
����������
�������

Citation: Liu, P.; Yang, Z.; Kang, L.;

Wang, J. A Heterogeneous

Architecture for the Vision Processing

Unit with a Hybrid Deep Neural

Network Accelerator. Micromachines

2022, 13, 268. https://doi.org/

10.3390/mi13020268

Academic Editor: Arman Roohi

Received: 20 January 2022

Accepted: 6 February 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Heterogeneous Architecture for the Vision Processing Unit
with a Hybrid Deep Neural Network Accelerator
Peng Liu 1, Zikai Yang 2, Lin Kang 3 and Jian Wang 1,4,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China; zationlue@tju.edu.cn
2 School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China; 2021094@hebut.edu.cn
3 China Mobile Group Henan Co., Ltd. of Network Management Center, Zhengzhou 450008, China;

kanglin@ha.chinamobile.com
4 Qingdao Institute for Ocean Technology, Tianjin University, Qingdao 266200, China
* Correspondence: wangjian16@tju.edu.cn

Abstract: The vision chip is widely used to acquire and process images. It connects the image sensor
directly with the vision processing unit (VPU) to execute the vision tasks. Modern vision tasks mainly
consist of image signal processing (ISP) algorithms and deep neural networks (DNNs). However,
the traditional VPUs are unsuitable for the DNNs, and the DNN processing units (DNPUs) cannot
process the ISP algorithms. Meanwhile, only the CNNs and the CNN-RNN frameworks are used
in the vision tasks, and few DNPUs are specifically designed for this. In this paper, we propose a
heterogeneous architecture for the VPU with a hybrid accelerator for the DNNs. It can process the
ISP, CNNs, and hybrid DNN subtasks on one unit. Furthermore, we present a sharing scheme to
multiplex the hardware resources for different subtasks. We also adopt a pipelined workflow for the
vision tasks to fully use the different processing modules and achieve a high processing speed. We
implement the proposed VPU on the field-programmable gate array (FPGA), and several vision tasks
are tested on it. The experiment results show that our design can process the vision tasks efficiently
with an average performance of 22.6 giga operations per second/W (GOPS/W).

Keywords: vision processing unit; deep neural network processing unit; image signal processing;
hybrid deep neural network

1. Introduction

The vision chips have shown excellent performance on the vision tasks by connecting
the image sensor directly with the parallel vision processing unit (VPU) [1–3]. They can
solve the bottlenecks of the massive image data transmission and processing in the vision
tasks. They generate high-quality images and extract the required information from the
images [1,4,5]. The VPU is the dominant part of the vision chip and usually utilizes the
single-instruction-multiple-data (SIMD) array of processing elements (PEs). VPUs in early
works [2,5] were mainly composed of the arithmetic and logic unit (ALU) array. They can
accomplish the image signal processing (ISP) tasks and some computer vision algorithms
like speed-up robust features (SURF) [6] at high speed. Since the neural networks have been
widely used for computer vision applications, some works [1,4] have tried to reconfigure
the ALU array to process the neural networks like the self-organizing map (SOM) neural
networks. In recent years, deep neural networks (DNN) have proved to be very efficient
and have become the most commonly-used tools for computer vision tasks [7]. For example,
convolutional neural networks (CNNs) are widely used for image recognition. The hybrid
neural networks [8,9] that combe CNNs and recurrent neural networks (RNNs) can also be
used for some specific applications such as image caption and video description [10,11].
Generally, the modern vision tasks are usually composed of two parts: the ISP and the
DNNs, including the CNNs and hybrid DNNs, as shown in Figure 1. The modern VPU
should be able to process the DNNs as well as the ISP algorithms [12–14].

Micromachines 2022, 13, 268. https://doi.org/10.3390/mi13020268 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13020268
https://doi.org/10.3390/mi13020268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-4361-8946
https://doi.org/10.3390/mi13020268
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13020268?type=check_update&version=2

Micromachines 2022, 13, 268 2 of 27

Figure 1. The modern vision tasks. They are composed of the ISP tasks followed by the CNNs or the
hybrid DNNs.

However, the traditional VPUs based on the ALU array cannot process the DNN
efficiently [15]. Instead, a lot of deep neural network processing units (DNPUs) have
been proposed based on the SIMD array of the multiply accumulators (MACs), and many
efforts are made to shift them closer to the sensors [3,16–20]. However, they cannot execute
the ISP algorithms [1,7], while some ISP algorithms are essential for the vision systems,
including the demosaicing [14,21]. Therefore, those DNPUs cannot directly process the
image data from the image sensor. Moreover, high-quality images are also required in
many application areas, such as closed-circuit televisions and IP cameras [19], and the ISP
algorithms are required to well-tune the images. Therefore, an extra device for the ISP tasks
is required to connect the image sensor and the DNPU when it is applied in the vision
system [16,18,20,22], as shown in Figure 2a. This requires more hardware resources and
consumes more power for the massive image data transmission. Therefore, a VPU that can
process both the ISP algorithms and the DNNs is required to solve this problem, as shown
in Figure 2b.

Figure 2. The vision systems: (a) The current vision systems with the ISP unit and the DNPUs; (b) The
vision systems with the proposed heterogeneous VPU connected with the image sensor directly.

Furthermore, the CNNs and RNNs also have very different computing flows. The
CNNs mainly consist of the convolutional and full-connection (FC) layers, while the RNNs
are composed of several matrix-vector multiplications and element-wise multiplication
operations [8,23]. Most DNPUs are proposed for the CNNs or RNNs, respectively [7,24,25].
Some DNPUs can process both the CNN and RNN with two respective units included for
each one [24,26,27]; they are efficient for the hybrid DNNs. However, a lot of vision tasks
only contain the CNNs, and the RNNs are not used in them, such as image recognition and
object detection. When processing those tasks, the CNN accelerator will run alone, and
the RNN accelerators will be idle, resulting in the hardware’s waste. To date, only a few
works [8,25] have tried to implement both the CNNs and RNNs on one unit for the hybrid

Micromachines 2022, 13, 268 3 of 27

DNNs. However, they have not considered the fact that the convolutional layers consume
much more computation than the FC layers/RNNs. They allocate the same hardware to
both the convolutional and FC layers/RNNs. Therefore, they need to process the DNNs
with a large batch of many images, such as 16 images. The convolutional layers of the
batch will first be processed, image after image, which will consume a large amount of time.
After that, the FC layers and RNNs for the whole batch will be processed simultaneously.
When processing a large batch, they can achieve a small average latency for each image.
However, when processing fewer images, the latency of each image will increase greatly,
and a lot of hardware will be idle during the processing of the FC layers and the RNNs.
This is not practical for real-time vision tasks [28]. Therefore, none of the state-of-the-art
DNPUs are suitable to process the DNNs in modern vision tasks. The CNNs and the hybrid
DNNs should be processed with one unit while the hardware allocation is customized with
the different requirements of the subtasks. Much more computing resources should be
allocated to the convolutional layers than the others [7,8,24].

This paper attempts to implement the ISP, CNNs, and hybrid DNNs with one VPU
architecture to achieve high efficiency in both hardware utilization and power consumption.
We find that the ISP units and the DNPUs share many hardware requirements. Firstly, the
SIMD array is the main architecture for both [7,29], so it is possible to implement them with
one SIMD array. Secondly, although the MACs are the dominant components for the DN-
PUs, the ALUs are also essential for the non-multiplication-and-accumulation (non-Mac)
operations such as pooling, activating, biasing, quantization, and batch-normalization.
Besides, both the ISP units and the DNPUs require a lot of on-chip memory in their respec-
tive forms. Meanwhile, in the DNNs, the FC layers have a lot in common with the RNNs,
and they can be exploited to run on the same hardware resources [7,23]. Therefore, the
vision tasks can be divided into three subtasks: the ISP algorithms/non-MAC operations,
the convolutional layers, and the FC layers/RNN. A sharing scheme for the subtasks can
significantly improve the hardware utilization efficiency in the VPU.

Based on the requirements mentioned above, we proposed the VPU architecture with
three processing modules: the ISP/non-Mac modules, the convolutional layer module, and
the FC/RNN module. The modules are shared by the ISP, CNN, and RNN tasks. The VPU
can process the subtasks concurrently. However, the subtasks are serial in a vision task.
This means when one module is processing an image, other modules will be idle and wait,
which will cause great waste of the hardware. Therefore, instead of processing the images
one by one, a pipeline strategy should be applied to process several images concurrently
with different subtasks. This can eliminate the idle time of the processing modules, and the
VPU can achieve higher processing speed with the same amount of hardware resources.

We summarize three key points to design an efficient VPU from the analysis mentioned
above. Firstly, the customized processing modules should efficiently meet the computing
requirements of different subtasks. Secondly, the processing modules should be multiplexed
for the different tasks to save the hardware resources. Finally, the VPU should be able to
carry out the vision tasks in a pipelined way to eliminate the idle time of the processing
modules. In this paper, we propose a heterogeneous architecture for the VPU that can
execute both the ISP and the DNN tasks. A 2-D SIMD PE array is designed, composed of
the ALU array and the MAC array. It can process the ISP tasks, the convolutional layers,
and the non-Mac operations in the CNNs. The FC layers and the RNNs will be processed by
a 1-D Row Processor. The hardware resources are highly multiplexed among the different
tasks. The convolutional layers and the FC layers/RNNs can be processed in a parallel way
with a batch of only two images for the CNNs and hybrid DNNs with negligible idle time
on the hardware. A pipelined workflow is applied to process the vision tasks seamlessly. It
will improve the utilization efficiency of the hardware and achieve higher power efficiency.
To the best of our knowledge, this work is the first design to efficiently implement the ISP,
CNN, and hybrid DNN tasks on one VPU with a pipeline strategy.

The main innovations in this work are listed as follows.

Micromachines 2022, 13, 268 4 of 27

• A heterogeneous VPU architecture with a hybrid PE array and a 1-D Row Processor
is designed to implement the ISP, the CNNs, and the hybrid DNNs tasks. The time-
sharing schemes are applied to multiplex the hardware resources for different tasks.

• A new workflow for the DNNs is proposed with customized processing modules to
process the subtasks of the DNNs concurrently.

• A pipeline strategy is applied to seamlessly carry out the vision tasks without any
notable idle cycles on the processing modules.

The rest of the paper is organized as follows. Section 2 discusses the background of
this work. Section 3 introduces the architecture of the proposed VPU, and Section 4 details
the workflow for the vision tasks based on it. The experimental results and the discussion
are presented in Section 5. Finally, the paper is concluded in Section 6.

2. Preliminary

Modern vision tasks consist of the ISP algorithms and DNNs. In the application areas,
such as industrial automation, security monitoring, and autonomous navigation, CNNs
are the most commonly-used tools in vision tasks [18–20,22,30]. They are used directly for
image recognition or as the backbone of objection detection networks. On the other hand,
hybrid DNNs are also applied for some fields within the CNN-RNN framework [31,32].
Generally, ISP and CNN tasks are required for all vision tasks, and the RNNs are also
used in some cases. To achieve high power efficiency and high processing speed, the VPU
should exploit the sharing scheme of the hardware resources for both the ISP algorithms
and the DNNs. Moreover, the VPU should be able to execute the CNNs alone, and the
hardware resources for the RNNs should be multiplexed by the CNNs.

To implement the ISP algorithms and DNNs with the same VPU, we firstly studied the
difference between the ISP unit and the DNPU. The former is based on the von Neumann
architecture, while the latter is based on the non-von Neumann architecture with specific
computing resources, fixed data flow, and deterministic data reusability [1,7]. The ISP
units utilize the ALUs with common functions, including addition, subtraction, and logical
operations [1,2,4,5], while the primary computing components in the DNPUs are the MACs.
Besides, the small distributed on-chip memories are applied in the ISP units for each ALU
to carry out the middle-level algorithms on the neighborhood pixels [1,2,4,5,33,34], while
the large-size memories are required in the DNPUs for the massive intermediate data
and weights.

Secondly, we analyze the difference in the computing flow of the CNNs and the RNNs.
Generally, the main computation of the DNNs comes from three classes of layers, including
the convolutional layers, the FC layers, and the RNN gates [7,8]. The convolutional layers
are computation-intensive. Both the input data and the weights are heavily reused in them.
The FC layers are memory-intensive with a great number of weights in them. No weights
are reused in the FC layers, while all the input data are shared in each layer. Besides, the
convolution accounts for 90% of the computation in the CNNs [15], while the dominant
computation in the RNNs is the matrix multiplication [7,8]. This results in the different
hardware resources requirements for the CNNs and RNNs.

As mentioned above, the ISP unit can share the same processing module with the
pooling and activating unit of the DNPU. The primary operations in the RNNs are matrix-
vector multiplication and element-wise multiplication. The former operation is the same
with the FC layers, while the latter is similar. Therefore, the RNNs and the FC layers can
be exploited to run on one processing module, while another module with more MACs is
required to process the convolutional layers. The VPU is proposed by integrating those
three processing modules.

The VPU should be shifted to the image sensor as close as possible. In some works, the
processing elements (Pes) of the VPU are coupled tightly with the photodiode in the image
sensors to achieve the best power efficiency, but they suffer a significant loss in the fill
factor and the resolution of the image sensor [2]. Therefore, designing an independent VPU
and connecting it with the image sensor is a more practical approach. The independent

Micromachines 2022, 13, 268 5 of 27

VPU can be integrated with the sensor into one chip [4,5] or one board [1]. The VPU is
recommended to work as a co-processor with the microprocessor. In this case, the VPU will
process the image data directly from the sensor and send the results to the microprocessor,
and the microprocessor will instruct the VPU.

Since the VPU will process the output pixels from the image sensor directly, there
should be a ratio between the resolution of the sensor and the size of the 2-D SIMD PE array
in the VPU. The pixels from the sensors are supposed to be evenly allocated to the Pes to
make full use of the array during both the ISP and the CNN tasks. Therefore, the resolution
of the image sensor should be the multiple of the size of the PE array in the VPU. On the
other hand, the sizes of the initial input images of the CNNs are not required to be fixed. The
images with varied dimensions can be processed by the CNNs with the pooling techniques
such as spatial pyramid pooling (SPP) [35] and global pooling [36]. Consequently, various
CNNs can be fully implemented on the VPU with the fixed array size.

3. The Architecture of the VPU
3.1. The Overall Architecture

As shown in Figure 3, the VPU consists of a 2-D PE array, a row processor (RP), a
global buffer, and several specific-application buffers. The 2-D PE array comprises four PE
blocks (PEBs) and one ALU array. Each PEB has a vertical buffer and a horizontal buffer
to provide the input data during the CNN tasks, while the weights are accessed from the
weight buffer. The ALUs are embedded in the PEBs by connecting each ALU with two
Pes, as shown in Figure 4. The ALUs can process the data from the Pes. The leftmost
column of ALUs can also get the RGB-RAW image data from the image sensor interface
directly and perform the ISP algorithms as required. The row processor is composed of
a 1-D MACs array and several enhanced ALUs. It has a row buffer and a sharing buffer.
The global buffer is the main on-chip memory. It stores the prefetched input data from the
external memory and the intermediate data from the PE array and the row processor. The
data exchange between the VPU and the external memory is accomplished through the
Huffman encoder/decoder module. All the intermediate data and the weights data for the
DNNs are compressed with the two-symbol Huffman coding before being stored into or
loaded from the external memory. A finite-state controller (FSC) decodes the instructions
and generates the control signals for each module in the VPU.

3.2. The PE Array

The PE array is the dominant processing module in the VPU. The convolution op-
erations of the CNN and the ISP algorithms are executed on it. The PE array is a hybrid
architecture of an ALU array and four PEBs.

The PEB is an m × m SIMD array of Pes. Each PE consists of a MAC unit, several
registers, and a small distributed memory named the Mmem in this paper. The MAC
units can contain one or several MACs, with each MAC working in the same manner with
different data. This technique is used to improve the computing power of the PE array. The
PE with one MAC will be discussed in this paper as an example, and other types can be
learned by analogy. Each PE is connected with the upper, lower, right, and left neighbor
Pes. The Pes can get data directly from its Mmems and process it. The data in each PE
can also be transferred to the upper and left Pes as the inter-PE transmission. This enables
the PE to perform the 2-D convolution for the CNNs. Each PEB has a horizontal buffer
connected with the rightmost column of the Pes and a vertical buffer connected with the
bottom row. The input data can be accessed from the vertical or the horizontal buffers to
the connected Pes and then transferred to the upper or the left Pes. This is the transmission
path that loads the input data into the Mmems in the PEBs. Those buffers will also provide
the input data during the convolution computing, as illustrated in Section 4. An alignment-
transmitter is used in each vertical/horizontal buffer to prepare the input data before they
are transmitted to the PEB, mainly consisting of several registers. A weight buffer with
four banks is connected to the PE array, with each PEB directly getting data from one bank.

Micromachines 2022, 13, 268 6 of 27

At each convolution computing cycle, four data from the weight buffer will be sent to each
PEB. Then, each data will be broadcasted to all the Pes in one PEB. All those buffers can
access the input data from the global Buffer or the Huffman encoder/decoder module.

Figure 3. The overall architecture of the VPU.

Figure 4. The connection of the ALUs and the MACs.

As shown in Figure 5, the PEBs are also connected with each other, and the data
transmission can be performed both intra and inter the PEBs. The rightmost column
of the PEB0 and PEB2 can access data from the leftmost column of the PEB1 and PEB3,

Micromachines 2022, 13, 268 7 of 27

respectively, and the bottom row of the PEB0 and PEB1 can access data from the top row of
the PEB2 and PEB3, respectively. This makes four PEBs work as a 2m × 2m array or two
2m ×m arrays, as discussed in Section 4. In this case, the four banks in the weight buffer
will work as one or two banks, respectively, and weights can be shared between the PEBs.

Figure 5. The connection of the PEBs.

The ALU array is used for the ISP algorithms and the non-Mac operations in the CNNs,
such as pooling, activating, biasing, batch-normalization, and shortcut addition. The size of
the ALU array is m× 2 m, and each ALU is connected with two Pes in a column. Each ALU
is also connected with the four neighbor ALUs in the upper, lower, right, and left positions.
The ALUs can exchange data with the neighbor ALUs for spatial computation, which is
widely used in the ISP algorithms and the pooling layers. The ALU can also exchange data
with the Mmems in the connected Pes. The leftmost column ALUs will receive the image
pixels from the sensor interface, and the bottom row can directly exchange data with the
global buffer.

3.3. The Row Processor

The row processor is a 1-D array with R MACs and R/2 enhanced ALUs. Each
enhanced ALU is a regular ALU with the sigmoid function units. Each MAC can get two
data respectively from the row buffer and the sharing buffer at each cycle. This is very
effective for element-wise multiplication. The MACs are connected one by one, and they
can share input data as one of the multipliers at each cycle when processing the FC layers.
The shared data, in this case, is from the sharing buffer and transmitted to the first MAC
before it is broadcasted to the whole row. The MAC will send its results to the sharing
buffer. The enhanced ALUs can read and process the data after that.

3.4. The Memory Architecture

As mentioned above, there are several different forms of on-chip memories in this
VPU, including the global buffer, the specific buffers in the processing modules, and the
Mmems in the Pes. The global buffer is the main module to exchange data with the external
memory. It caches the intermediate data to reduce the repeated data access from the external
memory and prefetches the input data for the processing modules to eliminate the memory
bottleneck. Other buffers can get data from the global buffer.

The Mmems in each PE is the main module to store the input data for the convolutional
layers. The MACs can access the input data from the local Mmems and transmit them to
the neighbor Pes. This exploits the reusability of the input data. They also store the image
pixels for the ISP tasks. The vertical and horizontal buffers are the small memories to cache

Micromachines 2022, 13, 268 8 of 27

the input data for the convolution computation and prefetch the input data to load into the
Mmems. It can load data from the global buffers or directly from the external memory.

The row buffer mainly stores the weights for the FC layers in the CNNs and the matrix
multiplication in the RNNs. It is much larger than the sharing buffer, which is used to
cache the input data. The row buffer can load weights from the external memory, while the
sharing buffer will access the input data from the global buffer.

All the on-chip buffers work in the double-buffering way to exploit the parallel data
exchange. The vertical/horizontal buffers can directly read data from the external memory
if the data is not prefetched in the global buffer and write to the external memory if the data
will not be used again or the global buffer is full. It should be noticed that the Huffman
decoder/encoder will accomplish all the data exchange with the external memory for
the DNNs.

4. The Workflow of the Vision Tasks on the VPU

The top flow of the vision task is described as follows. Firstly, the ALU array should
process the RGB-RAW image pixels for the ISP algorithms and transform them into fine-
tuned RGB images. Then the PE array will process the RGB image as three input channels
for the convolutional layers and pooling/activating layers. It will generate the feature
vector of the image. At last, the feature vector will be processed by the row processor for
the FC layers or RNNs. The final results will be directly sent to the external memory for
further processing. The detailed flow for each subtask will be introduced in the following
passages, and the pipeline strategy for the complete vision tasks will be discussed finally.

4.1. The Workflow for the ISP on the VPU

Each column of the image pixels from the sensors will be acquired by the leftmost
column of the ALU array and then transmitted to the right ALUs column by column. After
a pixel reaches the predefined ALU, it will be stored in the Mmems of the Pes connected
with the ALU. The image pixels will be evenly distributed to the ALUs, and each ALU can
store a tile of pixels in the Mmems. It should be noted that the size of the tiles is flexible, as
illustrated in [1,33]. It is not necessary to store the whole image in the Mmems. The image
can be divided into several patches. The ALU array can store one patch at one time and
execute the ISP algorithms on the stored pixels. Other patches will be cached in the global
buffer or even the external memory. This enables the sharing of the Mmems for the ISP
tasks and the convolutional layers since the convolutional layers have the priority to use
the Mmems.

The ALU can process the image pixels from the Mmems or the adjacent ALUs. It can
execute both the pixel-level algorithms, including the demosaicing, and the middle-level
algorithms, such as the 2-D filtering and the discrete cosine transform (DCT).

The ALU array is widely used in the early works [1,2,4,5,33] to execute the ISP al-
gorithms. In our design, a similar computing flow is applied with the new data path
mentioned above. For brevity, the detailed computing flow is not repeated in this paper.

4.2. The Workflow for the CNN on the VPU

The CNNs consist of the convolutional layers, pooling layers, activating layers, and
the FC layers. Some irregular operations are interleaved between specific layers. The data
in the CNN include the input data and the weights, which have different reusages in the
convolutional layers and the FC layers.

4.2.1. The Workflow for the Convolutional Layers

(1) The Mapping Scheme

The convolutional layers are processed on the four PEBs with m × m Pes in each.
The input data of each layer are reused to compute every output feature map, and each
kernel is reused for a corresponding input map. The input data will be cached in the verti-
cal/horizontal buffers and the Mmems of each PEB. They will be accessed for convolution

Micromachines 2022, 13, 268 9 of 27

computing directly. The convolutional layers will be processed on the PE array in the modi-
fied output-stationery way. Each output map of one convolutional layer will be computed
by the PE array one by one, and each PE will be dedicated to the computation of one output
data at a time. Each output map will be segmented into one or several patches, and the
PE array will process an output map patch by patch. To achieve the high utilization of the
Pes, the output maps should be mapped on the PE array with the least idle Pes, despite
the different dimensions of the output maps among the CNNs and layers. Therefore, a
new scheme to efficiently map a convolutional layer on the PE array is proposed here, as
illustrated below.

The PE array can work in the 2m × 2m, 2m × m, and m × m modes, as mentioned
in Section 3, and each mode can process the output patches with close dimensions. For
example, assume the size of an output map is L × L. L can be expressed as below:

L = 2m × p + m × q + b (1)

where p is a non-negative integer, q is 0 or 1, and b is a non-negative integer smaller than
m. Then each output map can be segmented as several patches of size 2m × 2m, 2m ×
(m + b), (m + b) × (m + b), 2m ×m, 2m × b, m ×m, m × b, and b × b. We will map the
patches of size 2m × 2m, (m + b) × (m + b) and 2m × (m + b) on the PE array with the
2m × 2m mode, the patches of size 2m ×m and 2m × b with the 2m ×m mode, and the
patches of size m × m, m × b, and b × b with the m × m mode, assuming the b is not 0.
The mapping scheme for each mode is detailed as below.

First, the 2m × 2m mode with the kernel stride of 1 is considered. Each PE in the
2m × 2m array will compute the output data with the same location in the 2m × 2m output
patch. It also stores the input data with the same location in the input patch. The location
here denotes the relative position in the patch and the PE array. Take the output patch
of 2m × 2m as an example, assuming the convolutional layers have I input channels and
O output channels with the kernel size of k × k. An input patch of (2m + k – 1)2 in each
input map is required to compute an output patch, which forms an input block of I patches.
Assume the PE(x,y), I(x,y), and O(x,y) denote the PE, the input data, and the output data at
row x and column y in the PE array and the input/output patch, respectively. Then O(x,y)
will be computed by the PE(x,y), and then I(x,y) will be stored in the Mmems of the PE(x,y),
as illustrated in Figure 6a. Each Mmem will store I input data, and the PE array will store
I × 2m × 2m input data with all the Mmems. A shared weight will be broadcasted to every
Pes and computed with the different input data at each cycle. Each output patch will be
obtained by computing the input block with the corresponding kernels. The input block
will be reused for the computing of O output patches. After the computation for an output
block, a new input block will be loaded into the PE array for the new output block.

It can be noted that only 2m × 2m data of each input patch can be stored in the PE
array. The rest data of the input patch will be cached in the horizontal buffers of the PEB1
and PEB3 and the vertical buffers of the PEB2 and PEB3. Specifically, each horizontal buffer
of the PEB1 and PEB3 and the vertical buffer of the PEB2 will store m × (k – 1) input
data, while the vertical buffer of the PEB3 will store (m + k – 1) × (k – 1) input data. Once
those data are stored in those buffers, they will be computed for at least k × k cycles. It
is not necessary to cache the rest data of all the input patches in the vertical/horizontal
buffers. They can be prefetched and replaced during the k × k computing cycles. This can
significantly reduce the capacity requirement for those buffers. If the output patches are of
size 2m × (m + b) or (m + b) × (m + b), there will be idle rows and columns of Pes. The
Mmems of the idle Pes will also be used to store the rest data with the same location. In
this case, the rest data of all the input patches will be stored in the corresponding Pes if the
Mmems are large enough. This scheme will also be used for other modes.

Second, if the stride is larger than 1 in the 2m × 2m mode, denote the stride as s, and
the size of each input patch will be (2m × s + k – s)2, as shown in Figure 6b. Each output
data will still be computed by the PE with the same location. However, the input I(0,0) to
the I(0,s – 1) in the input patch will be computed for the output O(0,0), but not be used

Micromachines 2022, 13, 268 10 of 27

for the O(0,1) to O(0,s – 1). This suggests that it is meaningless to store the input I(0,1) to
I(0,s – 1) in the Mmems of the PE(0,1) to PE(0,s – 1). Therefore, they will all be stored in the
Mmems of the PE(0,0). It can be deduced that a tile of s × s input data I(0,0) to I(s – 1,s – 1)
will all be stored in the Mmems of the PE(0,0). This can be generalized to any PE(x,y). The
tile of s × s input data I(sx,sy) to I(sx + s – 1,sy + s – 1) will be stored in the PE(x,y), and
the output data O(x,y) will be computed here. Finally, each Mmems will store I × s × s
input data, and the PE array will store an input block of I × (2m × s)2. The rest of the input
patch will still be stored in the vertical/horizontal buffers.

Third, for the m × m mode with the kernel stride of 1, since the output patch is
smaller than or equal to m × m, it can be mapped on only one PEB in the traditional
output-stationery way. This will make the other PEBs stay idle, and it is not efficient in the
utilization of the hardware. Therefore, in this paper, we map each output patch on four
PEBs, as shown in Figure 6c. Take the output patch of m ×m with the kernel k × k as an
example. To compute this output patch, an input block of I input patches is required. The
size of each input patch is (m + k – 1)2, and each input patch will be stored in a PEB. Instead
of storing the input block in one PEB, we divide the I input patches into four groups evenly.
Each group has I/4 input patches and will be stored in one PEB. Each input data in the
input patch will be stored in the PE with the same location in the PEB. For each group,
m ×m × I/4 input data will be stored in the Mmems of one PEB, and the rest data in the
input patches will be cached in the horizontal and vertical buffers of the PEB. Each vertical
buffer will cache (k – 1) × (m + k – 1) data of each input patch, while each horizontal buffer
will cache (k – 1) × m data. The PE will also compute each output data with the same
location in the PEB. Four different weights will be broadcasted in four PEBs at each cycle.
Each PEB can compute the convolution on a group of input patches stored in it and get
the partial results of the output patch. Those partial results will be sent to the ALUs and
transferred to the ALU array in the PEB3. Then they will be added to generate the complete
output patch of m ×m data.

This scheme can be generalized to any kernel stride in the m ×m mode. With a kernel
stride larger than one, the size of the input patches will be (m × s + k – s)2. The input
patches will still be divided into four groups, and each group will be stored in one PEB.
Each PE will store an s × s tile of the input patch; s × s × I/4 input data will be stored
in each PE, and each PEB will store (m × s)2 × I/4 input data in the Mmems. Then, the
partial results can be produced and added to generate the complete output patch.

Finally, for the 2m × m PE array mode, four PEBs will be divided into two vertical
PE sets, as shown in Figure 6d. PEB0 and PEB2 are in one set, and the other two PEBs
are in another set. Each set works as a 2m ×m PE array. The input block will be divided
into two groups and stored in each PE set, similar to the m ×m mode. Each output data
will be computed by the PE with the same location in the 2m × m PE set. At each cycle,
two different weights will be broadcasted in the two PE sets, respectively. Then the two
PE sets will compute and produce the partial results of the output patches. At last, the
partial results will be transferred to the right PE set and added to generate the complete
output patch. This scheme can be generalized to any kernel stride with the analogy from
the other modes.

It should be noted that in the 2m × 2m mode, only four vertical/horizontal buffers are
used to cache the rest data, while the 2m ×m mode uses six buffers and the m ×m mode
uses all eight buffers. Since the inter-PE data transmission is more energy-efficient than the
buffer access, more buffers usage will consume more power. Therefore, when segmenting
an output map into multiple patches, the patches for the 2m × 2m mode should obtain as
many as possible, and the m ×m mode should be the least used.

Micromachines 2022, 13, 268 11 of 27

Figure 6. The mapping scheme: (a) The 2m × 2m mode with the kernel stride of 1. (b) The 2m × 2m
mode with the kernel stride larger than 1. (c) The m ×m mode with the stride of 1. (d) The 2m ×m
mode with the stride of 1.

Micromachines 2022, 13, 268 12 of 27

As mentioned above, a lot of input data will be stored in the Mmems. There may be a
case that the Mmems are not large enough to store the required input data. Assume the
capacity of the Mmems is C, and the number of the input data required to be stored in
each Mmem is N. If N > C, the N input data will be divided into N/C groups. Each group
contains less than C input data. Each Mmem can store a group of input data. Consequently,
2m × 2m groups of input data will be stored in the PE array at one time. Then the PE array
can compute them and produce the partial results of the output patches. The partial results
will be stored in the global buffer or the external memory. After all the output patches
have been computed on the 2m × 2m groups of input data, those groups will be replaced
by other 2m × 2m groups. Then, the computation will continue and produce the new
partial results. After all the N/C groups are computed, all the partial results will be added
together by the ALUs to generate the complete output data. It should be noticed that this
case will rarely happen if the Mmems are large enough compared with the number of the
input data. Our research shows that Mmems with a capacity of 512 Bytes are large enough
for more than 81% convolutional layers with the 8-bit input data, and the 1-KB Mmems are
practically sufficient for all the popular CNNs.

(2) The Computing Flow

Based on the mapping scheme of the convolutional layers, the new computing flows
are proposed for the three modes. We will detail the computing flow for the 2m × 2m
mode and then obtain the others by analogy.

For an output patch of 2m × 2m data, the convolution computation will be accom-
plished by the 2m × 2m PE array with the following steps. Assume the kernel size is k × k
with a stride of 1.

Step 1: Each PE(x,y) will read the data I(x,y) of the first input patch from the local
Mmems and compute it with the shared corresponding weight, as shown in Figure 7a.

Step 2: Each PE(x,y) will read the input data I(x,y + 1) from the Mmems of the right
neighbor PE(x,y + 1). For the rightmost column of Pes in the array, they have no right
neighbor Pes, and they will read from the horizontal buffers of the PEB1 and PEB3. Then,
the input data will be cached in the registers and computed with another weight, as shown
in Figure 7b.

Step 3: Each PE(x,y) continues to read the input data I(x,y + 2) cached in the registers
of the PE(x,y + 1) and compute it, as shown in Figure 7c.

Step 4: Repeat Step 3 until the input data I(x,y + k – 1) is obtained and computed
by the PE(x,y). So far, the convolution with the first row of the kernel is accomplished in
k cycles.

Step 5: Each PE(x,y) will read the input data I(x + 1,y) from the lower neighbor
PE(x + 1,y) to compute. The bottom row of Pes will read from the vertical buffers of PEB2
and PEB3, as shown in Figure 7d.

Step 6: Repeat Steps 2, 3, and 4 to accomplish the convolution with the second row in
the kernel.

Step 7: Repeat Steps 5 and 6 until the convolution with the kth row in the kernel is
accomplished. So far, the convolution computation with a k × k kernel on the first input
patch is accomplished in k2 cycles.

Step 8: Repeat the above steps on the other input patches and accumulate the results in
each PE until all the input patches are computed. Then, each PE will obtain one output data.

After the above steps, an output patch is produced, and the PE array will repeat those
steps to generate another output patch with corresponding weights. The above computing
flow is suitable for the convolutional layers with any kernel size. For the point-wise
convolution with the kernel size of 1 × 1, only Steps 1 and 8 will be executed on all the
input patches.

Micromachines 2022, 13, 268 13 of 27

Figure 7. The computing flow: (a) Step 1; (b) Step 2; (c) Step 3; (d) Step 5.

This computing flow can be easily generalized to any kernel stride according to the
mapping scheme. The only difference is that PE(x,y) will get the input data I(sx,sy) to
I(sx + k – 1,sy + k – 1) from the local Mmems. Other input data will still be provided by the
neighbor Pes.

The computing flow for the mode m ×m is similar to the mode 2m × 2m with a few
modifications. The rightmost column of each PEB will read from its horizontal buffers as
the neighbor Pes, and the bottom row of each PEB will read from its vertical buffers. After
the convolution is accomplished, the partial results will be transmitted to the PEB3 and
added to generate the final output patch.

The computing flow for the mode 2m × m can be deduced from the other two modes.
The bottom row of each PE set will get data from vertical buffers of the PEB2 and PEB3 as
the neighbor Pes. The rightmost columns of the left PE set will get data from horizontal
buffers of the PEB0 and PEB2, while the other PE set gets data from the horizontal buffers
of the PEB1 and PEB3. The partial results will be transmitted to the PEB1 and PEB3 to
generate the final output patch.

The zero-skipping technique is applied during the computing flow. The weight buffer
controller will check the weights before broadcasting to the PEBs. If the weight is zero, the
skipping signal will be sent to the PEBs, and the PEBs will skip all the computations on
this weight. This technique can reduce the power consumption significantly without any
hardware overhead.

Micromachines 2022, 13, 268 14 of 27

(3) The Data Transmission Scheme in the Convolutional Layers

The input data transmission for the convolutional layers is used to load the input data
into the PE array and transfer the input data for the 2-D convolution. It includes the data
access from the vertical/horizontal buffers to the corresponding rows/columns and the
inter-PE transmission between each PE. In the latter one, the Pes transfer the data to the
upper or left Pes.

As mentioned above, the input blocks will be stored in the Mmems of the PEBs. Before
the PE array performs the convolution, the input data should be loaded into the PEBs. At
each cycle, each vertical buffer can transmit m input data to the bottom row of the PEB.
Then the input data will be transmitted to the upper rows at each cycle until the input
data reach the scheduled PE and stored in the Mmems. It will take m cycles to load one
2m × 2m input patch, two 2m × m input patches, or four m × m input patches into the
PE array through the vertical transmission path. The same data transmission flow is also
performed in the horizontal direction. Input data can be accessed from the horizontal
buffers to the rightmost Pes and transmitted to the left Pes. Each input patch can be loaded
into the PE array by either the horizontal or the vertical transmission path.

The data transmission path is also used for 2-D convolution computing. Therefore,
the data transmission path will be shared for convolution computing and data loading.
We will carry out the data loading and the convolution computing in a pipelined way to
achieve this. We analyze the data flow of the convolution computing. In Step 1, no data
transmission is required for the computing. In Steps 2–4, only the horizontal transmission
is used for the computing, while the vertical transmission path is idle. On the contrary, in
Step 5, only the vertical transmission is used for the computing. It can be concluded that in
each k2 cycles of the convolution computing with a k× k kernel, the horizontal and vertical
transmission will be used for (k – 1) × k cycles and k – 1 cycles, respectively. Consequently,
the horizontal transmission path can be used to load data for k cycles, and the vertical
transmission path can be used for (k – 1) × k + 1 cycles. The convolution computing and
the data loading will use the data transmission path alternately in a pipelined way in each
k2 cycles.

Overall, in each k2 cycles, (k2 + 1) × 4m input data can be loaded into the PE array
through both the vertical and horizontal transmission paths. At the same time, the PE array
requires 4m2 input data to compute the convolution, including a 2m × 2m input patch,
or four m × m input patches. If the (k2 + 1) × 4m is smaller than 4m2, it means the data
loading cannot catch up with the convolution computing. This will result in the idle state
of the Pes waiting for the data loading. In this case, we will compute the input patches
for more than one output patch, as shown in Figure 8. After an input patch is loaded, the
PE array will compute them for the first output patch with k2 cycles and store the partial
results in each PE. If the loading of the new input patch is not finished by then, the PE
array will continue to compute the second output patch on the loaded input patch. This
operation can be repeated until the new input patch is loaded. This scheme is effective for
kernels of any size, including the point-wise convolution.

Figure 8. The parallel data loading and computing.

Micromachines 2022, 13, 268 15 of 27

Moreover, the PE array can preload the new input blocks during the computing on
the old input block already stored in the PE array. Assume the capacity of the Mmem is C,
and D input data of the old input block is stored in each Mmem. During the computing on
the old input block, (C-D) data of the new input block can be preloaded into each Mmem.
When computing the old input block for the last output patch, the new input patches
can directly replace the old ones in the Mmems. Therefore, when the PE array starts to
compute on the new input block, some input patches have already been preloaded. While
the PE array is computing the loaded input patches, the loading of other input patches
will continue. Especially for the depth-wise convolution, the PE array can compute each
input patch immediately after it is loaded, even though the computing on the old input
block is not finished. By this means, the data loading will not bring about any delay for
the computing. The PE array can process the convolution layers seamlessly without any
idle cycles. Furthermore, this technique does not require a large bandwidth between the
PE array and the global buffers, and the large amounts of buses connect the Pes, and the
buffers are also eliminated.

When the vertical transmission is used for loading the data into the PEBs, all the verti-
cal buffers will transmit the data synchronously, as will the horizontal buffers. The same
data loading flow is applied for all three modes. The vertical and horizontal transmission
will load the different input patches, respectively. The loading order of the input patches is
determined by the data loading ability of the vertical and horizontal transmission.

The output data from each PE will be sent to the connected ALUs for the non-Mac
operations. After the final output data are obtained, they will be transferred to the global
buffer by the ALU array in the vertical direction, or directly stored in the Mmems if they
will be used for the next convolutional layers and there are free spaces in the Mmems.

4.2.2. The Workflow of the FC Layers

Different from the convolutional layers, the weights are not shared in the FC layers,
while the input data are reused to compute all the output data in one layer. The FC layers
are processed on the row processor, as shown in Figure 9a. The weights are stored in the
row buffer while the input data is stored in the sharing buffer. The FC layers are also
processed in the output-stationery way. Each MAC will compute one output data, and R
output data can be computed concurrently.

Figure 9. The workflow on the row processor: (a) The workflow of the FC layers. (b) The workflow
of the element-wise convolution.

When computing an FC layer containing F output data, it will be divided into dF/Re
groups. The row processor will compute the FC layers group by group. At each cycle,
one input data is read from the sharing buffer to the first MAC in the row processor and
broadcasted to all other MACs. In the meantime, R weights will be read from the row

Micromachines 2022, 13, 268 16 of 27

buffer to R MACs and computed with the shared input data. After the computation of a
group is finished, the R MACs will continue to compute the next group until the whole
layer is accomplished. The results of the MACs will be sent to the sharing buffer, and the
enhanced ALUs will compute them for the activating or quantization. The final output
data will be stored in the sharing buffer for the next computation.

All the full-connection operations of the CNNs will be processed on the row processor,
such as the squeeze-and-excitation. They will all be computed like the FC layers. The
input data of them are all from the convolutional layers. The zero-skipping scheme is also
applied for the FC layers. The first MAC in the row processor will check the input data and
will send the idle signal to all the MACs when the input data are zero.

4.2.3. The Non-Multiplication-and-Accumulation (Non-Mac) Operations

The non-Mac operations include the pooling, activating, biasing, and batch-normalization
(BN) and are processed by the ALUs. For the activating layers after the convolutional layers,
the results of the convolution layers will be stored in the Mmems first. Then, the ALUs
connected with the PEs will read the results and compute them for the activating operations,
including the Rectified linear unit (ReLU). A similar scheme is applied to activate the FC
layers with the enhanced ALUs in the row processor. The BN operations will also be
accomplished in this way.

Although the sigmoid function can also be processed on the ALU, it will take much
more cycles than the ReLU. Therefore, for the activating layers with sigmoid after the
convolutional layers, the convolution results will be transmitted to the row buffer and
computed for the sigmoid function by the enhanced ALUs.

The ALU array will also process the pooling layers. Each ALU can get data from the
Mmems and transmit them to the adjacent ALUs. The pooling operation with various sizes
of windows can be accomplished.

The ALU array will also accomplish other non-Mac operations, such as the addition
of the shortcut connection. The former input map will be reloaded into the PE array and
added with the current output data to generate the final output map.

It should be noted that the non-Mac operations require much less computation than
the convolutional layers or FC layers. Although fewer ALUs are contained in the VPU than
the MACs, the non-Mac operations still take much less time than the convolutional layers
and FC layers.

4.3. The Workflow of the RNN

The RNN mainly consists of matrix-vector multiplication (MVM), element-wise multi-
plication (EWM), and activating operations. The MVM is similar to the FC layers, and the
same workflow mentioned above is applied to it. The EWM is multiplying two matrixes, A
and B, to generate the matrix C with the following equation:

cij = aij × bij. aij, bij, cij ∈ A, B, C. (2)

It is different from the FC layers or the MVM operations. There are no weights in
it, and each input vector is multiplied one or several times. When processed on the row
processor, the two input vectors of the EWM will be stored in the row buffer and the
sharing buffer, respectively, as shown in Figure 9b. At each cycle, each MAC will get two
corresponding data of the two input vectors from the buffers. Then the two data will be
computed. Each MAC will also be sent to the buffers, and the enhanced ALUs will compute
them for the activating operations.

It should be noted that the tanh-function is also used in the RNNs for activating. It
requires many hardware resources to implement. Considering the tanh-function is not
often used in hybrid DNNs, it is not economical to equip the VPU with the specific units

Micromachines 2022, 13, 268 17 of 27

for the tanh function. Instead, the tanh-function can be accomplished with the sigmoid unit
by the following equation, which is also applied in [23].

tanh(x) = 2 × sigmoid(2x) − 1 (3)

Therefore, the tanh-function can share the enhanced ALUs, and no specific hardware
units for it are necessary. The activating functions will run independently on the enhanced
ALUs with the MVM and EWM operations on the 1-D MAC array. Since it takes hundreds
to thousands of cycles to generate output data during the MVM operations, the runtime of
the activating functions will be masked in the MVM operations.

When processing a complete RNN with several operations, including the MVM and
the EWM, each operation will be executed one by one. The input and output data of each
operation are usually presented in the form of vectors. The output vectors of the former
operation can be cached and used as the input vectors for the latter operation. The input
vectors of the MVM will always be stored in the sharing buffer, and the two input vectors
of the EWM must be stored in the row buffer and the sharing buffer, respectively.

4.4. The Pipeline Strategy in the Workflow of the Vision Task

As mentioned above, the ISP and the non-Mac layers subtasks will be processed by
the ALU array, and the convolutional layers will be processed by the PEBs, while the FC
layers and the RNNs will be processed by the row processors.

The serial workflow of the vision tasks is listed as follows. The ISP subtasks are
finished by the ALU array first and generate the input images. Then the convolutional
layers will be processed on the images by the PEBs, while the non-Mac layers are executed
on the ALU array. After all the convolutional layers and non-Mac layers are accomplished,
the output feature maps or vectors will be sent to the sharing buffer, and the FC layers will
be performed by the row processor. The output vectors of the FC layers will be sent to
the external memory as the results of the vision tasks if no RNNs are required. Otherwise,
they will be stored in the sharing buffer, and the operations of the RNNs will be executed
sequentially. At last, the output of the RNN will be sent to the external memory as the final
result of the vision task.

If the VPU processes each vision task alone in a serial way, only one processing module
will be working at one time, and the other modules will be idle. This will result in a great
loss of hardware utilization and processing speed. Therefore, a pipeline strategy is applied
in the workflow for the vision tasks to fully use the hardware resources and process three
images simultaneously, as shown in Figure 10.

Figure 10. The pipelined workflow for the vision tasks. The P/A means the non-Mac operations such
as the pooling and activating. CL is short for the convolutional layers. “Nth“ means the operations
for the Nth image.

When the PEBs are processing the convolutional layers of the Nth image, the ALU
array will process the non-Mac layers, such as the activating and pooling layers. Since
the non-Mac layers only consume much less time than the convolutional layers, there will
be a lot of idle cycles for the ALU array during the CNN processing. Therefore, the ISP
algorithms for the (N + 1)th image can be executed on the ALU array in those idle cycles.
Meanwhile, the row processor can process the FC layers and the RNNs on the (N − 1)th
image. If the row processor has not accomplished the FC layers/RNN of the (N − 1)th

Micromachines 2022, 13, 268 18 of 27

image when the PE array has finished the convolutional layers for the Nth image, the
output of the convolutional layers will be cached in the sharing buffer, and the PE array
will continue to process the convolutional layers for the (N + 1)th image. The pipeline
strategy is also effective for the vision tasks containing the CNNs only.

By this means, the VPU can process three images simultaneously, and the vision tasks
can be executed seamlessly. The four PEBs will work consecutively without any idle cycles.
Although there may be a few idle cycles for the row processor, it will be negligible for the
overall hardware utilization because the row processor contains much fewer MACs than
the PEBs.

5. The Experiment Results and the Discussion

To validate the efficiency of the proposed VPU architecture, we implement it on the
FPGA, and various vision tasks are tested on it. Then the experimental results will be
compared with other works and discussed.

5.1. The Implementation

We implemented the VPU on the test board Genesys2 with the XC7K325T-2FFG900C
FPGA. The FPGA device provides the 18 × 25 DSP modules and the dual-port 36 Kb Block
RAM (BRAM). The DSP modules can work as two 8 × 8 MACs or one 16 × 16 MAC. The
port-width of the BRAM is up to 72 bits. The DSP forms all the MACs in the VPU, and all
the on-chip buffers are comprised of the BRAMs.

Before being implemented on the FPGA, the concrete characters of the architecture
were determined, including the dimension of the PE array and the row processor, the
quantity of the MACs in each PE, the capacity of the Mmems, and buffers, and the bit-width
of all the components.

The dimension of the PE array is determined by the resolution of the image sensor,
as illustrated in Section 2. We used the 224 × 224 image sensor for the convenience of the
popular CNN testbenches. Therefore, we implemented the PE array with four 7 × 7 PEBs
and one 7 × 14 ALU array. There were 7 rows and 14 columns of ALUs in the ALU array.
The number of MACs in the row processor was 8. Other characters in the instantiation are
listed as below:

1. Each MAC in the PE array and the Row Processor was instantiated by one DSP and
could work as one 16 × 16 MAC or two 8 × 8 MACs;

2. The bit-widths of both the ALUs and the enhanced ALUs were 8, and the buses were
also 8-bit wide;

3. The bit-widths of the inter-PE transmission buses and the weight bus were 16 in the
PE array, in which one 16-bit data or two 8-bit data could be transferred;

4. Each horizontal/vertical buffer in the PEBs was composed of 7 2-KB banks, and each
bank in the weight buffer was also 2-KB;

5. The sharing buffer was comprised of 2 4-KB banks, while the row buffer consisted of
8 4-KB banks;

6. The Global Buffer is comprised of 10 4-KB banks, and each Mmem is a 1-KB RAM.

The VPU was designed with the Verilog HDL and synthesized by the design tools
Vivado 2019.2. The power consumption evaluation for different testbenches was also
accomplished on the simulator of the tools. The FPGA resources utilization of the VPU is
shown in Table 1. Since the DNPU accounts for the most resources of the proposed VPU,
it is meaningless to compare it with the traditional VPUs that did not contain the DNPU.
Instead, the state-of-the-art works of the DNPUs are listed in Table 1 for comparison.

Micromachines 2022, 13, 268 19 of 27

Table 1. The FPGA resource utilization of this work and the comparison with the previous works.

Ref Year Device LUT FF BRAM DSP DNN 1

[37] 2019 Zynq 7100 229,000 107K 386 128 CNN

[38] 2020 XC7K325T 94,763 150,848 165 516 CNN

[28] 2018 XC7Z020 29,867 35,489 85.5 190 CNN

[39] 2020 XC7K325T 173,522 241,175 193.5 704 CNN

[40] 2021 XC7VX690T 278,548 324,033 912 3072 CNN

[41] 2018 Arria 10 163,506 / 24.5Mb 1278 CNN

[26] 2020 XC7Z020 9474 9379 72 / HDNN

[27] 2018 ZU5EG 117,120 234,240 884 1248 HDNN

[42] 2019 Arria 10 / / / / HDNN

[9] 2017 XC7VX690T 316,250 321,165 1508 3130 HDNN

[43] 2021 Vertex7 53,078 29,869 465 388 HDNN

This work 2021 XC7K325T 152,264 88,742 104 212 HDNN
1 This item denotes the kinds of DNNs supported in each work, and the HDNN is short for the hybrid DNN.

5.2. The Experiment Method
5.2.1. The Modeling of the 224 × 224 Image Sensor

We used the color camera module PCAM 5C to model the image sensor. The PCAM
5C can provide the RGB image flow in the format of RAW10. With this camera module, we
could get consecutive RGB-RAW images. Then a tile of 224 × 224 pixels was split out from
each image with the same location and stored in the onboard flash sequentially. During the
tests of different tasks, those tiles were sent to the FPGA as the RGB-RAW image sensor
signals. This model could achieve a 224 × 224 RGB-RAW image flow at a speed of more
than 1000 fps.

5.2.2. The Quantization

When processing the DNNs on the DNPUs, the input data and the weights needed to
be quantized to fix-point numbers. Although the quantization with high precision could
maintain the accuracy of the DNNs, it would consume much more power and hardware
resources. On the other side, the lower bit-width data format has shown much higher
efficiency in the power and hardware. The precision of the data is the only factor that
affects the accuracy of the DNNs when the DNNs are processed on the DNPUs. Therefore,
previous works [7,8,23,44,45] have thoroughly studied the relation between the accuracy
and precision of the DNNs, and some proper quantization schemes are proposed in those
works. For the CNNs, the 8-bit fix-point quantization for both the weights and the input
data has proved to be efficient and brought about negligible loss in the accuracy [7,8,28,38],
as shown in Table 2.

Table 2. The Top-1 accuracy of the CNNs with different precisions.

Bit-Width CNNs

VGG16 MobilenetV3L MobilenetV2 Densenet121

Float 32 bit 67.93% 75.2% 72.0% 74.9%

Fixed 8 bit 67.72% 74.1% 71.2% 74.1%

It can be concluded that the 8-bit quantization is precise enough for the CNNs. For
the RNNs, the 16-bit quantization is applied for most of the previous works [7,8,25–27,42],
and it has achieved comparable performance with higher precision. Therefore, in our work,

Micromachines 2022, 13, 268 20 of 27

the 8-bit fix-point was used for the input data and weights of the CNNs, and the 16-bit
quantization was used for the RNNs with the static quantization methods of the work [46].

It should be noted that the quantization scheme is not among the research points in our
work since it has already been thoroughly studied. Moreover, the MACs in the proposed
architecture can be implemented with any bit-width. In this experiment, the MAC in each
PE was instantiated by the 18× 25 DSP. When working as two 8× 8 MACs, each PE got two
8-bit weights and two 8-bit inputs in each cycle. The PE can also work as one 16 × 16 MAC,
and one 16-bit weight and one 16-bit input data were accessed for it. The same scheme was
applied to the MACs in the row processor for the FC layers. Therefore, our design can also
process the CNNs with 16-bit precision. For the RNNs with the bit-width of 16, the DSPs
in the row processor will work as one 16 × 16 MAC. Technically, the computation for the
DNNs with the higher precision can also be accomplished by the 16-bit MACs with more
cycles, such as the 32-bit fix-point, but it is seldom used in the current DNPUs.

5.2.3. The Testbench

To validate the performance of the proposed VPU, two classes of the vision tasks are
tested on it. The first one is the vision tasks comprised of the ISP algorithms and the CNNs,
while the RNNs are added to the other one in the hybrid DNNs. Since this work is the first
design that implements the ISP unit and the DNPU within one architecture, we first ran
the ISP subtasks alone and compared them with other works to evaluate the ISP unit of
the proposed VPU. Then various CNNs and hybrid DNNs were processed on the VPU
respectively to test the performance of the DNPU. At last, the complete vision tasks were
executed on the VPU to validate the efficiency of the VPU and the pipeline strategy. The
performance for the complete vision tasks was compared with the sum of the separate
performance for the subtasks.

5.3. The Experiment Results and the Analysis
5.3.1. The Experiment Results for the ISP and the Analysis

We ran some common and essential ISP algorithms on the VPU, including the demo-
saicing, the discrete cosine transform (DCT), and the median filter. The experiment results
and the comparison with early works of the VPU are shown in Table 3. The sensors used in
the early works are monochrome and can provide images with only one color, while our
work adopts the RGB image sensor. This means that our design processes three channels of
each image, while the VPUs in other works only process one channel. When the proposed
VPU processes the ISP algorithms alone, the MACs in the PEBs and the row processor
are idle.

Table 3. The experiment results for the ISP tasks and the comparison with other works.

Ref [2] [4] [5] [1] [47] This Work

Senor Resolution 64 × 80 256 × 256 128 × 128 256 × 256 720P 224 × 224

Platform ASIC ASIC ASIC FPGA Stratix IV XC7K325T

PE Array 8 × 10 64 × 64 32 × 128 PE,
32 RP

64 × 64 PE,
8 × 8 PPU Heterogeneous 1 7 × 14

Bit-width for PE 8 1 1 for PE,
8 for RP

1for PE,
16 for PPU 32 8

Freq (MHz) 20 50 100 50 133 200

GOPS 2 1.6 12 44 31 37 3 19.6 4

Runtime of

Demosaic \ \ \ \ \ 56us

Micromachines 2022, 13, 268 21 of 27

Table 3. Cont.

Ref [2] [4] [5] [1] [47] This Work

8 × 8 DCT 380us 98us \ \ 812us

Median
Filter 734us @ 3 × 3 55us @ 8 × 8 \ 6.94ms @ 5 × 5 1.96ms @ 3 × 3

Power(mW) 36 630 533 \ 98.5 1410
1 Only a part of the PEs is used for the ISP tasks in this VPU. 2 The performance is counted with 8-bit operations.
3 This is the performance of all the PEs in this VPU. 4 This is the performance of the ALU array only.

As shown in Table 3, our VPU can execute the ISP algorithms at a high speed of more
than 500 fps. The performance of the VPU for the ISP tasks is in proportion to the frequency
and the size of the PE array. Although the smaller size of the PE array was adopted in our
implementation, it still achieved relatively high performance of 19.6 GOPS (giga operations
per second). The power consumption was higher than other works because many extra
hardware resources for the DNPU were contained in our design. However, the extra
hardware resources, including the larger distributed memories, improved the processing
speed by caching more pixels for each ALU.

It should be noted that the DNNs are the dominant parts in the vision tasks, and it is
efficient to allocate more resources to the DNPUs than the ISP units. In the meantime, the
execution of the ISP algorithms should not delay the DNN subtasks in the workflow for
the complete vision tasks. The experiment results show that most ISP algorithms consume
less than 2 milliseconds. It is much less than the runtime of the DNNs, which usually
take several to hundreds of milliseconds. Therefore, the ALU array can carry out the ISP
algorithms without adding any extra overhead in the runtime of the DNNs.

5.3.2. The Experiment Results for the DNNs and the Analysis

Two types of DNNs were tested on the VPU for the vision application, including
CNNs and the hybrid DNNs. The CNNs were used in both types and accounted for
the dominant computation. Therefore, the processing performance of the CNNs was the
primary character to evaluate the DNPUs. We first test the CNNs alone to validate the
efficiency of the proposed VPU. The hybrid DNNs were then processed on the VPU to verify
the pipelined workflow. During the tests of the DNNs, the ISP tasks were not executed on
the VPU, and all modules were used to process the DNNs.

(1) The Test of the CNNs

Firstly, the CNNs were tested on the VPU alone. To validate the applicability of the
DNPUs, various CNNs with irregular operations were tested, including the VGG16, the
DenseNet, and the MobileNetV2/V3-L.

As illustrated in the early works, the number of MACs and the operating frequency
were the basic factors that determined the peak computing performance of the DNPUs.
However, each architecture can achieve higher performance if implemented with more
MACs or operating at a higher frequency. Therefore, the figures that normalize the perfor-
mance with the numbers of MACs and the operating frequencies were applied to compare
different architectures. Since the MACs were implemented by the DSP in the FPGA plat-
form, the performance of the VPU was evaluated based on the DSPs. The computing
efficiency of the DSP in each architecture was calculated as follow:

GOPS/DSP/f =
The effective GOPS for the CNN

The number of the DSP × the operating frequency
(4)

It is shown as GOPS/DSP/f. This figure indicates the effective computing performance
that each DNPU can achieve when processing various CNNs. The operations counted
in the GOPS are based on the 8-bit data, and the 16-bit operation will be counted as two
operations on the DSP. The effective GOPS was calculated as dividing the number of the

Micromachines 2022, 13, 268 22 of 27

multiplication-and-accumulation operations included in each CNN by the runtime of each
CNN. The DNPUs with the higher GOPS/DSP/f can achieve performance with fewer
hardware resources and power consumption. For the power estimation, the GOPS/W is
the common figure to imply the power efficiency of the DNPUs. The test results are shown
in Table 4.

Table 4. The experiment results for CNNs on the proposed VPU and the comparison with the
previous works.

Ref Freq
(MHz) Tested DNN Bit-Width GOPS GOPS/

DSP/f GOPS/W Power
(W)

Runtime
(ms) FPS

[37] 60 VGG16 16 17.19 4.476 27.4 0.627 2269 0.44

[38] 200 VGG16 8 354 3.43 21.45 16.5 82.1 12.18

[28] 214 VGG16 8 84.3 2.073 24.1 3.497 364 2.747

[39] 200

MobileNetV1

8

147.84 1.05 17.9 8.259 3.779 264.6

MobileNetV2 98 0.696 11.5 8.522 3.07 325.7

MobileNetV3L 84.84 0.602 9.9 8.57 3 332.7

DenseNet161 176 1.25 52.5 3.352 41.49 24.1

[40] 200

VGG16

Mixed

2746 4.5

\ \
11.2 89.29

MobileNetV1 1167.3 1.9 0.47 2127

MobileNetV2 890.88 1.45 0.34 2941

[41] 133 MobileNetV2 16 170.6 2.007 \ \ 3.75 266.6

This work 200

VGG16

8

161.73 3.814 23.7 6.824 197.5 5.06

MobileNetV2 155.37 3.664 21.6 7.192 3.251 307.59

MobileNetV3L 149.33 3.521 20.1 7.429 3.002 333.06

DenseNet161 158.14 3.73 23.6 6.7 104.8 9.54

As shown in Table 4, our design achieved a higher computing efficiency of the DSPs
than most other works. The work [37] shows a better GOPS/DSP/f by considering the
sparsity. It skips the zero-operations in both the weights and the input data, but it can
only be used to accelerate the common convolutional layers. Its applicability is heavily
limited. For example, the FC layers are not supported by it, as well as some irregular
operations such as the depth-wise convolution. The work [40] also shows a high efficiency
on the VGG16, but it adopts the data with mixed bit-widths as low as 2-bit. This requires
fewer computational resources than the 8-bit data but will result in a greater loss in ac-
curacy. Furthermore, it suffers a great loss in the performance of the lightweight CNNs,
including the MobilenetV1/V2. In fact, as mentioned in [39], most DNPUs have not taken
the lightweight CNNs into consideration, and all suffer a great performance loss when
processing them. Although [39,41] are specifically designed for lightweight CNNs, their
performance is relatively low, as shown in the experiment results. Compared with other
works, our design shows high performance for various CNNs. Our work maintains a
high computing efficiency for the MobileNetV2/V3-L. It shows that the proposed data
transmission scheme is also efficient for the depth-wise convolutional layers. The FC layers
are contained in all the tested benches, and they cause no significant loss. This shows that
the proposed pipeline strategy for the CNNs is effective.

Compared with other works for CNNs, our design utilizes more hardware resources
for the ISP tasks and the RNNs tasks. However, our work still achieves a high-power
efficiency measured by the GOPS/W. This shows that the hardware sharing scheme in our
architecture is effective, and most hardware resources on the proposed VPU can be applied
for the CNNs. This can significantly improve the power efficiency of the VPU because the
CNNs are the dominant parts in all the vision tasks.

Micromachines 2022, 13, 268 23 of 27

(2) The Experiment Results of the Hybrid DNNs and the Analysis

Secondly, the hybrid DNNs consisting of the CNNs and RNNs were tested on the
proposed VPU and compared with other works. We tested the RNNs alone on the row
processor to validate the computing flow for the RNNs. The results show that the runtimes
of the LSTM 1000 and GRU 1000 were 5.426 ms and 3.82 ms, respectively.

For the hybrid DNN testbenches, the GOPS/DSP/f and the GOPS/W are also used to
evaluate the performance and efficiency of the NPU. Two variations of the LRCN [11] were
used as the testbenches. The test results are shown in Table 5.

Table 5. The experiment results for the hybrid DNNs on the proposed VPU and the comparison with
the previous works.

Ref Freq
(MHz) Tested DNN 1 Bit-Width GOPS GOPS/

DSP/f GOPS/W Power
(W)

Runtime
(ms)

[26] 50 LeNet + 2 LSTM128 1 8 for CNN
16 for RNN / / / / 6

[27] 200 AlexNet + 2 LSTM1024 8 for CNN
16 for RNN 690.76 2.767 86.34 8 9

[42] 268 CRNN 8 for CNN
16 for RNN 646

[9] 100 AlexNet + 1 LSTM 256 16 for input
12 for weight 36.25 0.1158 1.53 23.69 40

[43] 200 1D CNN + LSTM64 8 for CNN
16 for RNN 49.4 0.637 26.7 1.85 8.295

This work 200
VGG16 + 2 LSTM1000 8 for CNN

16 for RNN
162.7 3.84 23.7 6.864 197.51

DenseNet161 + 2 LSTM1000 159.23 3.753 23.58 6.751 104.84
1 This denotes the hybrid DNN consisting of the LeNet and 2 LSTM with 128 hidden units. Other figures in this
column also express the formation of the hybrid DNNs.

As shown in Table 5, the hybrid DNNs added negligible delay in the runtime compared
with the CNNs. This shows that the proposed pipeline strategy is effective, and the CNNs
can mask the processing of the RNNs. Compared with other works, our design shows
the highest GOPS/DSP/f. It means that our architecture can achieve better computing
performance with the same implementation. This is thanks to the sharing scheme and
the reasonable allocation principle for the hardware resources in our work. The pipeline
strategy also improves the DSPs’ utilization efficiency, which can run the convolutional
layers, the FC layers, and the RNNs concurrently. Besides, although our design increases
the amount of the ALUs for the ISP units, it still shows a relatively high-power efficiency. It
should be noted that work [27] is implemented with the optimized Deephi Aristotle and
Descartes RTL commercial IPs.

5.3.3. The Test of the Complete Vision Tasks

The complete vision tasks consisting of various ISP algorithms and DNNs were
executed in our design to test the general performance of the VPU. The results are shown
in Table 6. The sum of the runtimes for the ISP algorithms and the DNNs is listed. It is
calculated by adding the separate runtime of each ISP algorithm and the DNN together. It
was compared with the runtimes of the complete vision tasks.

Micromachines 2022, 13, 268 24 of 27

Table 6. The experiment results for the complete vision tasks.

No. ISP Algorithms Tested DNN 1 Sum of Runtimes
(ms)

Runtime
(ms) FPS Power

(W)

1 Demosiac, DCT, Median filter MobileNetV3L 5.62 3.14 308 8.11

2 Demosiac, DCT, Median filter VGG16 200.1 197.48 5.1 6.83

3 Demosiac, DCT, Median filter VGG16 + 2 LSTM1000 198.37 197.51 5.1 6.94

4 Demosiac, DCT, Median filter DenseNet161 + 2 LSTM1000 104.83 104.87 9.46 7.04
1 Each complete vision task is composed of the listed ISP algorithms and a DNN.

As shown in Table 6, the runtime of the complete vision task was less than the total
runtime of each subtask. The runtime of the complete vision task was very close to the
runtime of the DNN. This shows that the pipeline strategy we proposed for the complete
vision tasks is effective. The processing of the DNNs masks the execution of the ISP
algorithms. Although several ISP algorithms are contained, the power dissipation of the
complete vision task was barely larger than that of the DNNs. This is because the DNNs
multiplex all the hardware resources for the ISP subtasks, and the ISP subtasks require much
less computation than the DNNs. The experiment results indicate that our architecture can
efficiently process the vision tasks composed of the ISP and DNNs. It shows negligible
overhead in both the hardware resources and the power consumption than the DNPUs.

5.4. The Discussion

Our architecture integrates the ISP unit and the DNPU into one VPU. It eliminates
the ISP device and the data transmission for the ISP in the vision systems. The experiment
results show that this integration has negligible overhead in hardware utilization and
power consumption compared with other DNPUs. This is because other DNPUs also
contain the units for the non-Mac layers of the CNNs, such as the activating and pooling
units, while the ISP tasks and non-Mac layers multiplex the ALU array in our design.
Furthermore, the large on-chip memory in the traditional DNPUs is also divided into many
Mmems shared for both the ISP and DNNs.

The experiment results also show that the pipelined workflow is efficient for the
complete vision task. The ISP algorithms can be executed during the processing of the
DNNs, while the convolutional layers can mask the processing of the FC layers and the
RNNs. A batch of only three images is required for the complete vision tasks, and the
DNNs can be performed on only two images. The pipelined workflow can execute the
vision tasks seamlessly, with the high utilization efficiency of the hardware resources.

It should be noted that the convolutional layers account for the most computation of
the vision tasks. They also consume the most cycles in the runtime. Therefore, most of
the hardware resources of our VPU were allocated to the convolutional layers. Different
amounts of the FC layers and RNNs are used in the various vision tasks, and this can result
in the idle cycles of the row processor. However, this problem did not cause a significant
loss in the general utilization efficiency of the total MACs because the row processor is
much smaller than the PE array. For example, in our implementation, the general utilization
efficiency of the total DSPs was 92.45%, even if no FC layers/RNNs were contained in
the vision tasks, and the row processor stayed idle the whole time. This partly explains
why our architecture achieved the high GOPS/DSP/f. Another reason is that our design
is applicable for all kinds of CNNs with various kernel sizes, strides, and numbers of
input/output channels.

Although our VPU achieved a power efficiency higher than most of the compared
DNPUs, its power dissipation was not the lowest. There are two reasons for this. The
first one is that our VPU contained more ALUs to process the ISP subtasks. The more
important reason is that our VPU utilized fewer BRAMs as the on-chip buffers than other
works. When processing the DNNs with more on-chip buffers, the DNPU will generate

Micromachines 2022, 13, 268 25 of 27

less data exchange with the external memory. The data transmission and replacement
between the on-chip buffers will also be lessened. This will reduce power consumption.
However, when implementing the DNPU on the ASIC, it is not practical to equip such big
on-chip buffers. As shown in the ASIC-based DNPUs, usually only 200 to 500 Bytes of
SRAM is utilized as the on-chip buffer [3,8,15,30]. Therefore, in this paper, we implement
the proposed architecture with only 104 BRAMs.

6. Conclusions

In this paper, a heterogeneous architecture for the VPU is proposed. It can process the
ISP, CNN, and hybrid DNNs simultaneously on one unit. The subtasks can be processed
concurrently, and a pipelined workflow is applied to the vision tasks. As a result, the
VPU can process the vision tasks seamlessly without any notable waste of the processing
modules. It achieves an average performance of 160 GOPS for the DNNs. Moreover, it
maintains high performance for all kinds of DNNs and consumes less power than most
other works. It can be used in DNN-based vision applications [13,16,17], especially if
it is directly applied for the computer vision tasks in the early works of autonomous
systems [1,4,48]. There also exist some limitations in this design. For example, processing
complicated ISP algorithms on it may produce too long latency, which cannot be masked in
the processing of some lightweight DNNs. However, this case rarely happens in practical
vision applications. In the future, the VPU can be used to process more machine learning
methods with minor modifications. For example, the convolutional layers, FC layers, and
RNNs are also used in attention-based models. The proposed VPU can process those
models with the aid of a microprocessor. This design can also be applied for other vision
systems, including sonar, infrared, terahertz, X-ray, and remote sensing imaging systems.

Author Contributions: Conceptualization, P.L.; methodology, P.L. and J.W.; software, P.L. and Z.Y.;
validation, P.L., J.W., and Z.Y.; formal analysis, P.L. and L.K.; investigation, P.L. and L.K.; resources,
P.L. and J.W.; data curation, P.L.; writing—original draft preparation, P.L. and L.K.; writing—review
and editing, P.L. and Z.Y.; visualization, P.L.; supervision, J.W.; project administration, J.W.; funding
acquisition, J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We gratefully acknowledge the administrative and technical support from
Jianguo Ma, Zhejiang University, China.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Yang, J.; Yang, Y.; Chen, Z.; Liu, L.; Liu, J.; Wu, N. A Heterogeneous Parallel Processor for High-Speed Vision Chip. IEEE Trans.

Circuits Syst. Video Technol. 2016, 28, 746–758. [CrossRef]
2. Schmitz, J.A.; Gharzai, M.K.; Balkir, S.; Hoffman, M.W.; Nathan, S. A 1000 frames/s Vision Chip Using Scalable Pixel-

Neighborhood-Level Parallel Processing. IEEE J. Solid-State Circuits 2017, 52, 556–568. [CrossRef]
3. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Temam, O. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of

the 42nd Annual International Symposium on Computer Architecture, Portland, OR, USA, 13–17 June 2015.
4. Shi, C.; Yang, J.; Han, Y.; Cao, Z.; Qin, Q.; Liu, L.; Wu, N.; Wang, Z. A 1000 Fps Vision Chip Based on a Dynamically Reconfigurable

Hybrid Architecture Comprising a Pe Array Processor and Self-Organizing Map Neural Network. IEEE J. Solid-State Circuits
2014, 28, 256–269. [CrossRef]

5. Zhang, W.; Fu, Q.; Wu, N.-J. A Programmable Vision Chip Based on Multiple Levels of Parallel Processors. IEEE J. Solid-State
Circuits 2011, 46, 2132–2147. [CrossRef]

6. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.
[CrossRef]

7. Shin, D.; Yoo, H.-J. The Heterogeneous Deep Neural Network Processor with a Non-von Neumann Architecture. Proc. IEEE
2019, 108, 1245–1260. [CrossRef]

8. Shouyi, Y.; Peng, O.; Shibin, T.; Fengbin, T.; Xiudong, L. A High Energy Efficient Reconfigurable Hybrid Neural Network
Processor for Deep Learning Applications. IEEE J. Solid-State Circuits 2017, 53, 968–982.

http://doi.org/10.1109/TCSVT.2016.2618753
http://doi.org/10.1109/JSSC.2016.2613094
http://doi.org/10.1109/JSSC.2014.2332134
http://doi.org/10.1109/JSSC.2011.2158024
http://doi.org/10.1016/j.cviu.2007.09.014
http://doi.org/10.1109/JPROC.2019.2897076

Micromachines 2022, 13, 268 26 of 27

9. Xiaofan, Z.; Xinheng, L.; Anand, R.; Chuanhao, Z.; Shibin, T.; Peng, O.; Zuofu, C.; Kyle, R.; Deming, C. High-performance video
content recognition with long-term recurrent convolutional network for FPGA. In Proceedings of the 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017.

10. Jiang, W.; Yi, Y.; Junhua, M.; Zhizheng, H.; Chang, H.; Wei, X. CNN-RNN: A Unified Framework for Multi-label Image Classifica-
tion. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
26 June–1 July 2016.

11. Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

12. Honglong, L.; Jie, Y.; Zhongxing, Z.; Nanjian, W. A high speed programmable vision chip for real-time object detection. Infrared
Laser Eng. 2020, 49, 55–60. [CrossRef]

13. Jiaqing, W.; Liyuan, L.; Nanjian, W. High-speed tracking system based on Multi-parallel-core processor and CNN algorithm.
In Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), Chongqing, China, 11–13 October 2019.

14. Peng, L.; Yan, S. A Hybrid Vision Processing Unit with a Pipelined Workflow for Convolutional Neural Network Accelerating
and Image Signal Processing. Electronics 2021, 10, 2989.

15. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
Proceedings of the International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016.

16. Park, S.; Hong, I.; Park, J.; Yoo, H.J. An Energy-Efficient Embedded Deep Neural Network Processor for High Speed Visual
Attention in Mobile Vision Recognition SoC. IEEE J. Solid-State Circuits 2016, 51, 2380–2388. [CrossRef]

17. Li, Z.; Chen, Y.; Gong, L.; Liu, L.; Kim, H.S. An 879GOPS 243mW 80fps VGA Fully Visual CNN-SLAM Processor for Wide-Range
Autonomous Exploration. In Proceedings of the 2019 IEEE International Solid- State Circuits Conference-(ISSCC), San Francisco,
NV, USA, 17–19 February 2019.

18. Bong, K.; Choi, S.; Kim, C.; Han, D.; Yoo, H.-J. A Low-Power Convolutional Neural Network Face Recognition Processor and a
CIS Integrated with Always-on Face Detector. IEEE J. Solid-State Circuits 2017, 53, 115–123. [CrossRef]

19. Cavigelli, L.; Benini, L. Origami: A 803-GOp/s/W Convolutional Network Accelerator. IEEE Trans. Circuits Syst. Video Technol.
2016, 27, 2461–2475. [CrossRef]

20. Yuan, Z.; Yang, Y.; Yue, J.; Liu, R.; Feng, X.; Lin, Z.; Wu, X.; Li, X.; Yang, H.; Liu, Y. A 65nm 24.7µj/Frame 12.3mw Activation-
Similarity-Aware Convolutional Neural Network Video Processor Using Hybrid Precision, Inter-Frame Data Reuse and Mixed-
Bit-Width Difference-Frame Data Codec. In Proceedings of the 2020 IEEE International Solid- State Circuits Conference (ISSCC),
San Francisco, NV, USA, 2–6 February 2020.

21. Keumsun, P.; Minah, C.; Jae, H.C. Image Pre-Processing Method of Machine Learning for Edge Detection with Image Signal
Processor Enhancement. Micromachines 2021, 12, 73.

22. Kawamoto, R.; Taichi, M.; Kabuto, M.; Watanabe, D.; Izumi, S.; Yoshimoto, M.; Kawaguchi, H.; Matsukawa, G.; Goto, T.;
Kojima, M. A 1.15-TOPS 6.57-TOPS/W Neural Network Processor for Multi-Scale Object Detection with Reduced Convolutional
Operations. IEEE J. Sel. Top. Signal Process. 2020, 14, 634–645. [CrossRef]

23. Chixiao, C.; Hongwei, D.; Huwan, P.; Haozhe, Z.; Yu, W.; Richard, S. OCEAN-An On-Chip Incremental-Learning Enhanced
Artificial Neural Network Processor with Multiple Gated-Recurrent-Unit Accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst.
2018, 8, 519–530.

24. Shin, D.; Lee, J.; Lee, J.; Lee, J.; Yoo, H.J. DNPU: An Energy-Efficient Deep-Learning Processor with Heterogeneous Multi-Core
Architecture. IEEE Micro 2018, 38, 85–93. [CrossRef]

25. Hsiao, S.F.; Chen, K.C.; Lin, C.C.; Chang, H.J.; Tsai, B.C. Design of a Sparsity-Aware Reconfigurable Deep Learning Accelerator
Supporting Various Types of Operations. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 376–387. [CrossRef]

26. Liangkai, Z.; Ning, W.; Fen, G.; Fang, Z.; Jiahui, Z.; Tong, L. Small Area Configurable Deep Neural Network Accelerator for IoT
System. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China,
28–31 October 2020.

27. Zeng, S.; Guo, K.; Fang, S.; Kang, J.; Xie, D.; Shan, Y.; Wang, Y.; Yang, H. An Efficient Reconfigurable Framework for General
Purpose CNN-RNN Models on FPGAs. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP), Shanghai, China, 19–21 November 2018.

28. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping
CNN Onto Embedded FPGA. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2017, 37, 35–47. [CrossRef]

29. Sim, J.; Lee, S.; Kim, L.-S. An Energy-Efficient Deep Convolutional Neural Network Inference Processor with Enhanced Output
Stationary Dataflow in 65-nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 28, 87–100. [CrossRef]

30. Moons, B.; Uytterhoeven, R.; Dehaene, W.; Verhelst, M. 14.5 Envision: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable Convolutional Neural Network processor in 28nm FDSOI. In Proceedings of the International
Solid-state Circuits Conference, San Francisco, NV, USA, 5–9 February 2017.

31. Kartik, D.; Praveen, K.; Minesh, M. Improving CNN-RNN Hybrid Networks for Handwriting Recognition. In Proceedings of the
2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Buffalo, NY, USA, 5–8 August 2018.

http://doi.org/10.3788/irla.25_2019-0553
http://doi.org/10.1109/JSSC.2016.2582864
http://doi.org/10.1109/JSSC.2017.2767705
http://doi.org/10.1109/TCSVT.2016.2592330
http://doi.org/10.1109/JSTSP.2020.2966331
http://doi.org/10.1109/MM.2018.053631145
http://doi.org/10.1109/JETCAS.2020.3015238
http://doi.org/10.1109/TCAD.2017.2705069
http://doi.org/10.1109/TVLSI.2019.2935251

Micromachines 2022, 13, 268 27 of 27

32. Yujin, S.; Yongjin, X. End-to-End Captcha Recognition Using Deep CNN-RNN Network. In Proceedings of the 2019 IEEE 3rd
Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing,
China, 11–13 October 2019.

33. Yongxing, Y.; Jie, Y.; Liyuan, L.; Nanjian, W. High-Speed Target Tracking System Based on a Hierarchical Parallel Vision Processor
and Gray-Level LBP Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 950–964.

34. Bruno, A.S.; Arthur, M.L.; Jones, Y. A Manycore Vision Processor Architecture for Embedded Applications. In Proceedings of the
2020 Brazilian Symposium on Computing Systems Engineering (SBESC), Florianopolis, Brazil, 24–27 November 2020.

35. Kaiming, H.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.

36. Min, L.; Qiang, C.; Shuicheng, Y. Network in Network. arXiv 2014, arXiv:1312.4400.
37. Alessandro, A.; Hesham, M.; Enrico, C.; Antonio, R.N.; Ricardo, T.M.; Iulia-Alexandra, L.; Milde, M.B.; Federico, C.; Alejandro,

L.B.; Liu, S.C. NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 644–656.

38. Yu, Y.; Wu, C.; Zhao, T.; Wang, K.; He, L. OPU: An FPGA-Based Overlay Processor for Convolutional Neural Networks. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 28, 35–47. [CrossRef]

39. Yu, Y.; Zhao, T.; Wang, K.; He, L. Light-OPU: An FPGA-based Overlay Processor for Lightweight Convolutional Neural Networks.
In Proceedings of the FPGA2020: The 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, 23–25 February 2020.

40. Chen, W.; Jinming, Z.; Kun, W.; Lei, H. MP-OPU: A Mixed Precision FPGA-based Overlay Processor for Convolutional Neural
Networks. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL),
Dresden, Germany, 30 August–3 September 2021.

41. Bai, L.; Zhao, Y.; Huang, X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution. IEEE Trans. Circuits Syst. II
Express Briefs 2018, 65, 1415–1419. [CrossRef]

42. Yunfei, S.; Brian, L.; Xiaochao, X. An OpenCL-Based Hybrid CNN-RNN Inference Accelerator On FPGA. In Proceedings of the
2019 International Conference on Field-Programmable Technology (ICFPT), Tianjin, China, 9–13 December 2019.

43. Ying, Y.; Fen, G.; Danfeng, Q.; Xin, Y.; Ziyu, L.; Fang, Z.; Ning, W. Implementation of Reconfigurable CNN-LSTM Accelerator
Based on FPGA. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology, Tianjin, China,
13–16 October 2021.

44. Lee, J.; Lee, J.; Han, D.; Lee, J.; Park, G.; Yoo, H.J. LNPU: A 25.3TFLOPS/W Sparse Deep-Neural-Network Learning Processor with
Fine-Grained Mixed Precision of FP8-FP16. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference-(ISSCC),
San Francisco, CA, USA, 2–6 February 2019.

45. Yue, J.; Liu, Y.; Yuan, Z.; Wang, Z.; Guo, Q.; Li, J.; Yang, C.; Yang, H. A 3.77TOPS/W Convolutional Neural Network Processor
with Priority-Driven Kernel Optimization. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 277–281. [CrossRef]

46. Amir, G.; Sehoon, K.; Zhen, D.; Zhewei, Y.; Michael, M.; Kurt, K. A Survey of Quantization Methods for Efficient Neural Network
Inference. arXiv 2021, arXiv:2103.13630.

47. Zhang, B.; Zhao, C.; Mei, K.; Zhao, J.; Zheng, N. Hierarchical and Parallel Pipelined Heterogeneous SoC for Embedded Vision
Processing. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 1434–1444. [CrossRef]

48. Abbad, U.R.; Zohaib, M.; Muhammad, A.Q. Fuzzy Logic Based Automatic Vehicle Collision Prevention System. In Proceedings
of the 2015 IEEE Conference on Systems, Process and Control (ICSPC), Bandar Sunway, Malaysia, 18–20 December 2015.

http://doi.org/10.1109/TVLSI.2019.2939726
http://doi.org/10.1109/TCSII.2018.2865896
http://doi.org/10.1109/TCSII.2018.2846698
http://doi.org/10.1109/TCSVT.2017.2665489

	Introduction
	Preliminary
	The Architecture of the VPU
	The Overall Architecture
	The PE Array
	The Row Processor
	The Memory Architecture

	The Workflow of the Vision Tasks on the VPU
	The Workflow for the ISP on the VPU
	The Workflow for the CNN on the VPU
	The Workflow for the Convolutional Layers
	The Workflow of the FC Layers
	The Non-Multiplication-and-Accumulation (Non-Mac) Operations

	The Workflow of the RNN
	The Pipeline Strategy in the Workflow of the Vision Task

	The Experiment Results and the Discussion
	The Implementation
	The Experiment Method
	The Modeling of the 224 224 Image Sensor
	The Quantization
	The Testbench

	The Experiment Results and the Analysis
	The Experiment Results for the ISP and the Analysis
	The Experiment Results for the DNNs and the Analysis
	The Test of the Complete Vision Tasks

	The Discussion

	Conclusions
	References

