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Abstract: Anodic bonding is broadly utilized to realize the structure support and electrical connection
in the process of fabrication and packaging of MEMS devices, and the mechanical and electrical
characteristics of the bonded interface of structure exhibit a significant impact on the stability and
reliability of devices. For the anodic bonding structure, including the gold electrode of micro
accelerometers, the elastic/plastic contact model of a gold–silicon rough surface is established based
on Hertz contact theory to gain the contact area and force of Gauss surface bonding. The trans-scale
finite element model of a silicon–gold glass structure is built in Workbench through the reconstruction
of Gauss surface net by the reverse engineering technique. The translation load is added to mimic the
process of contact to acquire the contact behaviors through the coupling of mechanical and electrical
fields, and then the change law of contact resistance is obtained. Finally, the measurement shows
a good agreement between the experimental results, theoretical analysis and simulation, which
indicates there is almost no change of resistance when the surface gap is less than 20 nm and the
resistance is less than 5Ω, while the resistance changes rapidly after the gap exceeds 20 nm.

Keywords: MEMS; anodic bonding; contact characteristics; contact resistance

1. Introduction

Anodic bonding is a silicon–glass electrostatically bonding technology proposed by
Romerantz and Wallis, and it can steadily connect silicon wafer or metal pad to glass sub-
strate under applied external heat and electrical energy without the need of adhesives [1,2].
This bonding process, therefore, is widely utilized in MEMS (micro-electrical-mechanical
systems) device assembly and packaging due to its low bonding temperature, solid bonding
interface and long-term stability [3]. Apart from the mechanical connection between die and
substrate, the function of anodic bonding introduces a conductive pad to realize the electri-
cal connection [4,5]. The bonding quality of high-end MEMS devices, therefore, is necessary
to be investigated carefully and comprehensively, including the observation of bonding
surface [6], interfacial analysis [7,8] and surface morphology [9], among which the contact
characteristics exhibit a significant impact on the impedance and stability of electrical signal
between the silicon and metal pad. Wang theoretically studied the relationship between
resistivity of a silicon–gold connection and doping concentration, and showed that the
resistivity was (0.0025 ± 0.0005) Ω·cm [10]. Li constructed a series of metal-semiconductor
connect models and measurement methods, including a rectangular transmission line
model and circle transmission line model [11]. Jia focused on the mechanical field, thermal
field and electrical field coupling contact behavior based on Gauss surface model [12]. Zhu
established a micro/nano scale contact point plastic model and experiments and found
the contact resistance decreased with the contact gap [13]. Pennec et al. indicated the
dependence of contact characteristics on the surface roughness [14]. Ardito et al. con-
centrated mainly on the surface contact phenomenon of MEMS devices and finished the
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corresponding physical model under different environmental conditions [15]. Cui et al.
established a multi-scale model of rough surface contact and calculated the deformation
level of the surface under pressure [16]. Zhang et al. investigated the relationship between
contact resistance and geometrical parameters and material constant [17]. Lumbantobing
et al. carried out research on the contact surface quality of MEMS accelerometers [18].
Jackson et al. established a rough surface contact elastic model [19]. Kogut et al. studied
polysilicon-oxidation-polysilicon contact resistance of MEMS devices [20]. Rezvanian et al.
established a three-dimensional contact model of RF MEMS switches [21]. Kim et al. gave
a perspective on non-Gauss surface contact model [22].

The above mentioned research investigated the contact characteristics of different
MEMS structures from many perspectives. The diversity and non-standardization of
MEMS, however, made those results too specific to be applied to other devices or structures;
additionally, the silicon-metal contact model involves a scale-span problem from the macro
characterization to micro morphology, which was not considered in the current literature.
Therefore, a detailed modelling process and analysis is proposed in this paper to form a
systematical study on the contact characteristics of a silicon–gold surface in the anodic
bonding structure of micro accelerometers. The contact area extraction, modelling method
of rough surface, contact resistance calculation and experimental verification are included
to evaluate the bonding quality of micro accelerometers.

2. Contact Characteristics Analysis
2.1. Bonding Structure

The bonding structure this paper studies was extracted from a SOG (silicon-on-glass)
micro accelerometer whose SEM is shown in Figure 1. The accelerometer consists of three
layers. The top layer is a deeply boron doping silicon structure composed of movable proof
mass, comb fingers, folded beams and anchors. The bottom is a glass layer for support.
The middle layer is a thin gold (Au) electrode, which is sputtered on glass for electrical
connection [23]. The segments marked by numbers are a ‘sandwich’ structure where the
gold electrode is used for electrical connection. Figure 2 shows an enlarged one of number
5 segment. The Au is sputtered locally on the surface of glass before the silicon and glass
are bonded anodically together. The interface between silicon and glass is formed with
a chemical reaction under electrical field, heating and pressure to form a group of Si–O
covalent bonds, which can fix the sensitive structure firmly on the glass substrate [24].
This bonding technology has been studied intensively and is not considered in this paper.
The Au electrodes play a crucial role in the signal transmission of sensor and establish an
electrical connection through a physical contact between the silicon and gold layer. This
physical contact is of a great importance to the stability of micro accelerometers.
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2.2. Model of Contacting Area 
The physical contact between the silicon and gold is of a micro/nano scale problem, 

thus the surface roughness of the structure cannot be neglected. The difference of asperity 
of different position results in the contacting process very complicated. The deformation 
of the material is varied from one position to another. Current research indicated that the 
contact performance, including rigidity, thermal resistance, electrical resistance, assembly 
accuracy and sealing quality, were highly dependent on the surface roughness, stress dis-
tribution and load level of contact [25]. 

According to the Gaussian rough surface theory and G-W contact model, two rough 
surfaces in contact can be equivalent to a rough one and a smooth rigid one in contact; the 
conversion process is shown in Figure 3, where h represents the average height of rough 
surface outline. Based on the Hertz contact, the roughness RMS, σ, can be expressed as: 
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2.2. Model of Contacting Area

The physical contact between the silicon and gold is of a micro/nano scale problem,
thus the surface roughness of the structure cannot be neglected. The difference of asperity
of different position results in the contacting process very complicated. The deformation
of the material is varied from one position to another. Current research indicated that the
contact performance, including rigidity, thermal resistance, electrical resistance, assembly
accuracy and sealing quality, were highly dependent on the surface roughness, stress
distribution and load level of contact [25].

According to the Gaussian rough surface theory and G-W contact model, two rough
surfaces in contact can be equivalent to a rough one and a smooth rigid one in contact; the
conversion process is shown in Figure 3, where h represents the average height of rough
surface outline. Based on the Hertz contact, the roughness RMS, σ, can be expressed as:

σ =
√

σ2
1 + σ2

2 (1)

where σ1 and σ2 represent the roughness RMSs of surface 1 and 2, respectively. Thus, the
distribution function of surface 3 can be expressed as:

ϕ(z) =
1

σ
√

2π
exp(− z2

2σ2 ) (2)Micromachines 2022, 13, x  4 of 11 
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The equivalent curvature radius and equivalent elastic module of surface 3 can be
expressed as:

1
R

=
1

R1
+

1
R2

(3)

1
E
=

1− ν1
2

E1
+

1− ν2
2

E2
(4)

where R1 and R2 are the curvature radiuses of surface 1 and 2, respectively; E1 and E2 are
the elastic modules, respectively; and ν1 and ν2 are the Poisson’s ratios, respectively.

During the contact process, only the part of z > h in Figure 3 can form a physical
contact, thus the probability of surface contact can be expressed as:

P(z > h) =
∫ ∞

h
ϕ(z)dz (5)
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Assuming the peak number of rough surfaces is n, the number with contact is:

m = n
∫ ∞

h
ϕ(z)dz (6)

Due to the different level of deformation, different peaks exhibit different deforma-
tions, including elastic ones or plastic ones or both. As a result, the plasticity index, ψ,
proposed by Greenwood and Williamson, is introduced to estimate the contact type of peak
deformation [26]:

ψ =

√
σ

δ
=

E
H

√
σ

R
(7)

where H is the hardness of material, and δ is the normal deformation quantity, which can
be expressed based on the above equation as:

δ =

(
H
E

)2
R (8)

Consequently, the physically contacting area can be expressed as:

A = nπR
(∫ h+δ

h
(z− h)ϕ(z)dz +

∫ ∞

h+δ
2(z− h)ϕ(z)dz

)
(9)

Correspondingly, the load of contact can be expressed as:

W =
4
3

nER1/2
∫ h+δ

h
(z− h)3/2 ϕ(z)dz + 2nπRσs

∫ ∞

h+δ
(z− h)ϕ(z)dz (10)

As for the silicon–gold contact model, the main parameters are listed in Table 1 [15,27],
and the thickness of Au layer is 40 nm. Thus, the equivalent curvature radius is 1515 nm
and the equivalent elastic module is 56.02 Gpa. Based on the material hardness of 2.07 Gpa,
the appearance of plastic deformation occurs after the normal deformation reaches 2.08 nm.
Figure 4 shows the relationship between contact load, area and contact gap. The contact
area is proportional to the contact load, which indicates the plastic deformation is very
small. Additionally, the area is apparently nonlinear to the gap, which shows that more
and more rough peaks start to contact with the decrease in contact gap.

Table 1. Main parameters of contact model.

Quantity n Σ (nm) E (GPa) R (nm) v σs (MPa)

Silicon 200 15 169 1515 0.22 /
Gold (Au) / 0.7 74.46 / 0.3 660
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2.3. Model of Contacting Resistance

The contact resistance highly depends on the contact state, especially the contact area.
So, it is necessary to determine the limit of resistance during the contacting process before
the design of the bonding process.

According to the above analysis, surface contact consists of a group of point contacts.
The current only can pass through the contacted points [28], and the resistance of a single
point can be expressed as:

RC =
1 + 0.83(λ/a)
1 + 1.33(λ/a)

ρ

2a
+

4ρλ

3πa2 (11)

where Rc is the contact resistance; a is the radius of contacted point; λ is the mean free path
of an electron; and ρ is the resistivity of material.

When a surface contains many contacted points, the total resistance is not only related
to the size of each point, but also to the distribution of contacted points. Furthermore, the
total resistance decreases with the increase in the distance of points [29]. As a result, it is
difficult to calculate the total resistance in practical engineering because it is impossible to
measure the physical distance of points.

The limit of resistance, therefore, needs to be discussed. Assuming that all the con-
tacted points gather together to form a big conductive spot, the contact resistance is the
upper limit; while the distance between any two points is long enough, the contact is the
lower limit. The two limits are

RU = f (
λ

ae f f
)

ρ

2ae f f
+

4ρλ

3πa2
e f f

(12)

1
RL

=
n

∑
i=1

1
RCi

(13)

where RU and RL are the upper and lower limits of contact resistance, respectively. aeff is
the equivalent radius of the big conductive spot. n is the number of contact peaks. RCi is
the contact resistance of the ith roughness peak.

Substituting the contact area into the limit equations, we can obtain:

1
RL

= n
[∫ h+δ

h

1
Re

ϕ(z)dz +
∫ ∞

h+δ

1
Rp

ϕ(z)dz
]

(14)

where

Re =
1 + 0.83(λ/ae)

1 + 1.33(λ/ae)

ρ

2ae
+

4ρλ

3πa2
e

(15)

Rp =
1 + 0.83(λ/ap)

1 + 1.33(λ/ap)

ρ

2ap
+

4ρλ

3πa2
p

(16)

3. Contact Modelling and Simulation

To construct the contact model with a Gauss surface is one of the most different tasks
in contact characteristics study. In this paper, the process of establishing the rough surface
involved two steps. First, an independent Gauss random number sequence with the same
dimensions as surface sequence was constructed. Second, based on the surface autocorrela-
tion function R(l) and correlation length T, a number filter was created to transform the
random number sequence into a digital random curve with a convolutional operation.
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The random surface is represented by a matrix, {z(x,y)},where x,y = −(N−1)/2,
−(N−1)/2 + 1, . . . , (N−1)/2, and N is the multiple of 2, thus the surface consists of
N × N points, and each point can be expressed as:

z(x, y) =

N−1
2

∑
i==− N−1

2

N−1
2

∑
j=− N−1

2

w(i, j)g(x + i, y + i) (17)

where z is the height of each point, i and j represent the coordinates increment, g is the
Gauss series and w is the function of number filter, which can be represented as:

w(i, j) =
2σ√
πT

exp

[
−

2
(
i2 + j2

)
T2

]
(18)

Based on Equation (17), Figure 5a shows a constructed 9µm × 9µm Gauss rough
surface, which is of network form and cannot be used to directly establish a finite element
model. A reverse engineering, therefore, is utilized to reconstruct the curve after point
processing, polygon forming and surface fitting (Figure 5b). The finished model is depicted
in Figure 6, in which the bottom surface of the silicon is rough.
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At the initial state, t = 0 s, a gap exists between the silicon layer and gold electrode. A
displacement of z = 44 nm is applied to simulate the contact process. Figure 7 shows the
different contact levels during the process of contacting. The red zone and yellow zone
represent the contacted parts and noncontacted parts, respectively.



Micromachines 2022, 13, 264 7 of 10

Micromachines 2022, 13, x  7 of 11 
 

 

different contact levels during the process of contacting. The red zone and yellow zone 
represent the contacted parts and noncontacted parts, respectively. 

After the contact-induced deformation is introduced into the electrical field formed 
by external voltage, the contact resistance can be extracted by Ohm’s law through the cur-
rent density. Figure 8a shows the comparison between simulation and theoretical values 
of resistance, and Figure 8b illustrates the calculated resistance located in the range of 
limits. The gap size has little impact on the contact resistance when it is smaller than 20 
nm, while the resistance is very sensitive to a gap larger than 20 nm. This conclusion is of 
great significance to the design of a bonding process. 

  
(a) (b) 

Figure 5. The rough surface model in different stages. (a) Gauss rough network. (b) Rough surface 
after fitting. 

  
(a) (b) 

Figure 6. Finite element contact model. (a) Contact finite element model. (b) Rough surface silicon. 

  
(a) (b) 

Micromachines 2022, 13, x  8 of 11 
 

 

  
(c) (d) 

Figure 7. The process of contacting. (a) z = 16. (b) z = 24. (c) z = 32. (d) z = 42. 

  
(a) (b) 

Figure 8. Comparison of the simulation and theoretical value. (a) Contact area. (b) Contact re-
sistance. 

4. Experiments and Discussion 
The experiment aims to evaluate the bonding quality of micro accelerometers based 

on the above contact resistance analysis. The measured contact resistance directly reflects 
the contact states of between silicon and gold, which highly influences the stability of out-
put voltage and sensing capability. The tested microstructure was fabricated from silicon, 
Pyrex 7740 glass and gold, and the detailed fabrication process can be found authors’ pub-
lication [30]. The fabricated and packaged microstructure are depicted in Figure 9a and b, 
respectively. The anchors of the sensitive part of Figure 9a are numbered by characters in 
circle. Additionally, each anchor was connected to the package shell through the gold pad, 
which was anodically bonded to the silicon structure in Figure 9b. The anchor 1 of fixed 
fingers was connected to shell leg 2, anchor 2, 3, 4, 5 and 6 to leg 3, 7, 6, 4 and 8, respec-
tively. The leg 1 connected to the shielding box of microstructure. 

 

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

接
触
面

积
A/

μm
2

表面间隙h/nm

硅-金弹塑性理论计算值

硅-金有限元模拟值

Theoretical value

Simulation value

Co
nt

ac
t a

re
a 

(A
/μ

m
2 )

Contact gap (h/nm)

 

0

30

60

90

120

150

180

210

240

0 5 10 15 20 25 30

接
触

电
阻

R/
Ω

表面间隙h/nm

接触电阻上限R1

接触电阻下限R2

接触电阻模拟值

Contact gap (h/nm)

Upper limit R1 

Lower limit R2 
Simulation result

Co
nt

ac
t r

es
ist

an
ce

 (R
/Ω

)

Figure 7. The process of contacting. (a) z = 16. (b) z = 24. (c) z = 32. (d) z = 42.

After the contact-induced deformation is introduced into the electrical field formed by
external voltage, the contact resistance can be extracted by Ohm’s law through the current
density. Figure 8a shows the comparison between simulation and theoretical values of
resistance, and Figure 8b illustrates the calculated resistance located in the range of limits.
The gap size has little impact on the contact resistance when it is smaller than 20 nm, while
the resistance is very sensitive to a gap larger than 20 nm. This conclusion is of great
significance to the design of a bonding process.
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4. Experiments and Discussion

The experiment aims to evaluate the bonding quality of micro accelerometers based on
the above contact resistance analysis. The measured contact resistance directly reflects the
contact states of between silicon and gold, which highly influences the stability of output
voltage and sensing capability. The tested microstructure was fabricated from silicon,
Pyrex 7740 glass and gold, and the detailed fabrication process can be found authors’
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publication [30]. The fabricated and packaged microstructure are depicted in Figure 9a and
b, respectively. The anchors of the sensitive part of Figure 9a are numbered by characters in
circle. Additionally, each anchor was connected to the package shell through the gold pad,
which was anodically bonded to the silicon structure in Figure 9b. The anchor 1 of fixed
fingers was connected to shell leg 2, anchor 2, 3, 4, 5 and 6 to leg 3, 7, 6, 4 and 8, respectively.
The leg 1 connected to the shielding box of microstructure.
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The resistance of micro accelerometers consists of three types: silicon–gold contact
resistance, the resistance of the silicon part and packaging-induced resistance. The resis-
tance of silicon and packaging shell resistance are relatively small and stable due to the
same fabrication process and batch production. Thus, the contact resistance of silicon and
gold can be determined by measuring the electrical impedance between different pads.
The digital multimeter with high accuracy is used to measure the resistances of different
pads (Figure 10). From Figure 9b, the resistance between leg 4 and 8 can directly reflect the
contact level because there is only one mass block existing and the measured resistance
includes two contact ones, package shell and mass one. Table 2 shows the test results of 10
dies. It indicates the resistance of the leg is between 4 Ω and 6 Ω, and that of proof mass is
2–4 Ω. The contact resistance, therefore, should be very small, which is shown in Table 1,
and all the test values except that of number 3 are smaller than 1 Ω. The third die exhibits a
large resistance, 120 Ω, which represents the contact quality between gold layer and silicon
substrate is poor. The microscope is utilized to investigate the contact condition from the
bottom of die because the glass substrate is transparent. When the contact condition is
poor, the gap between glass and silicon will show a colorful interference fringe. Figure 11
illustrates a comparison of good bonding and poor bonding under microscope.
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Table 2. Test resistance of 10 dies.

No. # Leg Resistance (Ω) Mass Resistance (Ω) Contact Resistance (Ω)

1 4.68 3.26 0.71
2 5.14 3.12 0.99
3 243 2.98 120.01
4 4.52 3.11 0.71
5 4.66 3.05 0.81
6 4.63 3.38 0.63
7 5.10 3.71 0.70
8 4.89 3.00 0.95
9 4.82 3.63 0.60

10 5.03 3.51 0.76
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The contact characteristics of gold and silicon of micro accelerometers was investigated
through an analytical method, finite element method and experiment. It is concluded that
the normal contact resistance of bonding is less than 1 Ω, which is smaller than that of
package legs and proof mass. This result was verified by the observation of the bonding
gap under the microscope and can be used to evaluate the contact quality of anodically
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