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Abstract: Two sandwiched ZnO/Metal/ZnO transparent conductive thin films, 50nm ZnO/Cu/50nm
ZnO (abbreviated as ZnO(Cu)) and 50nm ZnO/Ti/Cu/Ti/50nm ZnO (abbreviated as ZnO(Ti/Cu))
were deposited by magnetron sputtering technology. The comparative analysis of experiment results
shows that the introduction of the Ti layer is beneficial to the overall properties of ZnO(Ti/Cu) thin
film compared to ZnO(Cu) thin film with the same metal layer thickness. The effect of the annealing
temperature on the performance of the two film systems was studied. Although the carrier concen-
tration did not always increase with annealing temperature, the sheet resistances did decrease due to
the obvious increase of mobility. The transmittance of ZnO(Cu) thin films increases with annealing
temperature, while that of ZnO(Ti/Cu) films increases at first and then decreases. The optical band
gap of ZnO(Cu) thin films increases with temperature, but is lower than that of ZnO(Ti/Cu) thin
films, whose bandgap first increases with temperature and then decreases. The figure of merit of
the ZnO(Ti/Cu) film is better than that of ZnO(Cu), which shows that the overall performance of
ZnO(Ti/Cu) films is better, and annealing can improve the performance of the film systems.

Keywords: optical properties; sheet resistance; transparent conductive thin film; annealing temperature;
ZnO/Metal/ZnO

1. Introduction

As a transparent conductive oxide, zinc oxide (ZnO) is a wide-bandgap semiconductor
with high transmittance in the visible range [1,2], which has led to its broad application
in the fields of flat panel displays, camera tubes, solar cells, organic light-emitting diodes,
liquid crystal displays and so on [3,4]. However, pure ZnO has a high resistivity and cannot
meet the requirements of transparent conductive films due to two mutually restrictive
factors: high transmittance and low resistivity in the visible light range. Sandwiched
ZnO/Metal/ZnO multilayer thin film combining metal with a semiconductor can effec-
tively improve the electrical conductivity without reducing the optical transmittance [5]
because the metal in the middle layer can conduct electrons in order to reduce the resistivity.
Various metal-sandwich ZnO multilayers, such as ZnO/Ag/ZnO [6], ZnO/Au/ZnO [7],
ZnO/Al/ZnO [8] and ZnO/Cu/ZnO [9–12], have been developed. Due to the positive
effect of copper in improving electrical conductivity and optical properties, ZnO(Cu) sand-
wiched multilayer has attracted much interest.

Various technologies, such as magnetron sputtering [11,12], atomic layer deposi-
tion [13] and sol-gel [14], have been used to fabricated ZnO(Cu) sandwiched films on
different substrates, such as glass [11–14] and flexible polyethylene naphthalate [15]. Simu-
lation and experimental methods were used to study the influence of Cu and ZnO layer

Micromachines 2022, 13, 296. https://doi.org/10.3390/mi13020296 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13020296
https://doi.org/10.3390/mi13020296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4815-6560
https://doi.org/10.3390/mi13020296
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13020296?type=check_update&version=3


Micromachines 2022, 13, 296 2 of 11

thickness on the performance of ZnO(Cu) sandwiched film. Both theoretical analysis
and experimental results prove that the electrical conductivity and optical properties of
oxide transparent conductive films with a Cu interlayer depend considerably on its thick-
ness [10–18]. Generally speaking, electrical conductivity will be improved with the increase
of Cu layer thickness because of its excellent conductivity, but the transmittance will in-
crease at first, reach the maximum value at a certain thickness, and then decrease sharply
because of the absorption in the Cu layer. Although ZnO is one of the best choices for
the semiconductor layer, oxygen chemisorption on its surface and grain boundaries of
ZnO result in higher resistivity [17]. Therefore, the electrical properties of pure ZnO are
unsuitable. To solve this problem, ZnO films are usually treated by annealing to improve
the stability of the film by releasing strain energy and improving the crystal shape [19].
Previous studies [16,18] have shown that the annealing atmosphere and temperature affect
the properties of the ZnO/Cu/ZnO multilayers.

Reducing the absorption of light in the metal layer is an effective measure to improve
the properties of metal-sandwich ZnO multilayers. However, ultrathin Cu films (i.e., less
than 10 nm) are susceptible to oxidation and corrosion, which significantly affect their
electrical and optical properties [15]. One solution is to cover the layer with a protective,
ultrathin film with stronger reducibility. Previous research has demonstrated that a contin-
uous, ultrathin Cu/Ti bilayer film in which the Ti film acts as a protective film can improve
the performance and stability of the transparent conductive electrode [19–21].

In this paper, two ZnO-based transparent conductive thin-film systems, consisting
of either sandwiched Cu or Ti/Cu/Ti metal layers, were fabricated using magnetron
sputtering technology and were annealed at temperatures from 100 ◦C to 400 ◦C in an Ar
atmosphere.

Comparative experiments and characterization analysis, such as microstructure analy-
sis, sheet resistance and optical properties, were investigated, and the influence of annealing
temperature on performance was studied.

2. Experiment

Two ZnO transparent conductive thin-film systems (50nm ZnO/Cu/50nm ZnO and
50nm ZnO/Ti/Cu/Ti/50nm ZnO) were fabricated on glass substrates using magnetron
sputtering technology. The sputtering equipment (Explorer14, Seattle, WA, USA) had three
target guns, allowing it to perform RF sputtering of ZnO and the DC sputtering of Cu
and Ti (both purity grades were 99.99%) in an Ar atmosphere with a base pressure of
2 × 10−5 Pa. Then, the fabricated thin-film systems were annealed in a high temperature
furnace for 30 min at temperatures from 100 ◦C to 400 ◦C in an Ar atmosphere.

The crystallization structures of the two ZnO transparent conductive thin-film systems
created at the various annealing temperatures were determined using X-ray diffraction
(XRD) (Xpert Pro, Rotterdam, The Netherlands). In order to evaluate the performance of
the two film systems, the four-point probe method and ultraviolet and visible spectropho-
tometer (Shimadzu UV-3600, Kyoto, Japan) were used to measure the sheet resistance and
transmission spectra, respectively.

3. Results and Discussion

The transmission spectra of unannealed ZnO/10nm Cu/ZnO, ZnO/20nm Cu/ZnO
and ZnO/5nm Ti/10nm Cu/5nm Ti/ZnO, as measured by ultraviolet and visible spec-
trophotometer, are presented in Figure 1. It can be noted that the transmittance of
ZnO/10nm Cu/ZnO is higher than that of ZnO/20nm Cu/ZnO. This is similar to pre-
vious experiment results showing that the transmittance of ZnO(Cu) thin-film systems
decreases as Cu film thickness increases [10,16,17]. As listed in Table 1, the transmittance
of ZnO/5nm Ti/10nm Cu/5nm Ti/ZnO is also higher than that of ZnO/10nm Cu/ZnO
in the wavelength range of 470–780 nm. The reasons for this phenomenon need to be
analyzed in combination with the characteristics of Cu and Ti. It has been proven that
the reflective effect and light absorption of Cu are the two main influencing factors of
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transmittance reduction, and they have a different degree of influence at short and long
wavelengths [10,22–24]. That is, the reflective effect of the Cu film layer is the main cause
for the transmittance reduction in the short-wavelength region, while light absorption
affects the long-wavelength region. To be specific, in short wavelengths (less than 470 nm),
the extinction coefficients of Cu and Ti are close, which means that the introduction of Ti
layers has little effect on the attenuation of light absorption. However, because Ti has a
higher refractive index than Cu, the reflection effect is more obvious, which leads to the
transmittance of ZnO/5nm Ti/10nm Cu/5nm Ti/ZnO thin film being lower than that of
ZnO/10nm Cu/ZnO in this region. In the wavelength range of 470–780 nm, since the
extinction coefficient of Ti is significantly lower than that of copper, the addition of the Ti
layer is beneficial to transmittance by reducing the effect of light absorption, as shown in
Table 1. It is worth mentioning that the transmittance of the sandwiched ZnO/Metal/ZnO
film is lower than that of the ZnO single film with the same thickness due to the reflective
effect and light absorption of the metal interlayer. This has been confirmed by previous
study [16].

Table 1. The refractive index and extinction coefficient of ZnO, Cu and Ti at different wavelengths [24].

Wavelength
(nm)

Refractive Index Extinction Coefficient

ZnO Cu Ti Cu Ti

387.44 2.264 1.231 1.500 2.068 2.12

413.27 2.181 1.185 1.590 2.208 2.17

442.79 2.122 1.168 1.680 2.363 2.25

476.85 2.078 1.152 1.750 2.504 2.34

516.58 2.045 1.12 1.810 2.603 2.47

539.04 2.032 1.038 1.860 2.592 2.56

563.55 2.019 0.826 1.920 2.602 2.67

590.38 - 0.468 2.010 2.809 2.77

619.9 - 0.272 2.110 3.326 2.88

652.53 - 0.214 2.220 3.667 2.99

688.78 - 0.213 2.360 4.043 3.11

729.294 - 0.223 2.540 4.433 3.23

826.53 - 0.26 2.980 5.26 3.32

In order to further compare the electric conductivity of three thin films, their sheet
resistances are exhibited in Table 2. ZnO/20nm Cu/ZnO thin film has the minimum sheet
resistance, while ZnO/10nm Cu/ZnO has the maximum. The reason for the change of sheet
resistance can be explained intuitively. As a semiconductor material, the ZnO thin film has
a high resistivity in the ZnO/Metal/ZnO film structure, hence, the overall conductivity of
the film structure depends largely on the sandwiched metal layer introduced to improve
the conductivity. Therefore, the increase of the metal layer thickness greatly reduces the
sheet resistances of the ZnO/Metal/ZnO multilayer film structure. On the other hand,
because the conductivity of Cu is superior to that of Ti, the resistance of thin film with
20nm Cu is less than that of 5nm Ti/10nm Cu/5nm Ti, although the overall thicknesses of
both of the metal layers is 20 nm.
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Figure 1. The optical transmission spectra of three unannealed ZnO transparent conductive thin-film
systems.

Table 2. Sheet resistance and figure of merit of the three ZnO transparent conductive thin films.

Figure Sheet Resistance (Ω/sq) Figure of Merit

ZnO/10nm Cu/ZnO 10.1 0.00181

ZnO/20nm Cu/ZnO 5.5 0.00004

ZnO/5nm Ti/10nm Cu/5nm Ti/ZnO 6.6 0.01060

It is expected that both optical transmittance and electric conductivity of transparent
conductive films are maximized as they are two important parameters for transparent
conductive thin film. In fact, optical transmittance and electric conductivity are two mutual
constraints: improvement of optical transmittance (or electrical conduction) will lead to
a decrease in electrical conduction (or optical transmittance). Therefore, an evaluation
parameter named figure of merit was introduced by Haacke to evaluate the performance of
transparent conductive film. The expression is defined as [25]:

ΦTC =
T10

RS
(1)

where T is the peak transmittance and RS is the sheet resistance. As listed in Table 2, the ΦTC
of ZnO/20nm Cu/ZnO is the minimum, which indicates that the overall performance of
ZnO/20nm Cu/ZnO is the worst although it has the minimum sheet resistance. ZnO/5nm
Ti/10nm Cu/5nm Ti/ZnO has the best performance.

It is known that the metal layer thickness has a significant effect on the performance of
ZnO/Metal/ZnO transparent conductive thin films, which is also reflected in these films.
Obviously, the figure of merit for ZnO/20nm Cu/ZnO is lower than that of ZnO/10nm
Cu/ZnO. This indicates that the overall performance of ZnO/20nm Cu/ZnO is inferior
to that of ZnO/10nm Cu/ZnO. The main reason is that, although an increase in thickness
of the Cu layer is beneficial to the improvement of conductivity, it greatly reduces the
transmittance. On the other hand, although the metal layer thickness of ZnO/5nm Ti/10nm
Cu/5nm Ti/ZnO is also increased, its overall performance is improved, which is reflected in
the increase of the figure of merit. It shows that the introduction of the Ti layer is helpful to
the improvement of overall performance. This indicates that the Ti layer plays an important
role in improving the overall performance of the conductive films.

To further study the performance evolution of ZnO transparent conductive thin film
under various annealing conditions, two film systems, ZnO/20nm Cu/ZnO (abbreviated
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as ZnO(Cu)) and ZnO/5nm Ti/10nm Cu/5nm Ti/ZnO (abbreviated as ZnO(Ti/Cu)) were
annealed at different temperature. Figures 2 and 3 present the XRD spectra of the two film
systems after annealing. As shown in Figure 2, each spectrum has two distinct diffraction
peaks. The first peaks, belonging to ZnO, are hexagonal wurtzite, which indicates that ZnO
films grow preferentially toward (002) orientation. The second peaks, corresponding to
Cu(111), obviously indicate that Cu films grow toward (111) preferred orientation. The
intensity of the Cu(111) peak increases with the temperature. This shows that annealing can
improve the crystallization quality of the Cu layer. However, in Figure 3 it is observed that
the ZnO hexagonal wurtzite polycrystalline structure with the (002) preferred orientation
have been formed, and their peak intensities increase with the temperature. However, the
diffraction peaks that can represent Cu are not obvious, which indicates that Cu does not
crystallize very well. This is different from the XRD patterns of ZnO(Cu) thin films.
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The electrical properties of the two annealed thin-film systems are presented in
Figure 4. The electrical conductivity of both film systems was improved with the increase
of temperature. In detail, the sheet resistances of ZnO(Ti/Cu) thin films decreased from
6.59 Ω/sq to 5.19 Ω/sq when annealing temperature was raised from room temperature to
400 ◦C; the decrease of sheet resistance was smaller than that of ZnO(Cu) thin films, whose
sheet resistance decreased from 5.54 Ω/sq to 2.68 Ω/sq. Their mobility shows an increasing
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trend with the temperature. The carrier concentration of ZnO(Cu) thin films tends to in-
crease continuously while that of ZnO(Ti/Cu) thin films increases from room temperature
to 300 ◦C and then decreases. The reasons for this change in electrical properties can be
explained simply as follows. The annealing process is conducive to the improvement of the
quality and the degree of crystallization of the thin film (as obviously shown in the XRD
patterns in Figure 3). It leads to the decrease of free electron scattering, which induces the
increase of the carrier concentration and mobility [26]. Further, for ZnO(Cu) thin films, the
increase of the carrier concentration and mobility leads to the decrease of sheet resistance.
On the other hand, for ZnO(Ti/Cu) thin films, the particle size of the nanomaterials will
increase obviously as the annealing temperature goes up to 300 ◦C, after which the carrier
concentration will finally decrease under the influence of the quantum size effect. If the rate
of carrier concentration decrease is lower than that of mobility increase, the conductivity of
the thin films is improved.
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Figure 4. Electrical properties of two ZnO transparent conductive thin films with varying
annealing temperatures.

The transmission spectra of two annealed film systems are presented in Figures 5 and 6.
For the ZnO(Cu) film system, there are two crests in the spectra at wavelengths of about
380 nm and 580 nm. The wavelength shift of peak transmittance around the center wave-
length of 380 nm is not obvious. However, the center wavelength of peak transmittance
in long wavelengths shifts towards the longer wavelength regions. It can be noted that
all the optical transmittances are lower than 60% in the range of wavelengths shown in
the figure. It is also observed that there is only one crest in the spectrum, and all the
peak optical transmittances are higher than 75% for ZnO(Ti/Cu) multilayers annealed at
different temperatures. In order to clearly exhibit the relation between transmittance and
temperature, the maximum transmittances of the two annealed multilayer film systems
are presented in Figure 7. It is noted obviously that the transmittance of ZnO(Ti/Cu) thin
films is higher than that of ZnO(Cu) thin films. In detail, the transmittance of ZnO(Cu)
thin films increases with the annealing temperature. In particular, when the temperature
increases from 300 ◦C to 400 ◦C, there is a large improvement in transmittance. But for
ZnO(Ti/Cu) thin films, the transmittance shows a trend of increasing at first and then
decreasing. That is, the multilayer has the maximum transmittance (about 87%) when the
annealing temperature is 300 ◦C. Although annealing can improve the optical properties of
the sandwiched ZnO/Metal/ZnO films to a certain extent, the reflective effect and light
absorption of the metal layers still exist. Therefore, the average visible transmittance of
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sandwiched ZnO/Metal/ZnO films after annealing is lower than that of ZnO single film
with the same thickness.
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According to the transmittance spectra in Figures 5 and 6, the relationship curve
between the (αhv)2 and hv of the two multilayer film systems with different annealing
temperatures can be obtained, as shown in Figure 8, where α is the absorption coefficient
and h is the photon energy. For ZnO/Metal/ZnO thin-film materials, the relationship
between the α and hv can be expressed as [12,18,27–30]:

(αhv)2 = Λ(hv − Eg)

where Λ is a constant and Eg is the optical bandgap. Normally, Eg is extrapolated from
the linear part of the relationship curve to the hv axis, as shown in Figure 8. The optical
bandgaps of two annealed film systems are presented in Figure 9. The optical bandgap of
ZnO obtained from ZnO(Cu) thin films (3.15~3.19 eV) is lower than that of ZnO(Ti/Cu):
3.20~3.23 eV, which varies near the theoretical value (~3.2 eV) [31,32]. In particular, the
bandgap of ZnO(Cu) thin film increases with temperature, while that of ZnO(Ti/Cu) first
increases and then decreases. The increase of bandgap after annealing is caused by the
Burstein–Moss migration effect [33], which is related to the increase of carrier concentration
in the film (Figure 4). The increased carriers fill in the lower energy level of the conduction
band, making the valance electrons transfer to the higher energy level, thus increasing the
bandgap width. As to the ZnO(Ti/Cu) thin films, the decrease of the bandgap between
300 ◦C and 400 ◦C is due to the increase of the particle size of the film, whose quantum size
effect reduces the carrier concentration, leading to the bandgap narrowing.
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The figures of merit of the ZnO(Cu) and ZnO(Ti/Cu) film systems after annealing are
presented in Figure 10. The figure of merit of ZnO(Ti/Cu) is higher than that of ZnO(Cu).
This shows that the performance of ZnO(Ti/Cu) is superior to that of ZnO(Cu). To be more
specific, the higher annealing temperature increases the figure of merit for ZnO(Ti/Cu),
but not obviously for ZnO(Cu). In other words, annealing has greatly improved the
performance of ZnO(Ti/Cu). The figure of merit is highest when the annealing temperature
is 300 ◦C although its conductivity is worse than thin film annealed at 400 ◦C. This means
that the ZnO(Ti/Cu) thin film annealed at 300 ◦C has the best overall performance [17].
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4. Conclusions

Two metal-sandwiched ZnO transparent conductive thin-film systems (50nm ZnO/Cu/
50nm ZnO and 50nm ZnO/Ti/Cu/Ti/50nm ZnO) were fabricated, and the comparative
analysis of their properties shows that the introduction of Ti layers can improve the overall
performance of the film while maintaining the same overall metal layer thickness. The
influence of the annealing temperature on the performance of two film systems was studied.
The XRD patterns show that ZnO films have the (002) preferred orientation in both film
systems, and the Cu films have [111] crystal orientation in 50nm ZnO/Cu/50nm ZnO
films but do not crystallize very well in 50nm ZnO/Ti/Cu/Ti/50nm ZnO films. Annealing
improved the conductivity of the two films due to a combination of changes in carrier
concentration and mobility (although carrier concentration did not always increase with
annealing temperature). The optical transmittance of ZnO(Ti/Cu) thin films with different
annealing temperatures were higher than that of ZnO(Cu) thin films. The transmittance of
ZnO(Cu) thin films increased with the annealing temperature, while that of ZnO(Ti/Cu)
thin films increased from 100 ◦C to 300 ◦C and then decreased with higher temperatures.
The bandgap of ZnO obtained from ZnO(Cu) thin films increased with temperature but
remained lower than that of ZnO(Ti/Cu), which first increased and then decreased with
temperature. The figure of merit of the ZnO(Ti/Cu) thin film is higher than that of ZnO(Cu),
which indicates that the performance of ZnO(Ti/Cu) thin films is superior to ZnO(Cu). By
comparing figures of merit, it can be determined that annealing can improve the perfor-
mance of the film systems.
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