tool plate gets
severely melted and vaporized and the strength of the beam decreases at the bottom edge,
causing metal removal through a narrow gap. In addition, assisting gas pressure causes an
increment in the taper by simultaneously cooling and ejecting the melted metal from the
top surface of the tool plate at higher duty cycles.

3.1.4. Avg. Surface Roughness, RaT

An increase in laser intensity irradiation on the tool plate surface results in higher
amounts of molten metal removal. Additionally, the drag force generated by assisting gas
pressure purging out the molten metal faster causes unevenness on the side-wall surface
of micro-holes. The effect of LBµM parameters on varying RaT of the micro-holes’ side
wall can be analyzed through the line plot in Figure 11a. The variation of RaT value with
duty cycle at different current percentages ranging from 20% to 80% is observed as 1.46 to
4.68 µm (refer to Table 2).

It is observed that the RaT values are minimal at the lower duty cycle in LBµM. A lower
duty cycle ensures the availability of great timing for the laser beam to melt and vaporize
the molten metal. Additionally, the melted metal removal from the cut kerf is supported by
suitable assisting gas pressure, which drags the molten metal uniformly. However, with
an increase in duty cycle, the RaT values show an increasing trend. Excessive melt pool
formation caused by partial melting of base metal near the cut edge creates non-uniformity
on the side wall surface as non-uniform striation marks and high RaT values.
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3.1.5. Micro-Hardness of HAZ

The variation of HAZ micro-hardness with increasing duty cycle at constant current
percentage is illustrated in Figure 11b. A similar trend was observed for increased micro-
hardness with an increasing current percentage from 20% to 80%. It is observed that the
hardness near the cut edge of each micro-hole is significantly higher than the hardness of
the base metal. The formation of intense layers of titanium carbides near the cut edges and
varying thermal loading leads to a surface modification at the edges. The formation of these
layers may be due to the chosen assisting gas pressure and grain refinement. The traces
of carbide formation at the cut edge of the micro-holes are confirmed by EDS analysis, as
shown in Figure 8a(ii).

From the optimization, the parametric combination for the first experimental run
(refer to Table 2) has shown the best performance for the multi-objective optimization
(maximizing MRRT, HAZ micro-hardness, and minimizing recast layer height, taper, RaT).
The reproduced machined micro-hole fabricated at the optimal parametric combination
(refer to Table 2) has presented satisfactory machining responses with less than 1% error.
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This is confirmed through an experimental validation run shown in the inset (refer to
Figure 12) that has no evidence of side wall burrs and no significant deviation in the taper.
This parametric combination is further utilized in the micromachining of single and arrayed
micro-holes for producing arrayed protrusions.
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3.2. Reverse-µEDM Using Optimal Tool Plate

The micromachined single micro-hole at the optimized LBµM parameters is used
to fabricate a single protrusion using the Reverse-µEDM. The SEM images of the single
elliptical protrusion and the fabricated micro-hole are shown in Figure 12. The fabricated
protrusion is almost free from tip damage around its periphery and perpendicular along
the orthogonal length.

The potentiality of the obtained optimal LBµM parametric combination is further
used for fabricating an array of elliptical and droplet micro-holes and the subsequent
arrayed protrusions. For this, a fabricated tool plate with a collection of 10 × 15 micro-
holes is fabricated at two different LBµM conditions: (I) a randomly selected combination
(includes a pulse width of 0.75 ms, pulse frequency of 75 Hz, and a current of 20% (% of
avg. peak power)), and (II) an optimal parametric combination, as highlighted in Table 2.
SEM images of fabricated protruded structures at both mentioned conditions are shown
in Figure 13a,b. The fabricated arrayed protrusions, with the tool plate micromachined at
the random parametric set, encounter the issue of damaged tips for a few of the structures,
as seen in Figure 13a. However, the presence of burrs causes longer machining time due
to non-contributing discharge pulses resulting in non-uniform material removal from the
workpiece electrode until it gets removed from the entire micro-holes. In contrast, it was
not significant while fabricated at optimized LBµM parameters, as shown in Figure 13b.
The reason could be well understood by looking back at the micro-hole fabricated at the
optimized LBµM parameters, as shown in Figure 12 (inset). Since it has no apparent
cleavage or burrs at the micro-hole cut edges, it allows faster machining by restricting
high-order discharges and short-circuiting during Reverse-µEDM.
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Figure 13. SEM images of fabricated elliptical arrayed protrusions with (a) randomly selected and
(b) optimal LBµM parametric combinations.

Moreover, a droplet cross-section profile with a minimum inter-electrode gap of
100 µm in a staggered configuration is also fabricated. Figure 14a,b show partial magnified
images of a few protrusions from an array taken at the center.
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Figure 14. SEM images of fabricated droplet arrayed protrusions with (a) randomly selected and
(b) optimal LBµM parametric combinations.

The recorded dimensions of fabricated protrusions are depicted in the same Figure in
which an almost negligible taper is evidenced. The reason for high-quality droplet protrusions
adheres to a similar explanation, as reported in the case of arrayed elliptical protrusions.

In Reverse-µEDM, the workpiece being as anode and tool plate as cathode, are sub-
jected to generating a new surface due to frequent electrical discharging between them. The
alteration in the modified surface of the tool plate is confirmed through elemental analysis
captured at the zone where the machining takes place after Reverse-µEDM. Figure 15a
depicts the spectrum, whereas Figure 15b shows the various elemental composition per-
centages on the machined tool plate.
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Figure 15. Energy spectrum on (a) tool plate after Reverse-µEDM, and (b) corresponding EDS plot.

Responses recorded from the Reverse-µEDM are presented in Table 3. MRRP, TWR
and RaP recorded improvements of more than 16%, 20%, and 10%, respectively, while using
the tool plate fabricated at optimized LBµM parameters. The burr-free tool plate at the
optimized LBµM parameter leads to uninterrupted machining, hence, improved MRRP,
TWR, and RaP. Additionally, it leads to the freezing of abnormal discharges by proper
debris evacuation from the discharge gap. However, abnormal discharges due to debris
accumulation are significant for increased tool wear in µEDM [28]. As a result, there is less
possibility for debris re-solidification, due to its rapid cooling, on the machined tool plate
surface in Reverse-µEDM. In contrast, the tool plate fabricated at the optimized LBµM
parameters, comparatively, provides more scope for its rapid cooling during Reverse-µEDM.
Hence, it leads to slightly better micro-hardness of the pre-drilled tool plate.

4. Conclusions

High-quality protrusions are fabricated in the shape of elliptical and droplet cross-
sections using Reverse-µEDM. The tool plate required for the Reverse-µEDM is fabricated
using Nd: YAG-based LBµM at the optimized process parameters. The Nd: YAG LBµM
parameters are analyzed to achieve burr-free, minimum taper, and shallow striation marks
of micro-holes fabricated on a 0.5 mm thick titanium sheet. The micro-holes fabricated
at optimal LBµM parameters are used as a tool plate in Reverse-µEDM for producing
high-quality protrusions.

The following conclusions may be drawn upon the analysis of the fabricated products:

• The LBµM at the lowest duty cycle and current percentage, as the optimized LBµM
parameters, resulted in minimum recast layer height, minimum taper, and average
surface roughness (“RaT”) with almost negligible burrs with shallow side wall striation
marks of micro-holes.

• The pulse width of 0.25 ms, pulse frequency of 50 Hz, and a current percentage of 20%
(% of avg. peak power) were the optimal parametric combinations for LBµM obtained
by Grey relation analysis.

• The optimized LBµM parameters have demonstrated high-quality arrayed micro-holes
and are further used to produce arrayed elliptical and droplet protrusions through
Reverse-µEDM.

• Damage-free protrusions with an improved MRRP, TWR, and RaP by more than 16%,
20% and 10%, respectively, are achieved by Reverse-µEDM upon using the optimized
tool plate.
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Nomenclature

µEDM Micro-electro-discharge-machining
Reverse-µEDM Reverse-micro-electro-discharge-machining
LBµM Laser beam micromachining
Nd: YAG Neodymium-doped yttrium aluminum garnet
HAZ Heat affected zone
RC Resistance-capacitance
SEM Scanning electron microscope
EDS Energy Dispersive Spectroscopy
TWR Tool wear rate (mm3/min)
GRA Grey relational analysis
Hv Vicker micro-hardness
RaT Average surface roughness of micro-holes side-wall surface (µm)
RaP Average surface roughness of protrusions surface (µm)
MRRT Material removal rate (mm3/min) of tool plate
MRRP Material removal rate (mm3/min) of protrusions
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