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Abstract: In electrohydrostatic drive actuators, there is a demand for temperature and pressure
monitoring in complex environments. Fiber Bragg grating (FBG) has become a promising sensor
for measuring temperature and pressure. However, there is a cross-sensitivity between temperature
and pressure. A gold-plated FBG is proposed and manufactured, and an FBG is used as a reference
grating to form a parallel all-fiber sensing system, which can realize the simultaneous measurement
of pressure and temperature. Based on the simulation software, the mechanical distribution of the
pressure diaphragm is analyzed, and the fixation scheme of the sensor is determined. Using the
demodulator to monitor the changes in the reflectance spectrum in real-time, the pressure and ambient
temperature applied to the sensor are measured. The experimental results show that the temperature
sensitivity of gold-plated FBG is 3 times that of quartz FBG, which can effectively distinguish the
temperature changes. The pressure response sensitivity of gold-plated FBG is 0.3 nm/MPa, which
is same as the quartz FBG. Through the sensitivity matrix equation, the temperature and pressure
dual-parameter sensing measurement is realized. The accuracy of the temperature and pressure
measurement is 97.7% and 99.0%, and the corresponding response rates are 2.7 ms/°C and 2 ms/MPa,
respectively. The sensor has a simple structure and high sensitivity, and it is promising to be applied
in health monitoring in complex environments with a high temperature and high pressure.

Keywords: optical fiber sensor; gold-plated fiber Bragg grating; pressure; temperature sensing

1. Introduction

The electro-hydrostatic actuator (EHA) is a highly integrated actuator [1,2], which
can be widely used in the field of hydraulic transmission and control. However, the EHA
structural system is complex and the working environment is harsh. There are defects, such
as poor control accuracy, the difficulty in predicting failures, and low maintainability, which
limit its operational reliability on major equipment. Monitoring the important working
parameters of the temperature and pressure of the whole machine in the EHA system
through sensing technology to form a feedback and regulation mechanism, can improve
the control accuracy and reliability of the EHA.

At present, the reported electrical pressure and temperature integrated sensors are
mainly used for normal temperature and low pressure monitoring [3-5], and there are few
reports on integrated sensors that can be used in high temperature and high pressure harsh
environments. Compared with the conventional electrical sensors, optical fiber sensors [6,7]
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have attracted attention for their stable chemical properties, anti-electromagnetic interfer-
ence, compact structure, low cost, diverse functions, good insulation performance, and light
weight. However, the research of optical fiber sensors mostly focuses on single-parameter
measurement. To date, the optical fiber multi-parameter integrated sensors that meet the
special needs of extreme environments are still problems that need to be tackled.

The related research of optical fiber temperature sensing mainly focuses on, for in-
stance, the Mach-Zehnder interferometer [8-10], Michelson interferometer [11,12], Fabry—
Perot interferometer [13,14], long period grating [15,16], and fiber Bragg grating (FBG) [17-37].
Although the above-mentioned various sensors can be directly used for temperature mea-
surement, there are some shortcomings. For example, the structure of the Mach—-Zehnder
interferometer cannot be made into a probe structure; the structure of the Fabry—Perot
interferometer is poor in stability; and the large measuring point size of the long-period
grating leads to inaccurate measurements. In contrast, FBG has attracted much attention
due to its small size, low cost, easy manufacturing, and high maturity. In 2003, NASA [17]
adopted a distributed quartz fiber grating sensing system and installed the fiber sensing
network on the X-38 space shuttle to realize the real-time monitoring of the temperature of
the composite fuel tank. To date, the FBG sensor based on quartz fiber formed a relatively
stable industrialized temperature detection system, with a temperature response sensitivity
of about 0.01 nm/°C [18-20]. In 2021, Keith M.Alcock et al. [21] used the optical fiber sensor
to measure the temperature of a lithium-ion battery, realizing the miniaturized installation
of the optical fiber sensor. In the same year, Angela Brindisi et al. [22] equipped a fiber optic
sensor on a small landing gear, based on the mechanical sensing performance of FBG, to
evaluate whether there was a hard landing and the degree of the hard landing. In order to
improve the sensitivity, people have made various attempts, including corrosion, coating,
and other methods. Finally, it was found that corrosion does not help much to improve the
temperature sensitivity of the grating, and it is easy to introduce physical interference, such
as the refractive index and humidity. Therefore, optical fiber coating has become the focus
of attention. Additionally, gold-plated optical fiber has the advantages of high expansion
coefficients, good adhesion of gold atoms to optical fibers, and a mature manufacturing
industry. Compared with quartz FBG, gold-plated FBG has a higher temperature response
sensitivity, and gold-plated FBG also responds to strain, which can realize high temperature
and high pressure measurements. In 2015, Monaghan et al. [23] used a metalized packaging
method to improve the temperature sensitivity of FBG. In 2017, Liu Yanchao et al. [24]
proposed a method for the in situ detection of lithium-ion batteries by pasting gold-plated
fiber Bragg grating (FBG) sensors during the production of lithium-ion batteries. In 2019,
Wu Hao et al. [25] used gold-plated grating and quartz grating cascades to realize the
temperature and strain sensing measurements; the temperature response sensitivity was
26.5 pm/°C in the range of 30-70 °C, and the strain response sensitivity was 1.19 pm/ue
up to 400 pe. In the same year, . Laarossi et al. [26] used gold-plated gratings to measure
the temperature and strain; the measurement response sensitivity was 1.10 pm/pe and
3.7 pm/°C, respectively. In 2021, Yanjun Zhang et al. [27] conducted research on gold-
plated FBG; the sensitization characteristics of the sensor were theoretically analyzed, and
the response characteristics of the sensor were studied. To date, gold-plated FBG is mostly
used in plasmon resonance [28-30] and battery biomarkers [31,32], and there have been
few studies on the temperature and pressure.

Pressure value monitoring in EHA health monitoring is also very important. The
pressure range of the pure optical fiber sensing structure is generally in the order of
kPa [33-36], and with the help of a cantilever beam and diaphragm structure, it can reach
the order of MPa [37-41]. In 2013, Lijun Li et al. [37] developed the FBG pressure sensor in
order to meet the needs of coal mine production safety, with a sensitivity of 0.5983 nm/MPa
in the range of 0 to 7.15 MPa. In 2016, Wang Hui et al. [38] designed a fiber grating
pressure sensor combined with a cantilever beam, and the pressure sensitivity reached
3 x 103 nW/MPa in the measurement range of 0-6 MPa. In the same year, Hongtao
Zhang [39] proposed a high-sensitivity pressure sensor based on FBG wavelength detection
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to measure the downhole pressure in oil and gas wells, and the sensitivity of the sensor
can reach 230.9 pm/MPa in the range of 0 to 20 MPa. In 2017, Yiping Wang et al. [40]
developed a high-sensitivity pressure sensor using phase shifted FBGs, and achieved a
high-sensitivity measurement of 418.8 MHz/MPa in the sensing range of 0—4 MPa. In 2019,
Zhen'an Jia et al. [41] proposed an FBG pressure sensor using a composite structure; the
composite structure included a square diaphragm, a steel truss, and a vertical beam, and
the pressure sensitivity of the sensor was 622.71 pm/MPa in the range of 0 to 2 MPa.

The above studies mostly focused on the measurement of the temperature or pressure,
but the temperature and pressure responses of the sensor were all wavelength types. The
combined effect of the temperature and pressure causes cross-interference between the data.
How to overcome the multi-parameter interference and meet the needs of temperature and
pressure sensor monitoring in a complex environment is the key point of later research. In
order to achieve the simultaneous response to pressure and temperature, Nan Wang [42]
of the PLA Naval Armament Department integrated and multiplexed the optical fiber
pressure sensors and temperature compensation gratings to achieve rapid temperature
compensation at low and normal temperatures, and complete 8 MPa large-scale high-
precision pressure sensing; the response sensitivity was 0.15 nm/MPa. In 2019, Wenhua
Wang et al. [43] proposed a Fabry—Perot interferometer and FBG cascaded fiber optic
pressure sensor, and measured a pressure response of 0-1 MPa and a temperature response
from 5.6 to 26.4 °C. In 2021, Qinggeng Fan et al. [44] designed a high-sensitivity square
diaphragm pressure sensor based on FBG, and conducted theoretical and experimental
verifications. The experimental results show that the pressure sensitivity of the sensor
is 3.402 pm/kPa, in the range of 0-200 kPa, and the temperature response sensitivity is
19.29 pm/°C at 20-55 °C; this structure is suitable for low pressure measurement. In the
existing papers, the research mostly focuses on the low-pressure and low-temperature
section; however, the single-parameter measurement of temperature can already reach a
high temperature [45]. However, for the temperature measurement under high pressure,
the current research generally stays at room temperature, and there is less measurement
and monitoring in the high-temperature and high-pressure complex environments.

In this paper, a high-temperature-resistant pressure diaphragm-type FBG temperature
and pressure dual-parameter sensor is developed. The mechanical characteristics of the
pressure sensitive diaphragm are simulated, the position range of the sensor on the pressure
diaphragm is guided, and the working principle of the sensor is discussed. Based on the
temperature and pressure characteristics of the gold-plated grating, which is different
from the quartz grating, combined with the sensitivity matrix equation, the purpose of
constructing a temperature and pressure dual-parameter sensor monitoring on the sensing
probe is realized. The experimental results show that the optical fiber sensor has great
potential in the simultaneous sensing and measurement of temperature and pressure.

2. Principle and Design

The preparation of gold-plated FBG is based on the photosensitive characteristics of
optical fibers to produce FBG. By using ultraviolet light, some specific optical waveguide
structures can be written into the optical fiber. After forming the optical fiber optical
waveguide device using electron beam evaporation or the magnetron sputtering system
gold plating method, the outer surface of the FBG can be gold-plated. FBG is packaged with
a material with a large thermal expansion coefficient to improve the temperature sensitivity.
The experimental design of the temperature and pressure sensing probe structure design is
shown in Figure la. The overall diameter of the probe is 11 mm and the height is 5 mm.
The sensing probe is divided into three parts, including a hexagonal nut-type cap for fixing
the elastic diaphragm and the threaded connection structure below; the diaphragm is used
to sense the pressure and the grating is pasted on it. The connection with the pressure
supply device is based on a threaded connection end, which cooperates with a hexagonal
nut to form a fixation to the diaphragm, and the physical diagram of the developed sensing
probe is shown in Figure 1b,c. When the fluid pressure acts on the circular diaphragm,
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the diaphragm is deformed. The slight stretching and deformation of the fiber grating
will cause the center wavelength of the fiber grating to shift, and the center wavelength
shift will reflect the fluid pressure value. The gold-coated FBG and reference quartz FBG
used in the experiments have the different grating pitches of 523.52 nm and 528.40 nm,
respectively. Different grating pitches ensure that they have different center wavelengths,
which is convenient for data analysis. In addition, they are all single-mode fibers with a
fiber diameter of 250 um and a FBG length of 300 mm. Considering the two-level difference
of the grating length and diameter, the parallel connection of the gratings is selected for
sensor installation, as shown in Figure 1d. The center wavelength of the reflection spectrum
of the dual FBG is different, and the two sensing probes can be analyzed separately and the
reflection spectrum can be coupled through the fiber coupler.

- Snm--Snm-

£
[t

(c) (d)

Figure 1. Design and manufacture of the sensor probe. (a) Structural design drawing of the sensor
probe; (b) Physical map of the sensor probe; (¢) Hexagonal nut; (d) Schematic diagram of the
installation of parallel grating sensors.

Combined with the working environment of the pressure sensor, and based on ANSYS
software, a mechanical simulation of a circular pressure diaphragm with a diameter of
1.5 cm, a thickness of 2 mm, and a material of 0Cr17Ni12Mo2 (AISI316) are carried out. As
shown in Figure 2, the stress distribution in the linear part of the diaphragm at the middle
diameter of 1 cm is relatively uniform, so that the force part of the FBG is concentrated on
the center of the diaphragm as much as possible to obtain a more uniform stress distribution.
When fluid pressure acts on the circular diaphragm, the diaphragm is deformed, and the
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slight stretching and deformation of the FBG will cause the center wavelength of the fiber
grating to shift, and the center wavelength shift will reflect the fluid pressure value.

Q 0.007 (m)

0.0035

[MPa]
Ao N

%8 5 1.25 2.5 3.75 5 6.25 8

[mm]

Figure 2. Force analysis of the pressure diaphragm.

The sensor measurement of the temperature and pressure environments can be ob-
tained by designing a dual grating parallel structure with different response sensitivities. In
terms of the temperature measurement, for the FBG structure, the thermo-optical effect and
thermal expansion effect affect the change of the optical path difference. Therefore, when
the ambient temperature changes, the length and effective index of the FBG will change.
The optical path difference can be expressed as the following formula [46]:

Among them, A is the grating pitch and .4 is the effective refractive index of the
core. When the ambient temperature acts on the FBG, the reflection spectrum will drift. In
the formula, the coefficient of the thermal expansion and the optical path are constants.
It is easy to obtain a reflection peak that is proportional to the temperature difference. In
other words, the reflection peak changes with the outside temperature. We can obtain the
ambient temperature by monitoring the frequency spectrum.

dAy AN dnesy

The change of the grating pitch caused by the thermal expansion effect [47] is:

dA

= 3

g — A ®)

The change in the effective refractive index of the fiber caused by the thermo-optic
effect is:

dneff
aT = neff-s (4:)
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So the temperature sensitivity [48] is:

Cdy 1

KT—*dT'/\fb—lx‘FS ()
dA 1

YTarA ©
dierr 1

&= dT 'neff (7)

In the formula, Kt is the temperature sensitivity, o is the thermal expansion coefficient
corresponding to the optical fiber material, and ¢ is the thermo-optic coefficient. Due to the
difference in the doping composition and doping concentration, the expansion coefficient
o and the thermo-optic coefficient ¢ of the various optical fibers are quite different, so the
temperature response sensitivity will also be different.

In terms of the pressure, among all the external factors that cause the FBG wavelength
shift, the most direct is the mechanical parameter. This is because no matter whether the
grating is stretched or squeezed, it will cause the change of the grating period A, and the
elasto-optical effect of the fiber itself makes the effective refractive index n,4 also change
with the change of the external stress state. Therefore, the use of FBG can be made into an
optical fiber stress—strain sensor, where the wavelength shift caused by the stress can be
uniformly described by Equation (8):

A)\b = 2neffAA + 2AneffA (8)

where AA is the deformation of the fiber grid under stress, and An, is the elastic-optical
effect of the fiber.
Differentiate both sides of the expression (1) of the center wavelength to obtain the
following formula:
dr, = ZnEffdA + 2Adneff 9)

Divide both ends of Equation (9) by the terms on both sides of Equation (1) to obtain
the following equation:
dA,  dnegr  dA
_ = + _
A b ne ff A

(10)

Since the change of the refractive index of the optical fiber material is less affected by
the stress, the influence of the refractive index, n, can be ignored. The above formula can be
simplified to:

dA, dA AL
A AL

L represents the total length of the optical fiber, and AL represents the longitudinal
expansion and contraction of the optical fiber.

In addition, since the grating is fixed on the elastic diaphragm, the change in the
length of the grating AL is mainly affected by the elastic diaphragm. Therefore, the pressure
response sensitivity of the two types of sensors is relatively similar from a theoretical point
of view.

(11)

3. Experiment and Discussions

When conducting temperature experiments, keep the pressure constant and only
change the temperature of the thermostat. The experimental temperature device is shown
in Figure 3. The optical fiber grating demodulator used in this experiment adopts the U.S.
MICRON OP ICS company SI 155; its minimum resolution is 0.02 nm, and the demodulator
integrates a coupler, ASE light source (1510 nm-1590 nm), and signal demodulation system.
The OMEGA thermometer has an accuracy of 0.5 °C. The length of the quartz fiber grating
and the gold-plated grating in the experiment are both 3 mm, the wavelengths of the center
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after the structure is fixed are 1537.16 nm and 1551.48 nm, and the reflectivity is 90% and
30%, respectively.

Demodulator

Figure 3. The actual photograph for the temperature measurement system.

Power(dB)

20 F

In order to study the temperature response, the FBG is placed in a thermostat. The
experiment carried out two temperature rising and falling experiments. The two tempera-
ture response curves can overlap well, and the four temperature response curves of the
rising and falling temperatures can also overlap well, indicating that the sensor probe has
good repeatability, as shown in Figures 4 and 5. During the heating process, the center
wavelength of the FBG decreases linearly with the increase in temperature. Similarly,

during the cooling process, the center wavelength of the fiber grating decreases linearly
with the decrease in temperature.

-5 T T

w
|

i 'W
N

i

|
))

Wavelength(nm)

(a) Heating

Power(dB)

20 F

1536 1538 1540
Wavelength(nm)

(b) Cooling

Figure 4. The change of the FBG center wavelength with the temperature.

Power(dB)
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Wavelength(nm)

(a) Heating

Power(dB)

&

20 F

Ll gk g DL LA

1550

1552

Wavelength(nm)

(b) Cooling

Figure 5. The change of the gold-plated FBG center wavelength with the temperature.

Figure 6 is a diagram of the pressure response of the FBG pressure sensor based on
the data collected in Table 1, which is the temperature experimental data measured at
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Wavelength(nm)

30 °C to 120 °C. The points in the figure are the measured data, and the fitting line is
obtained by the least squares linear fitting. From the results of the experimental data
analysis, the temperature response sensitivity of the sensor during the two heating pro-
cesses are 0.009 nm/°C and 0.027 nm/°C, respectively. Combining the resolution of the
spectrometer and the sensitivity of the gold-plated FBG, the sensor has a temperature
resolution of 0.8 °C. Based on the measured wavelength, the sensitivity coefficient, and
standard temperature value, the maximum temperature error is 2.5 °C, so the measure-
ment accuracy & can be obtained through the accuracy measurement equation as follows:
5 =100% — 2.5/(140 — 30) x 100%= 97.7%.

1952 |-

1548 -

1544

1540 -

u
L4
A
v

The first heating record of FBG
The first cooling record of FEG
The second heafing record of FBG
The second cooling record of FEG

y=1550.76+0.024x .
R*=0.999

Wavelength(nm)

= Standard deviation |

20 40 60 80 100 120 140

4 Thefist heating record of gold-plated FBG Temperature('T)

+| The first cooling record of gold-pleted FBG —
B The second heating recard of gold-plated FEG
@ Thesecond oooling record of gold-plated FBEG

= The first heating fitting curve of FBG
——The first cooling fitting curve of FBG 005
= The second heating fitting curve of FBG 1
——The second cosling fitting curve of FBG

———The first hesting fitting curve of gold- plated FBG =

= The first cooling fitling curve of gold-plated FBG y 1 53692+0008X -4 =
——The second heating fitting curve of gold-plsted FBG RQ_O 999 v
——The second cocling fitting curve of the gold-plated FBG =u.

oo0f = = * = = 8 = = o= o o

005

Wavelength(nm)

_ ] « Standard deviation |
a10
20

40 60 80 100 120 140
1 1 1 1 1 1

1536
20

Temperature{'C)

40 G0 80 100 120 140
Temperature(C)

Figure 6. Fitting curve of the temperature response sensitivity of the double grating sensor probe
and the error bars.

A pressure measurement system was designed, as shown in Figure 7. The probe was
placed at the impulse tube of the pressure gauge. As the external pressure changes, the
pressure diaphragm is deformed, and the grating is also deformed, which in turn causes the
pitch of the grating to change. Therefore, the FBG pressure sensing system can demodulate
the spectrum corresponding to the FBG at different pressure. The pressure source used
in the experiment was the CW-600T pressure calibrator, which was connected with the
sensor by the threaded interface (M20 x 1.5). The sensor, coupler, ASE light source, and
demodulation system were connected to each other by optical fibers. The pressure gauge
for monitoring the pressure source of the fiber grating pressure sensor was produced by the
Xi’an Instrument Factory, with a range of 0-60 MPa and an accuracy of 0.01-level standard
pressure gauge. The ASE light source emitted a beam of broadband light that entered the
sensor probe through the coupler, and the modulation system demodulated the center
wavelength of the FBG. The circular diaphragm was deformed due to the pressure, and the
center wavelength at this time was less than the unpressurized center wavelength.
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Table 1. Wavelength data collected during the temperature rise and fall.

Wavelength Wavelength Wavelength Wavelength
Corresponding to the = Corresponding to the  Corresponding to the  Corresponding to the
T/°C First Temperature Second Temperature First Temperature Second Temperature
Change of the Change of the Change of the Change of the

FBG/nm FBG/nm Gold-Plated FBG/nm  Gold-Plated FBG/nm
30 1537.16 1537.16 1551.48 1551.48
40 1537.24 1537.24 1551.72 1551.72
50 1537.32 1537.32 1551.96 1551.96
60 1537 .4 1537.4 1552.2 1552.2
70 1537.48 1537.46 1552.44 1552.44
80 1537.56 1537.56 1552.68 1552.68
T 90 1537.64 1537.64 1552.94 1552.90
100 1537.72 1537.72 1553.16 1553.16
110 1537.8 1537.8 1553.4 1553.4
120 1537.86 1537.88 1553.64 1553.64
130 1537.96 1537.96 1553.88 1553.88
140 1538.04 1538.04 1554.12 1554.12
140 1538.04 1538.04 1554.12 1554.12
130 1537.96 1537.96 1553.88 1553.88
120 1537.88 1537.88 1553.64 1553.64
110 1537.8 1537.8 1553.4 1553.4
100 1537.72 1537.72 1553.16 1553.18
90 1537.64 1537.64 1552.92 1552.92
+ 80 1537.54 1537.56 1552.68 1552.68
70 1537.48 1537.48 1552.44 1552.44
60 1537.4 1537.4 1552.2 1552.2
50 1537.32 1537.34 1551.96 1551.96
40 1537.24 1537.24 1551.72 1551.72
30 1537.16 1537.16 1551.48 1551.48

.

manometer

Figure 7. The actual photograph for the pressure measurement system.

The experiment carried out two compression processes and monitored the peaks at
1537.04 nm and 1551.60 nm, respectively. During the boost process, the center wavelengths
of the FBGs decreases linearly with the increase in the pressure, as shown in Figures 8 and 9.
Similarly, during the depressurization process, the center wavelengths of the FBGs increase
linearly as the pressure decreases.
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Figure 8. The change of the FBG center wavelength with pressure.

-- 40MPa
-- 35MPa
-- 30MPa

- 25MPa

% 151 ‘ | [1]] ‘ —— 15MPa g 5k _ Sompad
c —— 20MPa = - 15MPa
2 ‘ ‘ ‘ ‘ 25MPa = -~ 10MPa
& (1] 30MPa 2 -~ 5MPa
LI | —— 35MPa - 0.1MPa
SRR | — 4omPa 3
IRIRIE ‘
20 | ‘ | ‘ | ‘ ||| ‘ | 1 20} 1
1| r‘ ‘ \
ol M Mool T T Qi PRI
1550 1555 1560 1565 1550 1555 1560 1565
Wavelength(nm) Wavelength(nm)
(a) Rise (b) Reduction

Figure 9. The change of the gold-plated FBG center wavelength with pressure.

Table 2 is the experimental data collected under the different temperature environ-
ments, and Figure 10 is the FBG pressure response graph. The experimental results show
that the pressure response sensitivity of the FBG and gold-plated FBG is similar, which
is 0.3 nm/MPa at 0.1 MPa to 40 MPa. The sensor has good linearity, and the response
curves of the two pressure rise-and-fall processes can be well overlapped. Combining
the resolution of the spectrometer and the sensors’ sensitivity, the gold-plated FBG has a
temperature resolution of 0.8 °C. Based on the measured wavelength, sensitivity coefficient,
and standard pressure value, the maximum temperature error is 0.4 MPa, so the measure-
ment accuracy can be obtained through the accuracy measurement equation as follows:
5 =100% — 0.4/(40 — 0.1) x 100% = 99.0%.

The response time of the temperature and pressure is a key parameter of the sensor,
especially when the sensor is used in some extreme environments. Its influence mainly
includes the following four parameters: the elastic deformation speed of the diaphragm
structure, the change speed of the pressure to be measured, the change of the refractive
index of the optical fiber material and the grid with the temperature and pressure, and
the response time of the detector. A fast response experiment was carried out, and the
response time of the FBG was measured by the time constant, which is defined as the time
taken when the temperature or pressure rises to 63.2% of the steady-state value, that is, the
collected signal rises from the initial value to 63.2%. The results show that the response
times of the temperature and pressure are 2.7 ms/°C and 2 ms/MPa, respectively.
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Table 2. Wavelength data collected during the pressure rise and fall.

W, Wavelength Wavelength Wavelength
avelength C dingtothe C dingtothe C ding to th
Corresponding to the orresponding to the -orresponding to the orresponding to the
P/MPa First Pressure Change Second Pressure First Pressure Change Second Pressure
of the FBG/nm Change of the of the Gold-Plated Change of the
FBG/nm FBG/nm Gold-Plated FBG/nm
0.1 1537.24 1537.04 1551.6 1551.5
5 1535.66 1535.66 1549.96 1550.08
10 1534.08 1534.18 1548.54 1548.48
15 1532.68 1532.78 1546.98 1546.92
T 20 1531.18 1531.18 1545.48 1545.49
25 1529.73 1529.66 1544 1543.98
30 1528.14 1528.14 1542.58 1542.54
35 1526.66 1526.68 1541 1540.99
40 1525.16 1525.18 1539.54 1539.38
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Figure 10. Fitting curve of the pressure response sensitivity of the double grating sensor probe and
the error bars.

As shown in Figure 11, connect the sensor probe to the pressure gauge so that the
sensor probe can sense the pressure signal, and at the same time place the sensor in the
thermostat, so that the sensor can sense temperature and pressure information at the
same time. Based on the dual-parameter sensor probe, the temperature and pressure are
measured at the same time, and the spectral data at different moments are obtained, as
shown in Figure 12.
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Figure 11. Dual-parameter sensing experiment platform.
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Figure 12. Measure the spectra with temperature and pressure.

When the temperature and pressure act on the sensor, the sensitivity matrix equation
can be used to achieve the dual-parameter differential measurement, such as Equation
(12), where ky is the temperature and pressure response sensitivity of the two sensors, A°
is the initial wavelength, T is the temperature to be measured in the experiment, and the
subscripts 1 and 2 are used to distinguish two different sensor structures. The wavelength
A can be expressed as follows:

MT O [A ki k[T

w]=0 )l 2 lle]
A — A0 ki k T

pe NN

By multiplying the reciprocal matrix and combining the formula, the temperature and
pressure parameters can be obtained as follows:

RN RN T
ko kp Ay —AS kro kp ko kp p
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The initial wavelengths A{ and A of the detection wavelengths in the experiment are
1537.04 nm and 1551.60 nm, respectively. The temperature response sensitivities, kry, of the
two sensing structures are 0.008 nm/°C and 0.024 nm/°C, respectively, and the pressure
response sensitivities kp, are both 0.3 nm/MPa. Substituting each parameter into formula
(15) can obtain formula (16), which is used to measure the environmental parameters.
Specifically, with the help of the matrix method, the temperature and pressure values at
different time points can be detected at the same time, as shown in Figure 13.
[ T } _ [ 0.008 0.3 }l{ Ay —1537.04 } (16)

p 0.024 0.3 Ay —1551.60
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Figure 13. The temperature and pressure conditions to be measured based on the spectrum analysis
of the sensor probe.

4. Conclusions

This paper proposes and manufactures an all-optical fiber sensor system based on the
parallel structure of gold-plated FBG and quartz FBG, which can simultaneously measure
temperature and pressure. As the temperature and pressure sensitivity of the two sensor
structures are different, we can measure the temperature and pressure by monitoring the
response of the wavelength in real-time based on the sensitivity matrix equation. The
experimental results show that the pressure response sensitivity of the quartz FBG and
gold-plated FBG are both 0.3 nm/MPa. The temperature sensitivity of the gold-plated
FBG is 0.024 nm/°C with a resolution of 0.8 °C, and the sensitivity of the quartz FBG is
0.008 nm/°C with a resolution of 0.067 MPa, which can distinguish the temperature and
pressure changes well. The sensor probe has the advantages of a simple structure, easy
production, small size, high sensitivity, and dual-parameter measurement, which can be
applied to monitor the running status of the EHA.
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