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Abstract: A compact wideband self-decoupled multiple-input and multiple-output (MIMO) an-
tenna is presented in this paper. The proposed antenna contains a pair of horizontal back-to-back
elliptical tapered slots and a vertical elliptical tapered slot, which are etched on the circular metal
patch. Based on characteristic mode analysis (CMA) and a suitable feeding structure, two desired
characteristic modes (CMs) are excited. Therefore, across the entire matched bandwidth, a high
level of isolation is realized without external decoupling structures. For validation, a prototype is
fabricated and measured, and the measured results demonstrate that an impedance bandwidth of
3000 MHz with isolation higher than 20dB is achieved. Due to its self-decoupled property, high
isolation, wide bandwidth, and compact size, the proposed antenna has excellent potential for 5G
antenna array applications.

Keywords: self-decoupled antenna; multiple input multiple output (MIMO) antenna; the fifth
generation (5G); characteristic mode analysis (CMA)

1. Introduction

The fifth generation (5G) technology can provide a high throughput rate and a low
latency in modern wireless communication systems. As one key technology of 5G com-
munications, MIMO technology can significantly improve the channel capacity without
increasing the spectrum resources and antenna transmission power. However, mutual
coupling between MIMO antenna elements will severely degrade the system performance.
In order to reduce the coupling between antenna elements, researchers have proposed a
variety of technical schemes [1–19], which can be divided into the following two categories.
The first category is of schemes that cancel out the original coupling between antenna ele-
ments by introducing a new coupling path. Typical structures, including parasitic elements
and neutralization lines [1–5], have been widely used. The second decoupling category
consists of schemes that suppress the propagation of surface waves by introducing some
band-stop structures, such as artificial structures and resonators [6–12]. However, the two
decoupling techniques mentioned often require additional decoupling structures. The
extra space required for the decoupling structures will increase the system complexity,
making it less appealing.

Focusing on the shortcomings of the technical schemes mentioned above, some self-
decoupled techniques have been investigated in [13–21]. A self-decoupled antenna array
was presented in [13], which utilized the cancellation of two opposite couplings to realize
high isolation. Using the coupling cancellation of anti-phase currents, high isolation was
achieved between two symmetrically placed differential mode (DM) and common mode
(CM) antennas in [14]. In [15], a tightly arranged antenna-pair with low mutual coupling
was realized using an orthogonal-mode method. In [20], it was found that by properly
placing the antenna element in the weak-field area of the adjacent antenna element, low
mutual coupling can be achieved. However, most of these works focused on the research
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of mobile phone antenna and the isolation bandwidth is narrow. Furthermore, the CMA
can provide a clear physical insight for the operating principle of antenna, but it is not
effectively used in the antenna decoupling methods mentioned above.

In this paper, we present a compact wideband self-decoupled MIMO antenna for
5G communications. The CMA is performed to offer a deep physical insight of the self-
decoupling mechanism. Based on the orthogonal characteristics, a circular patch etched
with a pair of horizontal elliptical tapered slots and a vertical tapered slot is introduced.
The bent microstrip feeding line for the pair of horizontal elliptical tapered slots excites the
mode, which is orthogonal to that of the vertically etched elliptical tapered slot. Thus, high
isolation can be achieved in a wide frequency band without any additional decoupling
structures. This article is organized as follows: Section 2 describes the design and analysis
of the proposed self-decoupled antenna. In Section 3, the simulated and measured results
are analyzed. Finally, Section 4 draws our conclusions.

2. Design and Analysis of the Self-Decoupled Antenna
2.1. Characteristic Mode Analysis of the Self-Decoupled Antenna

According to the theory of characteristic mode (TCM) [22], the current flowing on an
arbitrary perfect electric conductor (PEC) can be decomposed into sets of CMs, and the
CMs can be defined by:

X(Jn) = λnR(Jn) (1)

where X and R represent the imaginary and real part of the generalized impedance matrix.
λn and Jn are the eigenvalue and characteristic current of mode n, respectively [23]. It
should be noted that λn is an important parameter because it reveals resonance information
and contribution to the radiation of corresponding CMs. Additionally, mode significance
(MS), as an alternative parameter of λn, is preferred. When a CM resonates, λn is equal to
0 and the MS is equal to 1. MS can be expressed as follows:

MSn =

∣∣∣∣ 1
1 + jλn

∣∣∣∣ (2)

In order to investigate the self-decoupled mechanism of the proposed two port MIMO
antenna shown in Figure 1, a CMA is performed using electromagnetic simulation software
with an integral equation solver. Due to the limitation of the solver, the feed port and
dielectric substrate are removed in the CMA, and the material and the thickness of the
antenna structure are set to be PEC and 0 mm, respectively.

The predicted MSs of the first six CMs of the self-decoupled antenna are given in
Figure 2. From the traces of MSs, it can be seen that CMs (mode 1, mode 2, mode 4, and
mode 5) are much easier to excited. Moreover, the MSs of mode 4 and 5 are close to 1 in a
wider frequency range than other modes, which indicates that the two modes have a wider
potential bandwidth.

Figure 3 shows the current distributions of the most relevant CMs (mode 1, 2, 4, and
5) at their corresponding potential resonant frequencies. As shown, the current of mode
2 concentrates on the edges of the vertically etched elliptical tapered slot. The current of
mode 4 mainly distributes on the edges of the pair of back-to-back elliptical tapered slots,
the amplitude of the current is approximately equal, and the phase is opposite. The current
of mode 1 and 5 distributing on the edges of the pair of horizontal back-to-back elliptical
tapered slots have the same phases and approximately equal amplitudes. Still, the current
direction reverses on the edges of the two back-to-back tapered slots.

The full wave simulated current distributions on the proposed self-decoupled antenna
for different excitation signal is presented in Figure 4. As shown in Figure 4, the current
distributions fed by port A and B, respectively, are similar to those of mode 2 and mode 4
shown in Figure 3, which also verifies that mode 2 and mode 4 were excited successively.
Based on the orthogonality between the vertical tapered slot mode and the horizontal
tapered slot mode, a satisfying level of isolation is obtained.
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Figure 3. Current distributions of the most relevant CMs: (a) mode 1 at 2 GHz, (b) mode 2 at 2.3 GHz,
(c) mode 4 at 3.17 GHz, and (d) mode 5 at 6 GHz.

2.2. Proposed Antenna Configuration

Figure 1 illustrates the configuration of the proposed self-decoupled antenna. A
0.508 mm thick Rogers RO4350B with εr = 3.66 and tanσ = 0.0037 is chosen as the substrate
board. An elliptical tapered slot and a pair of back-to-back elliptical tapered slots are etched
orthogonally in the circular patch. It is worth mentioning that the elliptical tapered slot has
the same configuration as in [24]; the proposed self-decoupled antenna, by contrast, has the
properties of being light weight, low profile, and has compatibility with microwave circuits.
The feeding network consists of an L-shape slot and a corresponding stepped microstrip line
with distinct widths, which is used for realizing miniaturization and improving impedance
matching. The dimension parameters are given in Table 1.
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Table 1. Dimensions of the proposed antenna.

Parameter Value
(mm) Parameter Value

(mm) Parameter Value
(mm) Parameter Value

(mm)

L1 70 W1 65 R1 32.5 RR1 20.3
RR2 10 S1 0.55 S2 1 S3 0.75
S4 1 LL1 11 LL2 14 M1 8
M2 1 M3 6 M4 1.5 T1 19.3
T2 10.5 T3 9.9 T4 0.3 T5 0.5
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3. Results

To confirm the performance of the proposed self-decoupled antenna, a practical
antenna model is simulated, fabricated and measured. The simulated and measured results
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of the S-parameter results are compared as illustrated in Figure 5, in which a photograph
of the practical antenna model is displayed. From the results, we can conclude that the
simulated and measured reflection coefficients excited separately by different ports were
both lower than −10 dB across 3 to 6 GHz, and isolation levels higher than 20 dB between
the two ports were also obtained. The 3-D radiation patterns of the proposed antenna at
4.5 GHz excited separately by distinct ports are displayed in Figure 6, as it can be seen that
the maximum gains of the proposed antenna when excited separately by distinct ports
point in different directions. Figure 7 depicts the measured realized peak gain when port A
and port B are excited, respectively. As observed from Figure 7, over the working band,
the measured realized peak gains fed through port A varies between 1.93 and 3.11 dBi,
respectively, while that fed through port B varies from 2.82 to 4.81 dBi, respectively.
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In order to evaluate the diversity performance of the proposed self-decoupled antenna,
the envelope correlation coefficients (ECCs) are calculated using the method in [25], as
shown in Equation (3):

ρ12 =

∣∣∣∣s4π

[→
E1(θ, ϕ) ·

→
E2(θ, ϕ)

]
dΩ

∣∣∣∣2
s

4π

∣∣∣∣→E1(θ, ϕ)

∣∣∣∣2dΩ
s

4π

∣∣∣∣→E2(θ, ϕ)

∣∣∣∣2dΩ

(3)

The calculated and measured ECCs of the proposed antenna using Equation (3) are
shown in Figure 8. Slight discrepancies between calculated and measured results can be
observed, which may be a result of fabrication and measurement tolerances. From Figure 8,
we can see that the measured ECC values are below 0.03 across 3–6 GHz, which indicates a
satisfactory diversity performance is obtained.

In order to highlight the advantages of the proposed design scheme, Table 2 provides
the performance comparisons between our decoupling scheme and several recently re-
ported designs. The antennas in [13,14,20] only cover a narrow 20 dB isolation bandwidths.
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Although the property of wide decoupling is realized in the antenna in [19], it suffers from
relatively poor port isolation. In comparison, the proposed self-decoupled design has the
advantages of simple structure, compact size, and wide 20-dB isolation bandwidth, making
it appealing for modern 5G applications.
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Table 2. Comparisons between the proposed dual-port MIMO antenna and previous works.

Ref. Isolation Level 20-dB
Isolation BW

Structure
Complexity Volume (λ0

3)
Decoupling

Schemes

[13] >20 dB 14% Moderate 1.17 × 0.7 × 0.019 Coupling cancellation
[14] >20 dB 5.5% Simple 0.33 × 0.058 × 0.019 Modes cancellation
[19] 10.8 dB 0% Moderate 0.39 × 0.097 × 0.025 Connecting line
[20] >20 dB <5% Simple 1.2 × 0.7 × 0.037 Weak-field

Our work >20 dB 67% Simple 0.975 × 1.065 × 0.008 Different CMs

4. Conclusions

In this article, a dual-port compact wideband MIMO antenna with a self-decoupled
property is presented. CMA is used to explain the decoupling mechanism of the design
scheme, and high isolation is obtained due to the orthogonality of the two excited CMs. The
isolation performance is better than 20 dB across the desired band of 3–6 GHz. In addition,
the ECC of the proposed MIMO antenna is below 0.03. The proposed self-decoupled
antenna combines the merits of compact size, broad bandwidth, and high isolation, which
make it a prospective candidate for applications of 5G communication systems.
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