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Abstract: Thermally activated delayed fluorescence (TADF) materials, which can harvest all excitons
and emit light without the use of noble metals, are an appealing class of functional materials emerging
as next-generation organic electroluminescent materials. Triplet excitons can be upconverted to
the singlet state with the aid of ambient thermal energy under the reverse inter-system crossing
owing to the small singlet–triplet splitting energy (∆EST). This results from a specific molecular
design consisting of minimal overlap between the highest occupied molecular orbital and the lowest
unoccupied molecular orbital, due to the spatial separation of the electron-donating and electron-
releasing part. When a well-designed device structure is applied, high-performance blue-emitting
TADF organic light-emitting diodes can be realized with an appropriate molecular design. Unlike the
previous literature that has reviewed general blue-emitting TADF materials, in this paper, we focus on
materials other than pure organic molecules with twist D-π-A structures, including multi-resonance
TADF, through-space charge transfer TADF, and metal-TADF materials. Cutting-edge molecules with
extremely small and even negative ∆EST values are also introduced as candidates for next-generation
TADF materials. In addition, OLED structures used to exploit the merits of the abovementioned
TADF emitters are also described in this review.

Keywords: TADF; MR-TADF; TSCT-TADF; metal-TADF; blue OLEDs

1. Introduction

Organic light-emitting diodes (OLEDs) and the use of organic materials in light-
emitting technology have caught the attention of researchers since Tang and VanSlyke’s
pioneering work in 1987 [1] owing to their extraordinary merits, such as high efficiency,
light weight, flexibility, and fast response [2–6]. A typical bottom-emitting OLED has a
sandwich device structure, in which organic functional layer(s) are sandwiched between
a transparent anode and a metal cathode. For high-efficiency OLEDs, the sandwiched
functional layers usually consist of a hole-transporting layer (HTL), an emissive layer (EML),
and an electron-transporting layer (ETL). In some cases, especially in phosphorescent and
thermally activated delayed fluorescent (TADF) OLEDs, one or more auxiliary layers, such
as a hole-blocking layer (HBL), a hole-injection layer (HIL), an electron-blocking layer
(EBL), and an electron-injection layer (EIL), are added in the stack to further improve device
performance. HBLs and HILs are used to confine carriers and excitons in the EML to avoid
leaking current and the unwanted recombination of excitons outside the EML, and HIL
and EIL are used to facilitate the injection of holes from the anode and electrons from the
cathode to lower the driving voltage of the OLED [7]. In some cases, inorganic materials
can be employed as HILs and/or EILs, such as MoO3, V2O5, LiF, Cs2CO3, etc. [8]. Such
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a sophisticated device structure is designed to fully exploit the potential of the emitting
material, whose photoluminescent quantum yield (PLQY) and decay lifetime determine
the performance of a well-designed OLED [9–14].

Light-emitting materials used in OLEDs have advanced rapidly in the last three
decades, from fluorescent, phosphorescent, and triplet–triplet annihilation (TTA) materi-
als to TADF materials [15]. Organic electroluminescence (EL) results from the radiative
deactivation of excitons from the excited state to the ground state, which can occur with
different spin multiplicities such as singlet or triplet excited states, resulting in fluorescence
or phosphorescence. When OLEDs work under electrical excitation, singlet and triplet
excitons are formed in the EML at a ratio of 1:3 [16], according to spin statistics. The
quantum efficiency (QE) of an OLED, which refers to the numerical ratio of photons to
injected electron-hole pairs [17], is used to assess its electricity-photon conversion efficiency,
which can be further subdivided into internal QE (IQE) and external QE (EQE). IQE, the
numerical ratio of total photons generated within the EML to the charge pairs injected,
is directly determined by the emitting material [18]. In contrast, EQE is the numerical
ratio of total photons emitting out of the device to the charge pairs injected. The chemical
structure of the emitter and the associated functional materials can have significant impacts
on the device efficiency, since photons are created within and emitted from the EML. IQE
of fluorescent OLEDs is limited to 25% in traditional fluorescent emitters, which can only
exploit singlet excitons for light emission. On the other hand, phosphorescent emitters that
contain noble metals such as platinum, iridium, or osmium can harvest both singlet and
triplet excitons through strong spin–orbit coupling, leading to high IQEs of up to 100% in
phosphorescent OLEDs [19]. Nonetheless, further application of phosphorescent emitters is
limited by the low abundance and high price of noble metals [20]. TTA fluorescent emitters
can only achieve a maximum IQE of 62.5% by converting two triplet excitons into one
singlet exciton, and their emission is mostly blue [21].

Alternatively, Yersin et al. [22] and Adachi et al. [23] developed inexpensive metal
complexes and purely organic molecules, respectively, that are capable of harvesting both
singlet and triplet excitons for emission, known as TADF. By reducing the overlap between
the molecule’s highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), small singlet–triplet splitting (∆EST) can be achieved for efficient
TADF. After singlet and triplet excitons are formed in the EML, the accumulated triplet
excitons in T1 are transferred to S1 via a reverse inter-system crossing (RISC) process
enhanced by thermal activation in the TADF mechanism [24]. By activating an effective
up-conversion process of RISC from an excited triplet state to an excited singlet state,
the TADF mechanism can also potentially achieve an IQE of 100% [25–27]. Compounds
with suitable donor–acceptor building blocks are usually designed as TADF emitters, in
which intramolecular charge transfer (ICT) with a small ∆EST is achieved by donor and
acceptor moieties in the same molecule, allowing an effective RISC process to collect singlet
emissions by converting triplets to singlets. In addition, twisted molecules, such as phenyl
linkers between donors and acceptors, and a clear separation between the HOMO and
LUMO distribution benefit TADF [7,9,28,29].

Along with judicious molecular designs, the performance of TADF-OLEDs has made
significant progress. Remarkably, researchers have committed their attention to pure blue
TADF emitters, which promise to be the final hurdle blocking the achievement of OLEDs
for low-cost, highly efficient, and stable display illumination devices [30]. As one of the
three primary colors, emitting blue is necessary for both display and lighting applications.
However, neither fluorescent nor phosphorescent emitters are suitable candidates for blue
OLEDs due to the low efficiency of the former and unsatisfactory stability of the latter.
In this regards, TADF emitters could be a possible solution for low-cost, highly efficient,
and stable blue OLEDs due to their potential high efficiency and stability. Early reviews
have introduced the design concepts, the relationship between molecular structure and
photophysical properties, and PL and EL performances of blue TADF materials, most
of which are pure organic molecules with twist D-π-A structures [9]. However, new
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TADF emitters designed with novel concepts reported very recently have been sparsely
covered in reviews. In this contribution, we focus on blue TADF materials possessing
molecular structures other than pure organic with twist D-π-A structures. Recent advances
of multiple MR-TADF materials are reviewed in Section 2, especially blue-emitting ones,
that potentially address the issues of efficiency roll-off, quenching at high concentrations,
and limited operational lifetimes that exist in early MR-TADF emitters. Newly emerged
blue TADF emitters from through-space charge transfer (TSCT) processes are introduced in
Section 3. A recent development in high-performance blue-emitting metal-TADF materials,
especially those based on gold and copper, is briefly presented in Section 4. The outlook
and perspective of next-generation TADF emitters with extremely small and even negative
∆EST are predicted in Section 5. In addition, OLED structures that are used to fully exploit
the merits of the above-mentioned TADF emitters are also emphasized in this review.

2. Blue MR-TADF Emitters

Unlike the continuous enhancement in their efficiency, the color purity of blue TADF
emitters has barely been improved due to their broad emission spectrum caused by a large
Stokes shift, which is a result of the twisted conformation of the D-A molecules and the
structural relaxation in the excited states. Alternatively, TADF can also be achieved in
molecules with an MR effect, such as P- and B-doped rigid polycyclic aromatic hydro-
carbons (PAHs) [31–33], from which narrowband emission with high color purity can be
achieved due to the suppressed structural relaxation and lower vibronic coupling between
the S1-S0 transition and the stretching/scissoring vibrations. Since the first MR-TADF
material was reported by Hatakeyama and co-workers in 2016 [31], significant progress
has been made in terms of efficiency and color purity [34]. Typically, OLEDs with the
blue MR-TADF emitter ν-DABNA have demonstrated an emission maximum at 469 nm
with an FWHM of 18 nm and an EQEmax of 34.4% [35]. In addition, owing to their small
Stokes shift, MR-TADF materials have been widely used as terminal emitters in hyper-
fluorescent OLEDs to improve the color purity of devices with phosphorescent or TADF
emitters only [36–40]. Nonetheless, pronounced efficiency roll-off, severe quenching at high
concentrations, and limited device stabilities remain formidable challenges to developing
efficient blue MR-TADF emitters. In this section, we focus on the reports that are likely to
address these issues.

The efficiency roll-off of OLEDs based on MR-TADF emitters is usually severe when
compared to devices with conventional TADF emitters, due to the longer decay lifetime of
the former. The long decay lifetime of MR-TADF emitters is mainly caused by their moder-
ate ∆EST and RISC rate constant, which leads to an increased triplet-involved annihilation
process [41–44]. Cao, Yang and colleagues presented a series of narrowband deep blue
MR-TADF emitters (BN1-BN3, Figure 1) possessing a gradually enlarged ring-fused struc-
ture, which could simultaneously reduce ∆EST, enhance f osc, and retain narrow linewidth
of MR-TADF emitters [45,46]. By measuring the threshold energy of low-temperature
fluorescence and phosphorescence spectra, the ∆ESTs of BN1, BN2, and BN3 were deduced
to be 0.20, 0.16, and 0.15 eV, along with gradually accelerated RISC rates of 1.3, 2.6, and
25.5 × 104 s−1 at room temperature. Together with the shorter lifetime (17.8 µs) of the
delayed fluorescent and a higher PLQY of 0.98 in DBFPO thin film, BN3 displayed im-
proved EL performance in hyper-fluorescent OLEDs with a structure of ITO/HAT-CN
(5 nm)/TAPC (30 nm)/TCTA(15 nm)/mCBP (10 nm)/DBFPO: 25 wt% 3Cz2BN: 1 wt% BN1–
BN3 (25 nm)/DBFPO (15 nm)/ANT-BIZ (30 nm)/Liq/Al. In these devices, BN1–BN3 were
used as terminal emitters, while 3Cz2BN was used as a TADF sensitizer. The high EQEmax
of 37.6% and EQE1000 of 26.2%, as well as the deep blue color with CIE coordinates of
(0.14, 0.08) of the device with BN1, indicated that chromophore π-extension could decrease
the decay lifetime of MR-TADF emitters without weakening its PLQY and broadening its
FWHM, and may eventually address the efficiency roll-off issue.
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inset, (c) J–V–L characteristics, and (d) EQE–luminance curves of MR-TADF OLEDs. Reproduced 
with permission from Xialei Lv, Jingsheng Miao, Meihui Liu et al., “Extending the π-Skeleton of 
Multi-Resonance TADF Materials towards High-Efficiency Narrowband Deep-Blue Emission”; 
published by John Wiley and Sons, 2022. [45]. 
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tured MR-TADF emitter, tCBNDADPO, in which a B-N framework (tCBN) was substi-
tuted with an ambipolar A-D-A host segment (DADPO). The D-A type PO structures of 
DADPO significantly improved the TADF properties of tCBNDADPO, especially the ac-
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Figure 1. Molecular structures of BN1–BN3. (a) Device architecture for MR-TADF OLEDs with
energy level alignment of the relevant material, (b) EL spectra, with CIE coordinates shown in the
inset, (c) J–V–L characteristics, and (d) EQE–luminance curves of MR-TADF OLEDs. Reproduced
with permission from Xialei Lv, Jingsheng Miao, Meihui Liu et al., “Extending the π-Skeleton of Multi-
Resonance TADF Materials towards High-Efficiency Narrowband Deep-Blue Emission”; published
by John Wiley and Sons, 2022. [45].

For most MR-TADF molecules, the functional groups are mostly simple, rigid, and
finitely extended to avoid spectral broadening. Such highly planar configurations may lead
to intermolecular interaction-induced quenching, such as triplet–triplet annihilation (TTA)
and triplet-polaron quenching (TPQ), at high dopant concentrations. Thus, extremely low
dopant concentrations (usually less than 5 wt%) of MR-TADF emitters are used in OLEDs,
which may lead to a relatively low maximum luminance and substantial efficiency roll-off
at high luminance. To address this issue, host-featured segments have been introduced
to form self-host MR-TADF emitters. In addition to averting intermolecular interactions,
transporting abilities can also be readily tuned in such self-host emitters [44,47,48]. As
shown in Figure 2, Xu and co-workers reported an ambipolar self-host featured MR-TADF
emitter, tCBNDADPO, in which a B-N framework (tCBN) was substituted with an ambipo-
lar A-D-A host segment (DADPO). The D-A type PO structures of DADPO significantly
improved the TADF properties of tCBNDADPO, especially the accelerated singlet radiative
rate constant of 2.11 × 108 s−1, and exponentially reduced nonradiative rate constants,
leading to a high PLQY of 99% for thin films with a high doping concentration of 30%.
At the same time, narrowband blue emission with an FWHM of ≈ 28 nm was preserved
in such film conditions. Taking advantage of the self-host feature, high EL performance
of tCBNDADPO can be achieved in the OLED with a rather simple device structure of
ITO/MoO3 (6 nm)/mCP (50 nm)/tCBNDADPO: DBFDPO (25 nm)/DBFDPO (40 nm)/LiF
(1 nm)/Al (100 nm). A high EQEmax of 30.8% with coordinates of (0.14, 0.22) was achieved
at a high concentration of 30%. Despite the efficiency roll-off (34.7% at a luminance of
300 cd m−2) still being unsatisfactory, the high concentration tolerance and the simpli-
fied device structure utilized may pave a path to the practical application of self-host
MR-TADF emitters.
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Figure 2. Host–guest integration strategy for constructing tCBNDADPO to combine high color
purity and efficiency. (a) Energy level diagram of devices and chemical structures of host and carrier
transporting materials; (b) CIE coordinates of PL and EL emissions from DBFDPO:30% tCBNDADPO
and device photo at 5 V; (c) concentration dependence of EL spectra and comparison to PL spectrum
of 30% doped film; (d) variation of current density (J, hollow symbols)–voltage–luminance (solid
symbols) characteristics at different x%; (e) dependence of efficiency versus luminance curves on
x%. Reproduced with permission from Jinkun Bian, Su Chen, Lili Qiu et al., “Ambipolar Self-Host
Functionalization Accelerates Blue Multi-Resonance Thermally Activated Delayed Fluorescence with
Internal Quantum Efficiency of 100%”; published by John Wiley and Sons, 2022 [44].

In addition to the serious efficiency roll-off, the relatively larger ∆EST and lower RISC
process of MR-TADF emitters also make it difficult to control the triplet exciton density in the
device, leading to a short device lifetime. To address this issue, Park and colleagues demon-
strated that by the introduction of an additional blocking group to manage intermolecular in-
teraction and the concentration quenching effect, a high efficiency and stable MR-TADF OLED
is possible [49]. With an additional di-tert-butylphenyl (dtB) substituent on 2,12-di-tert-butyl-
5,9-bis(4-(tert-butyl)phenyl)-5,9-dihydro-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (t-
DABNA) [50], 2,12-di-tert-butyl-5,9-bis(4-(tert-butyl)phenyl)-7-(3,5-di-tert-butylphenyl)-5,9-
dihydro-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (t-DABNA-dtB) was synthesized, as
shown in Figure 3. With the increase in doping concentration in mCBP films, the PLQY of
t-DABNA gradually decreased from 87% at 3 wt% to 54% at 10 wt%. At the same doping
concentrations, the PLQYs of t-DABNA-dtB were 97 and 78%, respectively. The high PLQY
of t-DABNA-dtB at high concentrations is attributable to its larger HOMO–LUMO overlap
and suppressed concentration quenching, which is a result of the bulky substituent. By using
t-DABNA or t-DABNA-dtB as the emitting dopant in OLEDs with an architecture of ITO
/BCFN:HATCN (40 nm, 30 wt%)/BCFN (10 nm)/mCBP (10 nm)/mCBP:mCBP-CN:Emitter
(30 nm, 3 wt%)/DBFTRz (5 nm)/ZADN (20 nm)/LiF (1.5 nm)/Al (200 nm), high EQEmax of
over 25% were achieved. To further improve the device performance, especially the opera-
tional lifetime and efficiency roll-off, a sophisticated tandem device structure was adopted.
High EQEmax of 30.1%, which slightly decreased to 28.8% at high luminance of 1000 cd m−2,
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was achieved in the tandem device with t-DABNA-dtB, together with a pure blue emission
color with CIE coordinates of (0.116, 0.116) at 10,000 cd m−2. As shown in Figure 4, a long
device lifetime, LT95, of 502 h at an initial luminance of 1000 cd m−2 was achieved in the
tandem device. This lifetime is one of the best results for blue OLED lifetimes as reported in
the literature, showing a bright future for blue MR-TADF in practical applications.
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3. Blue TSCT-TADF Emitters

In addition to emitters in a twisted D-π-A structure via through-bond charge transfer
(TBCT), TADF can also be the result of TSCT processes that usually take place between a
pair of exciplex-forming D and A molecules, which is known as inter-TSCT. On the other
hand, TSCT-TADF emitters (intra-TSCT) are molecules where the D and A segments are
linked in a V or U shape, in which TSCT between D and A segments is possible. When
compared with TBCT emitters, TSCT emitters have reduced electronic communication and
coupling between D and A moieties, which benefits the elevation of the singlet and triplet
levels and thus blue emission. At the same time, high PLQYs could easily be achieved in the
TSCT molecules with intrinsic intramolecular noncovalent interactions [51,52]. The distance
and orientation between D and A segments, determined by the linker, is a crucial factor in
the excited state dynamics of a TSCT-TADF emitter [53]. Of the various types of alignment
of D and A segments in TSCT molecules, face-to-face alignment with short distance is the
most favorable for efficient TADF emission. However, only a few blue examples have been
reported among high-performance OLEDs with TSCT-TADF emitters [54–60].

As shown in Figure 5, Wang and co-workers demonstrated a TADF polymer in which
the TSCT effect takes place between pendant D and A units on a nonconjugated polyethy-
lene backbone [59]. Unlike conventional conjugated D-A polymers, there is no direct
conjugation between D and A units in the TSCT-TADF polymer because of its nonconju-
gated architecture, which is favorable for blue emission. Two polymers with the same A
unit of 2,4,6-triphenyl-1,3,5-triazine (TRZ) but different D units of 9,9-dimethyl-10-phenyl-
acridan (Ac) or 9,9-bis(1,3-ditert-butylphenyl)-10-phenyl-acridan (TBAc) were synthesized
and compared. As a result of its steric 1,3-ditert-butylphenyl groups, the acridan unit is
separated from the triazine unit in the TBAc-based polymer, while acridan approaches
triazine in the Ac-based polymer, which determines the different D-A distance in different
polymers. As expected, since TSCT is highly sensitive to the D-A distance, the distinct
TSCT effect and TADF feature were only displayed in the Ac-based polymer, where a
small ∆EST of 0.019 eV and high PLQY up to 60% in the film state were achieved. On the
other hand, no TSCT effect and only fluorescence emission were found in the TBAc-based
counterpart. When the polymer with 95 mol % Ac and 5 mol % TRZ (P-Ac95-TRZ05) was
used as the EML in the device with a structure of ITO/PEDOT: PSS (40 nm)/P-Ac95-TRZ05
(40 nm)/TSPO1 (8 nm)/TmPyPB(42 nm)/LiF (1 nm)/Al (100 nm), blue emission with
CIE coordinates of (0.176, 0.269) and an EQEmax of 12.1% were achieved, which is the first
example of blue TSCT-TADF polymer for solution-processed OLEDs.

Zhang, Duan and colleagues adopted a xanthene bridge to construct space-confined
face-to-face D-A alignment and minimize the D-A distance to 2.7–2.8 Å to strengthen
the electronic interaction between weak D and A, which is required for efficient blue
emission [39]. The targeted TSCT-TADF emitters are shown in Figure 6, exhibiting peaks
around 460 nm, PLQYs > 90%, and a krs of nearly 107 s−1. The EL of such blue emitters
was investigated in OLEDs with a structure of ITO/HAT-CN (5 nm)/TAPC (30 nm)/TCTA
(10 nm)/mCP (10 nm)/PPF: 30 wt% emitters (24 nm)/PPF (10 nm)/BPhen (30 nm)/LiF
(0.5 nm)/Al (150 nm). Blue emission with an EQEmax of 27.8% and CIE coordinate of
(0.17, 0.29) were achieved when dCz-Xo-TRZ was used as the emitter. dCz-Xo-TRZ was
further used as a sensitizer in hyper-fluorescent OLEDs with the well-known MR-TADF
emitter, v-DABNA, as the terminal emitter. A high EQEmax of 34.7% with a CIEy coordinate
of 0.15 and FWHM of 19 nm was realized in the resulting device.
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Despite the high efficiency achieved in blue TSCT-TADF emitters [39,55,57], their
color purity is still far from meeting the ultrapure-blue requirements of CIE (0.14, 0.08)
defined by the NTSC, as well as CIE (0.131, 0.046) for the standard of Rec. 2020 [60], due
to the large Stokes shift and broad emission with large FWHM in conventional TADF
emitters. Alternatively, as mentioned in Section 2, the FWHM can be effectively narrowed
by using MR-TADF emitters due to their rigid polycyclic aromatic framework. Ren and
co-workers designed TSCT-TADF emitters by combining acridine derivatives and electron-
withdrawing boron/oxygen heterocycles [60]. As depicted in Figure 7, by controlling the
intramolecular stacking of rigid heteroaromatic compounds, deep blue emission with a
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narrow FWHM could be achieved. By using AC-BO, QAC-BO, and Cz-BO as emitters
in OLEDs with a structure of ITO/HAT-CN (20 nm)/TAPC (40 nm)/mCP (10 nm)/20%
emitters: DPEPO (20 nm)/DPEPO (10 nm)/TmPyPB(50 nm)/LiF (1 nm)/Al (150 nm),
the EL properties of AC-BO, QAC-BO, and Cz-BO were investigated. With decreasing
stacking distance, emission maxima of AC-BO, QAC-BO, and Cz-BO were significantly
blue-shifted from 456 to 412 nm, while the FWHM narrowed from 71 to 43 nm, leading to
CIE coordinates of (0.147, 0.122), (0.145, 0.076), and (0.163, 0.034), respectively. The device
with AC-BO shows an EQEmax of 19.3%, the best performance among all deep blue TSCT-
TADF emitters so far [60]. The device with QAC-BO achieved an EQEmax of 15.8%, making
it the first high-efficiency TSCT-TADF material to meet the ultrapure blue requirements of
CIE (0.14, 0.08) defined by the NTSC. Nonetheless, the relatively low maximum luminance
of less than 1000 cd m−2 and pronounced efficiency roll-off of more than 60% at 100 cd m−2

hinders the practical application of these deep blue emitters.
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Figure 7. (a) The relationship between structures and HOMO levels of phenyl acridine and its
skeleton-modified derivatives based on the DFT simulations. (b) Design strategy for controlling
intramolecular stacking of rigid heteroaromatic compounds and the chemical structures of the
designed compounds. (c) Device configuration and the related energy levels. (d) EL spectra with
the photographs of devices (inset). (e) CIEy and FWHM of the EL spectra with CIE plot of EL
spectra (inset). (f) EQE–current density curves with EQE–luminance curves (inset). (g) Current
density–voltage–luminance curves. (h) EQEmaxs and EQEs at 100 cd m−2 (EQE100) of this work and
the reported TSCT emitters. Reproduced with permission from Zhennan Zhao, Cheng Zeng, Xiaomei
Peng et al., “Tuning Intramolecular Stacking of Rigid Heteroaromatic Compounds for High-Efficiency
Deep-Blue Through-Space Charge-Transfer Emission”; published by John Wiley and Sons, 2022 [60].

4. Blue Metal-TADF Emitters

Despite their rapid development, the long-term stability of OLEDs with organic TADF
emitters is still inferior when compared with those with phosphorescent or fluorescent
emitters, due to the long-lived triplet excitons of organic TADF molecules resulting from
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their inefficient spin–orbital coupling (SOC) [61,62]. Alternatively, by taking advantage
of the strong SOC of phosphorescent organometallic complexes, metal-TADF emitters
may achieve high emission quantum yields and fast radiative decay rates, and thereby
eventually find practical applications in the OLED industry. Since Yersin and co-workers
demonstrated the first TADF emission from a [(pop)Cu(NˆN)] complex, in addition to
Cu(I) emitters [63,64], second and third row transition metal complexes, such as those of
Pd(II), Ag(I), Au(I), and Au(III), have been developed as TADF emitters [65,66]. Among the
reported metal-TADF emitters, those based on two-coordinate carbene-metal-amide (CMA)
emitters and tetradentate Au(III) complexes have displayed the best performance in terms
of efficiency and stability [67,68]. Nonetheless, performances of blue-emitting OLEDs with
metal-TADF were relatively inferior when compared to those of green, yellow, and red
in terms of efficiency and color purity, until a recent publication presented blue-emitting
metal-TADF emitters based on Cu(I) and Au(I) complexes [40,62,65,66,69–72].

As shown in Figure 8, by substituting CF3 and tBu for the carbazole substitution of
the CMA(Au) emitter they reported earlier [67], Romanov, Credgington and colleagues
developed a highly efficient blue-emitting metal-TADF emitter Au(I)-1 [71]. Since the
HOMO is almost entirely located on the Cz donor of the (AdCAAC)AuCz archetype, the
introduction of electron-withdrawing groups to this moiety influences the HOMO more
than the LUMO. It widens the HOMO–LUMO gap, shifting it towards blue emission [67]. A
high quantum yield of 0.96 with an emission maximum located at 495 nm was achieved in
Au(I)-1 in toluene solution. Considering that the high polarity of CMA compounds makes
their emission energies sensitive to their molecular environment, allowing the “tuning” of
EL by suitable host media from green to sky blue, the emission maximum of Au(I)-1 can
be tuned from 484 nm in neat film to 479 and 464 nm when doped in o-CBP and DPEPO
hosts, respectively. The EL performance of Au(I)-1 was characterized by an OLED with a
device structure of ITO/TAPC (40 nm)/o-CBP (5 nm)/EML (30 nm)/TSPO1 (40 nm)/LiF
(1 nm)/Al (100 nm). In addition, since CMAs do not suffer from strong concentration
quenching in the solid state, attributed to the lack of close metal–metal contacts, host-free
OLEDs with neat Au(I)-1 as the EML have also been fabricated. Similar to the trend in the
PL spectra, the device with the high-polarity DPEPO host shows the best color purity, with
a maximum located at 450 nm, leading to CIE coordinates of (0.17, 0.17) along with a high
EQE of up to 20.9%. Encouragingly, a high performance with an EQE of up to 17.3% and
CIE coordinates of (0.18, 0.27) were also achieved in the host-free Au(I)-1-based OLED.
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Figure 8. Molecular structure of Au(I)-1. (a) Schematic OLED architecture used; (b) normalized
EL spectra, (c) EQE–current density, (d) current–voltage, and (e) luminance–voltage characteristics
of OLEDs with Au(I)-1 in host-free and host-guest structures. Reproduced with permission from
Patrick J. Conaghan et al., “Highly efficient blue organic light-emitting diodes based on carbene-
metal-amides”; published by Springer Nature, 2020 [71].
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As depicted in Figure 9, by modifying a5, whose HOMO and LUMO are localized on
the aryl donor triphenylamine (TPA) and mainly on the CˆNˆC ligand [73], respectively,
two blue-emitting Au(III)-TADF complexes were developed by lowering the HOMO energy
or raising the LUMO energy. Specifically, Au(III)-1 was prepared by replacing the OEt
group in complex a5 with a more electron-donating dimethyl-amine group to raise the
LUMO energy, while Au(III)-2 was prepared by further substituting the phenyl rings
of the TPA with electron-withdrawing F substituents to lower the HOMO energy. By
means of electrochemistry, the LUMO energy of Au(III)-1 and Au(III)-2 was measured
to be 0.18 eV higher than that of complex a5, attributable to the replacement of the OEt
group by the more electron-donating NMe2 group. For Au(III)-2, the fluorine substituents
on the TPA ligand slightly lowered the HOMO energy by about 0.03 eV from that of
Au(III)-1. Thus, PL maxima at 484 and 470 nm were achieved in Au(III)-1 and Au(III)-
2, respectively, in PMMA thin film. Despite its less blue emission, the high PLQY of
0.82 for Au(III)-1 in PMMA thin film is much higher than that (0.34) of Au(III)-2. By their
application in solution-processed OLEDs, EL properties of both TADF Au(III) complexes
were investigated. The device structure was ITO/PEDOT:PSS/OTPD (4 nm)/PYD2: Au-
emitter (60 nm)/DPEPO (10 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (100 nm). The Au(III)-1-
and Au(III)-2-based devices show EL maxima at 473 and 465 nm, respectively, with a
FWHM of 64–67 nm and CIE coordinates of (0.16, 0.25) for the former and (0.16, 0.23) for
the latter. Due to its higher PLQY, the EQEmax of 15.25% shown by the Au(III)-1-based
device is much higher than that of the Au(III)-2-based device (6.76%). By employing an
MR-TADF blue emitter, v-DABNA, as the terminal emitter, a hyper-fluorescent solution-
processed OLED was fabricated using the same device structure for Au(III)-1 (Figure 10).
Efficient ET from Au(III)-1 to v-DABNA, with an estimated Förster distance of 2.83 nm
and an ET rate of 2.35 × 107 s−1, was determined by photophysical investigations. The
blue hyper-fluorescent OLED achieved a high EQEmax of 16.6%, a narrowband emission
with an FWHM of 23 nm, and high color purity with CIE coordinates of (0.14, 0.18). When
compared with that (30%) of the Au(III)-1 only device, the efficiency roll-off (13%) of
the hyper-fluorescent device was significantly improved, attributable to the effective ET
process in the latter that could lower the population of triplet excitons in Au(III)-1 at high
luminance [40].
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Figure 9. (a) Top: previously reported arylgold(III)-TADF complex a5 and its HOMO and LUMO
surfaces. Bottom: donor–acceptor type CˆNˆC gold(III) complexes Au(III)-1–Au(III)-3 in this work;
(b) normalized EL spectra; and (c) EQE–luminance characteristics of OLEDs based on Au(III)-1,
Au(III)-2, and Au(III)-3 at their optimized doping concentration. Reproduced with permission from
Dongling Zhou, Gang Cheng, Glenna So Ming Tong et al., “High Efficiency Sky-Blue Gold(III)-TADF
Emitters”; published by John Wiley and Sons, 2020 [72].
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fused NHC ligands [62]. As a blue-emitter, Cu-5 (Figure 11) shows PL emission with a 
maximum at 470 nm, a PLQY of 0.52, and a kr of 1.1 × 106 s−1 in thin films. EL performance 
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and CIE coordinates of (0.14, 0.22), as well as a high EQEmax of 23.6%, which is among the 
best blue OLEDs reported in the literature [76,77]. Notably, the operational lifetime (LT90) 
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Figure 10. (a) Normalized EL spectra, (b) EQE–luminance, (c) current density–voltage, and
(d) luminance–voltage characteristics of OLEDs with different concentrations of Au(III)-1 and v-
DABNA. The image of the sensitized OLED is shown in the inset of (a). Reproduced from Ref. [40]
with permission from the Royal Society of Chemistry.

Since the reports of CMA emitters based on bulky NHC ligands, with emission
quantum yields up to unity, a kr of up to 1 × 106 s−1, and EL efficiency up to 20%, Cu(I)
complexes have been expected to replace expensive phosphorescent complexes in OLEDs
as emitters [64,67,70,74]. Nonetheless, the operational stability of Cu(I)-based OLEDs,
especially that of blue-emitting ones, has barely been reported in the literature [75]. With
the use of heterocyclic π-annulated NHC ligands with appreciable π-acidity, we report
a panel of thermally and air-stable CMA(Cu)-TADF emitters based on bulky pyrazine-
and pyridine-fused NHC ligands [62]. As a blue-emitter, Cu-5 (Figure 11) shows PL
emission with a maximum at 470 nm, a PLQY of 0.52, and a kr of 1.1 × 106 s−1 in thin
films. EL performance of Cu-5 was investigated in a vacuum-deposited OLED with a
device structure of ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (10 nm)/Cu-5: TCTA:
DPEPO (20 nm)/DPEPO (10 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm). When the doping
concentration was 4 wt%, the Cu5-based device displayed a blue emission with an EL
maximum located at 474 nm and CIE coordinates of (0.14, 0.22), as well as a high EQEmax
of 23.6%, which is among the best blue OLEDs reported in the literature [76,77]. Notably,
the operational lifetime (LT90) of OLEDs based on Cu5 was 0.4 h at an L0 of 7600 cd m−2,
corresponding to 11.6 h at an L0 of 1000 cd m−2 using the acceleration coefficient (n),
obtained as shown in Figure 11. By using v-DABNA as a terminal emitter, hyper-fluorescent
OLEDs with Cu5 as a sensitizer showed an improved color purity with CIE coordinates of
(0.15, 0.20) and a longer LT90 of 12.2 h at an L0 of 1000 cd m−2.
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v-DABNA. Reproduced with permission from Rui Tang, Shuo Xu, Tsz-Lung Lam et al., “Highly 
Robust CuI-TADF Emitters for Vacuum-Deposited OLEDs with Luminance up to 222 200 cd m−2 and 
Device Lifetimes (LT90) up to 1300 hours at an Initial Luminance of 1000 cd m−2”; published by John 
Wiley and Sons, 2022 [62]. 

5. Outlook and Perspective 
Bimolecular annihilations, such as TTA and TPA, caused by the long decay time of 

TADF emitters are the main reason for the efficiency roll-off and unsatisfactory stability 
of TADF-OLEDs, particularly blue ones. To surmount such disadvantages, specific mo-
lecular structures with extremely small or even negative ΔEST have been designed to de-
crease the decay time [78–82]. 

Yersin and co-workers reported a strategy to design a new type of emitter based on 
a new exciton harvesting mechanism by significantly reducing ΔEST, rigidifying molecular 
structure, maximizing the Franck–Condon factors, shifting the charge transfer states, and 
providing energetically nearby lying states [78]. As shown in Figure 12, in the designed 
compound DSH, both D and A moieties are rigidly linked by two bridges at relatively 
large separations [81]. Thus, the low-lying CT states, 1CT(DA) and 3CT(DA), have a mini-
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Figure 11. (a) Molecular structure of Cu5; (b) normalized EL spectra; (c) EQE–luminance of OLEDs
based on Cu5 with various doping concentrations ranging from 2 to 6 wt%; (d) EL spectra; and
(e) relative luminance versus operation time at an L0 of 1000 cd m−2 of the hyper-OLEDs with Cu5
and v-DABNA. Reproduced with permission from Rui Tang, Shuo Xu, Tsz-Lung Lam et al., “Highly
Robust CuI-TADF Emitters for Vacuum-Deposited OLEDs with Luminance up to 222 200 cd m−2 and
Device Lifetimes (LT90) up to 1300 hours at an Initial Luminance of 1000 cd m−2”; published by John
Wiley and Sons, 2022 [62].

5. Outlook and Perspective

Bimolecular annihilations, such as TTA and TPA, caused by the long decay time of
TADF emitters are the main reason for the efficiency roll-off and unsatisfactory stability of
TADF-OLEDs, particularly blue ones. To surmount such disadvantages, specific molecular
structures with extremely small or even negative ∆EST have been designed to decrease the
decay time [78–82].

Yersin and co-workers reported a strategy to design a new type of emitter based on a
new exciton harvesting mechanism by significantly reducing ∆EST, rigidifying molecular
structure, maximizing the Franck–Condon factors, shifting the charge transfer states, and
providing energetically nearby lying states [78]. As shown in Figure 12, in the designed
compound DSH, both D and A moieties are rigidly linked by two bridges at relatively large
separations [81]. Thus, the low-lying CT states, 1CT(DA) and 3CT(DA), have a minimal
splitting of ≈10 cm−1 (1.2 meV), while the fluorene-substituted bridge can further stabilize
the molecular structure. At the same time, one more low-lying fluorene-localized 3LE(F)
state is found in the fluorene-substituted bridge. Their design mitigated the forbidden
ISC processes, enabling faster ISC and RISC rates for DSH than those of conventional
TADF emitters. Thus, the long decay times of conventional TADF emitters can be avoided
in DSH. By using DSH as an emitting dopant in OLEDs, with a structure of ITO/HAT-
CN (5 nm)/TAPC (40 nm)/CCP (10 nm)/DSH: PPF (10 nm)/PPF (10 nm)/Tm3PyBPZ
(40 nm)/LiF (1.2 nm)/Al (100 nm), an EQEmax of 18.7% with an EL maximum at 486 nm
was achieved. Although the device performance and emission color are strongly dependent
on the dielectric constant of the host material, which could cause difficulty in optimizing
the device structure, the specific molecular design of DSH provides a guideline for next-
generation TADF materials.
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Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting”; published 
by John Wiley and Sons, 2022 [81]. 
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zation overcomes the exchange energy (Figure 13a). With the motivation of discovering 
molecules with negative ΔEST, from which delayed fluorescence from inverted singlet and 
triplet (DFIST) excited states can be observed, Miyajima and colleagues computationally 
screened 34,596 molecules, which were heptazine analogues with 186 different substitu-
ents [82]. Among the screening results, HzTFEX2 and HzPipX2 (Figure 13b), were com-
pared. Theory (EOM-CCSD) calculations revealed that HzTFEX2 has a negative ΔEST of 
−12 meV, while HzPipX2 has a small positive ΔEST of 10 meV. Measurements of the pho-
tophysics and transient PL decay further confirmed the negative ΔEST of HzTFEX2, which 
exhibits DFIST. When it was used as the emitting dopant in the device with a structure of 
Glass/ITO (130 nm)/PEDOT: PSS (30 nm)/MoO3 (5 nm)/BST (3 nm)/DBFSiDBF (10 
nm)/PPF: 10 wt% HzTFEX2 (15 nm)/PPF (10 nm)/Alq3 (40 nm)/Liq (1 nm)/Al (80 nm), in-
tense blue EL originating from HzTFEX2 was observed with an EQEmax of 17% and EL 
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Figure 12. (a) Molecular structure of DSH; (b) simplified energy level diagram for the DSH molecule;
(c) normalized EL spectra and (d) EQE–luminance characteristics of OLEDs with different con-
centrations of DSH. Reproduced with permission from Hartmut Yersin, Rafał Czerwieniec, Larisa
Mataranga-Popa et al., “Eliminating the Reverse ISC Bottleneck of TADF Through Excited State
Engineering and Environment-Tuning Toward State Resonance Leading to Mono-Exponential Sub-µs
Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting”; published
by John Wiley and Sons, 2022 [81].

Despite the general agreement that ∆EST must be positive, some nitrogen-substituted
phenalene analogues have the potential for a negative ∆EST, which can be attributed to the
double-excitation configurations. Two electrons of occupied orbitals are promoted to virtual
orbitals in double-excitation configurations [83–86]. Since the accessible double-excitation
configurations in T1 are restricted (Pauli exclusion principle), an effective admixture of
such configurations stabilizes S1, leading to a possibly negative ∆EST when the stabilization
overcomes the exchange energy (Figure 13a). With the motivation of discovering molecules
with negative ∆EST, from which delayed fluorescence from inverted singlet and triplet
(DFIST) excited states can be observed, Miyajima and colleagues computationally screened
34,596 molecules, which were heptazine analogues with 186 different substituents [82].
Among the screening results, HzTFEX2 and HzPipX2 (Figure 13b), were compared. Theory
(EOM-CCSD) calculations revealed that HzTFEX2 has a negative ∆EST of −12 meV, while
HzPipX2 has a small positive ∆EST of 10 meV. Measurements of the photophysics and
transient PL decay further confirmed the negative ∆EST of HzTFEX2, which exhibits DFIST.
When it was used as the emitting dopant in the device with a structure of Glass/ITO
(130 nm)/PEDOT: PSS (30 nm)/MoO3 (5 nm)/BST (3 nm)/DBFSiDBF (10 nm)/PPF: 10 wt%
HzTFEX2 (15 nm)/PPF (10 nm)/Alq3 (40 nm)/Liq (1 nm)/Al (80 nm), intense blue EL
originating from HzTFEX2 was observed with an EQEmax of 17% and EL maxima at 450 nm
and 479 nm with CIE coordinates of (0.17, 0.24). The remarkable efficiency roll-off suggests
that great efforts are still needed to fully exploit the benefits of negative ∆EST in EL devices.
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Figure 13. (a) Schematic diagram of singlet and triplet excited states split in energy by the exchange 
interaction (middle) and then inverted by including the double-excitation effect (right); (b) molecu-
lar structures of the heptazine analogues examined in the computational screening. Reproduced 
with permission from Naoya Aizawa et al., “Delayed fluorescence from inverted singlet and triplet 
excited states”; published by Springer Nature, 2022 [82]. 
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Type Emitter 
EQEmax a梅 
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EQE1000 b 
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Lifetime
梅 
[h] 

λmax c梅 

[nm] 
FWHM 梅 

[nm] 
CIE Coordinates 梅 

[x, y] Ref. 

MR-TADF 

ν-DABNA 34.4 26.0  469 18 (0.12, 0.11) [35] 
BN1 31.2 9.3 - 457 28 (0.14, 0.08) [45] 
BN2 33.2 15.5 - 467 23 (0.13, 0.11) [45] 
BN3 37.6 26.2 27.2 d 458 23 (0.14, 0.08) [45] 

tCBNDADPO 30.8 16.2 - 472 28 (0.14, 0.22) [44] 
t-DABNA 25.2 - - 465 27 (0.126, 0.102) [49] 

t-DABNA-dtB 30.1 28.8 502 e 471 22 (0.117, 0.112) [49] 

TSCT-TADF 

P-Ac95-TRZ05 12.1 11.5 - 479 - (0.176, 0.269) [59] 
dCz-Xo-TRZ 27.8 23.9 - 477 19 (0.17, 0.29) [39] 

AC-BO 19.3 - - 456 71 (0.147, 0.122) [60] 
QAC-BO 15.8 - - 448 63 (0.145, 0.076) [60] 

Cz-BO 5.5 - - 412 43 (0.163, 0.034) [60] 

Metal-TADF 

Au(I)-1 20.9 - - 450 - (0.17, 0.17) [71] 
Au(III)-1 15.25 9.98 - 473 64 (0.16, 0.25) [72] 
Au(III)-2 6.76 2.51 - 465 67 (0.16, 0.23) [72] 

Cu5 23.6 12.9 11.6 f 474 60 (0.14, 0.22) [62] 
a Maximum EQE; b EQE at 1000 cd m−2; c Emission maximum; d LT50 at 100 cd−2; e LT95 at 1000 cd m−2; 
f LT90 at 1000 cd m−2. 
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Type Emitter 
EQEmax a梅 

[%] 

EQE1000 b 

梅 

[%] 

Lifetime
梅 
[h] 

λmax c梅 

[nm] 
FWHM 梅 

[nm] 
CIE Coordinates 梅 

[x, y] Ref. 

MR-TADF 

ν-DABNA 34.4 26.0  469 18 (0.12, 0.11) [35] 
BN1 31.2 9.3 - 457 28 (0.14, 0.08) [45] 
BN2 33.2 15.5 - 467 23 (0.13, 0.11) [45] 
BN3 37.6 26.2 27.2 d 458 23 (0.14, 0.08) [45] 

tCBNDADPO 30.8 16.2 - 472 28 (0.14, 0.22) [44] 
t-DABNA 25.2 - - 465 27 (0.126, 0.102) [49] 

t-DABNA-dtB 30.1 28.8 502 e 471 22 (0.117, 0.112) [49] 

TSCT-TADF 

P-Ac95-TRZ05 12.1 11.5 - 479 - (0.176, 0.269) [59] 
dCz-Xo-TRZ 27.8 23.9 - 477 19 (0.17, 0.29) [39] 

AC-BO 19.3 - - 456 71 (0.147, 0.122) [60] 
QAC-BO 15.8 - - 448 63 (0.145, 0.076) [60] 

Cz-BO 5.5 - - 412 43 (0.163, 0.034) [60] 

Metal-TADF 

Au(I)-1 20.9 - - 450 - (0.17, 0.17) [71] 
Au(III)-1 15.25 9.98 - 473 64 (0.16, 0.25) [72] 
Au(III)-2 6.76 2.51 - 465 67 (0.16, 0.23) [72] 

Cu5 23.6 12.9 11.6 f 474 60 (0.14, 0.22) [62] 
a Maximum EQE; b EQE at 1000 cd m−2; c Emission maximum; d LT50 at 100 cd−2; e LT95 at 1000 cd m−2; 
f LT90 at 1000 cd m−2. 
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