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Abstract: In this paper, a broadband left-handed circularly polarized (LHCP) corrugated horn antenna
using a dielectric circular polarizer is proposed. Circularly polarized (CP) waves are generated by
inserting an improved dovetail-shaped dielectric plate into the circular waveguide. Compared with
the traditional dovetail-shaped circular polarizer, the proposed improved dovetail-shaped circular
polarizer has a wider impedance bandwidth and 3 dB axial ratio bandwidth. A substrate-integrated
waveguide (SIW) structure is designed as a wall to eliminate the influence of fixed grooves on the
circular polarizer. The simulated reflection coefficient of the dielectric plate circular polarizer is less
than −20 dB in the frequency band from 17.57 to 33.25 GHz. Then, a conical corrugated horn antenna
with five corrugations and a four-level metal stepped rectangular-circular waveguide converter are
designed and optimized. The simulated −10 dB impedance and 3 dB axial ratio (AR) bandwidths
of the circularly polarized horn antenna integrated with the polarizer are 61% (17.1–32.8 GHz) and
60.9% (17.76–33.32 GHz), respectively. The simulated peak gain is 17.34 dBic. The measured −10 dB
impedance is 52.7% (17.2–27.5 GHz).

Keywords: circular polarization (CP); corrugated horn antenna; circular polarizer; broadband

1. Introduction

Circularly polarized (CP) horn antennas are widely used in many fields, such as
satellite communications, radar and radio astronomy [1], due to their wide bandwidth,
symmetrical radiation pattern and mitigation of polarization mismatch [2]. The operating
band of CP horn antennas has been extended to millimeter wave (MMW) [3–5] and even
terahertz (THz) bands [6–9]. Many circularly polarized horn antennas operating in dual
bands have also been proposed [10–13].

A representative CP horn antenna essentially consists of a circular polarizer and a
horn antenna [14]. Corrugated horn antennas are one of the most popular feed antennas
due to their advantages, such as low cross-polarization, symmetrical radiation patterns in
two orthogonal planes and low sidelobe level [15–21]. A circular polarizer is an important
part of the circularly polarized horn antenna and can convert linearly polarized waves into
circularly polarized waves.

In previous research works, various waveguide polarizers have been proposed for
feed horn antennas, and these polarizers can be divided into three types in general. The
first type is to create grooves [22] or irises [23] in the waveguide walls as a way to achieve
orthogonal polarization waves. This type of polarizer attains a high strength structure, a
wide bandwidth and a low loss. Its disadvantages are clear, as it is extremely difficult to
manufacture the grooves and irises for MMW and THz fabrications. The second type is
the septum polarizer [24–28], which is more compact compared to the other two polarizers.
Its typical structure comprises a metal septum at the center of a square waveguide. The
septum polarizer has a simple structure; however, because it is asymmetric, it can impair
the performance of the horn antenna [29].
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The last type of circular polarizer is achieved by filling a dielectric plate inside the
waveguide [30,31]. This circular polarizer has a wide operating bandwidth and does not
affect the performance of the horn antenna because it is a symmetrical structure. Compared
with other waveguide circular polarizers, dielectric plate circular polarizers are simpler to
process, easier to debug and more widely used.

In this paper, a circularly polarized conical corrugated horn antenna loaded with a
dielectric plate circular polarizer is presented. The proposed CP horn antenna consists of
three parts: a dielectric plate circular polarizer, a conical corrugated horn antenna and a
four-level metal stepped waveguide converter. Among them, the dielectric plate circular
polarizer is the key to generating circularly polarized waves. This design of a circular
polarizer improves the performance of circular polarization by changing the shape of the
dielectric plate.

Previous designs eliminated the influence of the fixed grooves on the circular polarizer
by digging compensation grooves in the plane orthogonal to the fixed grooves. This design
proposes a substrate-integrated waveguide (SIW) wall to eliminate the influence of the fixed
grooves on the circular polarizer. A conical corrugated horn antenna with five corrugations
was designed as the radiating part.

The simulated 10 dB impedance and 3 dB AR bandwidths of the proposed circu-
larly polarized conical corrugated horn antenna were 61% (17.1–32.8 GHz) and 60.9%
(17.76–33.32 GHz), respectively. The simulated peak gain was 17.34 dBic. The measured
10 dB impedance was 52.7% (17.2–27.5 GHz). The proposed circularly polarized conical
corrugated horn antenna system is a promising candidate for future 5G applications. The
specifications of sub −6 GHz 5G applications are explained in [32,33].

2. Antenna Design
2.1. Configuration of the CP Horn Antenna

Figure 1 shows the overall structure of the proposed circular polarized horn antenna.
The proposed CP horn antenna consists of three parts: a circular polarizer by filling an
improved dovetail-shaped dielectric plate in the waveguide, a conical corrugated horn
antenna and a four-level metal stepped rectangular-circular waveguide converter.
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2.2. Dielectric Plate Circular Polarizer Design

The waveguide circular polarizer is an essential part of the circularly polarized horn
antenna and directly affects the performance of the circularly polarized horn antenna.
For dielectric plate circular polarizers, the dielectric plate is used as a phase-shifting
element. The dielectric plate generates two effective dielectric constants for two orthogonal
polarization waves parallel and perpendicular to it, respectively. The phase difference can
be obtained by changing the structure of the dielectric plate. In this way, two orthogonally
polarized waves can be obtained. The dielectric plate circular polarizer has the advantages
of simple structure, convenient processing and good adjustability.

Figure 2 shows the proposed dielectric plate circular polarizer. The dielectric material
used in this design is Rogers RT5880 with a relative dielectric constant of 2.2. This circular
polarizer consists of three parts: a circular waveguide, an improved dovetail dielectric plate
and a SIW wall. The dielectric plate is placed in the center of the circular waveguide at
an angle of 45◦ to the incident wave E of the linear polarization. When E is incident from
port 1, it can be decomposed into two equal-amplitude, in-phase orthogonal polarization
components Ex and Ey, where Ex is parallel to the dielectric plate and Ey is perpendicular
to the dielectric plate.
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Figure 2. Dielectric plate circular polarizer: (a) Overall structure diagram. (b) Top view. (c) Cross-
sectional view.

When Ex and Ey pass through the dielectric plate, the dielectric plate produces different
phase shift constants for the two orthogonal polarization components, and a 90◦ phase
difference of the Ex and Ey waves can be produced by adjusting the structure of the
dielectric plate. The dielectric plate is fixed inside the circular waveguide by digging fixing
grooves in the inner wall of the circular waveguide. It can be seen from reference [30] that
the performance of the circular polarizer is affected by the fixed grooves on the circular
waveguide wall. In reference [31], it was proposed to dig compensation grooves in a
plane orthogonal to the fixed grooves to eliminate the influence of the fixed grooves on the
circular polarizer.

As the depth of the compensation grooves has a clear influence on the circular polarizer,
high machining accuracy is required, particularly in the millimeter band. In the proposed
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circular polarizer, a SIW structure was designed as a wall to eliminate the influence of fixed
grooves on the circular polarizer. Moreover, the high design flexibility of SIW is beneficial
to the high-performance circular polarizers. The incident wave is incident from port 1 and
is emitted from port 2 through the dielectric plate forming a circularly polarized wave.

This design proposed an improved dovetail-shaped dielectric plate as shown in
Figure 3c based on the common rectangular shape and traditional dovetail-shaped di-
electric plate. The conventional dovetail structure is formed by two straight lines and a
pointed tip. This proposed design in Figure 3c is formed by two smooth curves, and the
pointed tip in Figure 3b is changed to flat.
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Figure 3. The shape of the inserted dielectric plate: (a) Rectangle. (b) Traditional dovetail shape.
(c) Improved dovetail shape.

Taking the derivative of both sides of (1) shows that the derivative has zeros as x = 0
and x = l. Compared with the traditional dovetail-shaped dielectric circular polarizer, the
designed improved dovetail-shaped dielectric circular polarizer can reduce the genera-
tion of high-order mode, and the performance of the improved dovetail-shaped circular
polarizer is better. Figure 4 shows the simulated |S11| for three different shapes of dielec-
tric plates. From the simulated results, it can be seen that the improved dovetail-shaped
structure has better |S11|.
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For the improved dovetail-shaped structure in Figure 3c, one side curve is given by

y = (a2 − a1) · sin2(πx
2l ) + a1

y′ = π(a2−a1)
2l · sin(πx

l )
(1)

where a2 is the diameter of the inner wall of the circular waveguide, a1 is half of the length
of flat (w4/2) and x ∈ [0, l].

Figure 5 shows the simulated results of the dielectric plate circular polarizer. It can
be seen in Figure 5a that the simulated bandwidth of the dielectric plate circular polarizer
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is from 17.5 to 32.5 GHz for |S11| ≤ −20 dB. As can be seen from Figure 5b that the
simulated AR bandwidth of the dielectric plate circular polarizer is from 17.4 to 32.5 GHz
for AR ≤ 3 dB. As shown in Figure 5c, the simulated results of E-field distributions indicate
good circular polarization performance.
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According to Figure 5, it can be predicted that the horn antenna loaded with the im-
proved dovetail-shaped circular polarizer will have good circular polarization performance.
To explain the mechanism of the circular polarization, the current distributions on port 2 at
phases of 0◦, 90◦, 180◦ and 270◦ are illustrated in Figure 6. It can be seen that, as the time
varies, the electrical currents on the port 2 rotate in the clockwise direction, and hence a
left-hand CP (LHCP) wave is generated. The dimensions of the dielectric plate circular
polarizer are as follows (in mm): d = 0.9, L1 = 7.8, L2 = 28.63, L3 = 38.19, w1 = 10, w2 = 9,
w3 = 2.5, w4 = 0.97, r1 = 11, r2 = 0.5, h1 = 0.762 and w = 0.5.
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To provide a better understanding of the proposed dielectric plate circular polarizer,
a parametric study of several geometrical parameters was conducted. Figure 7a shows
that |S11| of the circular polarizer was affected by the thickness (h1) of the dielectric
plate. As can be seen from Figure 7a, the selected 0.762 mm thickness of the dielectric
plate corresponds to the best AR performance among the several specified dielectric plate
thicknesses. As shown in Figure 7b, the simulated |S11| of the chosen dielectric plate
thickness was better in the whole frequency band. The effect of the position of the metal
via hole (w) on the circular polarizers AR and |S11| is shown in Figure 8. As shown in
Figure 8, the position of the metal via hole had a great influence on the axial ratio of the
circular polarizer.

Figure 9 shows the internal structure of the proposed four-level metal stepped waveg-
uide converter, which was used to complete the interface matching between the rectangular
waveguide and the circular waveguide. The dimensions of the four-level metal stepped
waveguide converter were as follows (in mm): wt1 = 4.32, wt2 = 4.75, wt3 = 6.51, wt4 = 9.45,
wt5 = 11, Lt1 = 10, Lt2 = 3.84, Lt3 = 3.51, Lt4 = 3.21, Lt5 = 3.65, Lt6 = 5, rc1 = 3, rc2 = 2, rc3 = 1.5
and rc4 = 1.5. As can be seen in Figure 10, the simulated bandwidth of the waveguide
converter was from 18 to 32 GHz for |S11| ≤ −29 dB and insertion loss |S21| below
0.01 dB.

Figure 11 shows the influence of the second metal step width (wt4) on the performance
of the converter |S11|. As can be seen from Figure 11, with the increase of the width of the
metal step, the performance of |S11| gradually improved and then remained unchanged.

2.3. Conical Corrugated Horn Design

The conical corrugated horn antenna proposed in this design is shown in Figure 12.
The proposed conical corrugated horn antenna was connected to a circular, smooth-walled
input waveguide. The dominant mode of the circular waveguide was the TE11 mode, and
a so-called “mode converter” was required between the circular waveguide and the conical
corrugated horn. The role of the “mode converter” is to convert the TE11 mode transmitted
by the circular waveguide to the HE11 mode supported by the conical corrugated horn. The
dimensions of the conical corrugated horn antenna were as follows (in mm): rh1 = 14.36,
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rh2 = 11, wh1 = 5.38, wh2 = 3.42, wh3 = 4.62, wh4 = 6.11, wh5 = 4.68, lh1 = 2.2, h6 = 1.42,
h7 = 2.92, h8 = 3.4, h9 = 2.27, lt = 11.3, wh6 = 2 and wh7 = 1.2.
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The simulated results of the proposed conical corrugated horn antenna are shown
in Figures 13 and 14, and |S11| in Figure 13 is less than −15 dB in the 16.5–31.7 GHz
frequency band. The maximum gain is 17.3 dBi. The simulated radiation patterns are
shown in Figure 14 for both the E- and H-planes at 20, 24 and 30 GHz. The 3 dB beam
bandwidth was almost the same in the E-plane and H-plane, the angular width (3 dB)
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was both higher than 23◦, and the sidelobe levels were below −25 dB in the 17 to 30 GHz
band. As the dielectric plate circular polarizer structure is symmetrical, it will not affect the
performance of the horn antenna. The proposed circularly polarized horn antenna also had
good rotationally symmetric radiation patterns.
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To provide a better understanding of the proposed conical corrugated horn antenna, a
parametric study of the length of the circular waveguide to horn antenna transition section
(lt) was conducted. From Figure 15, we can see that the length lt had a relatively large
impact on the |S11| performance of the antenna. With the increase of length (lt), |S11|
gradually became better and then remained unchanged.

In order to verify the performance advantage of the proposed circular polarizer,
another two shapes of dielectric plates in Figure 3a,b were simulated with the horn antenna.
Figure 16 shows the simulation results of the circularly polarized horn antenna loaded with
different circular polarizers. As can be seen in Figure 16, the |S11|, gain and AR of the
proposed antenna were improved compared with the other two structures.
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(a) 20 GHz, (b) 24 GHz and (c) 30 GHz.
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2.4. Design Procedure

For the convenience of the readers, a design procedure of the proposed CP horn
antenna is presented as follows:

• Step 1: We selected the appropriate circular waveguide diameter and PCB according
to the application frequency.

• Step 2: According to the curve equation of the improved dovetail-shaped dielectric
plate, an improved dovetail-shaped dielectric circular polarizer model was established.
The dielectric plate was fixed in the circular waveguide through the fixing grooves.

• Step 3: By adjusting the equation parameters and the thickness and length of the
dielectric plate, a 90◦ phase difference was generated between Ex and Ey with equal
amplitudes between them. The SIW structure was incorporated to eliminate the effect
of the fixing grooves by adjusting the position of the metal via hole.

• Step 4: The waveguide converter was designed and optimized based on the diameter
of a circular waveguide and the dimensions of a standard rectangular waveguide.

• Step 5: We designed a conical corrugated horn antenna based on the diameter of the
circular waveguide and optimized it.

• Step 6: The three optimized structures were connected sequentially, including a conical
corrugated horn antenna, an improved dovetail-shaped dielectric circular polarizer
and a four-level metal stepped waveguide converter. The final circularly polarized
horn antenna was acquired.

3. Results and Discussion

Based on the design above, the conical corrugated horn antenna and the dielectric
plate circular polarizer were assembled and simulated. The fabricated circularly polarized
conical corrugated horn antenna system after assembly is shown in Figure 17.
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The simulated and measured reflection coefficients are shown in Figure 18. The
measured −10 dB impedance bandwidth was 52.7% covering from 17.2 to 29.5 GHz. The
simulated −10 dB impedance bandwidth was 61% covering from 17.1 to 32.8 GHz. The
simulated maximum gain was 17.3 dBic at 31 GHz.
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antenna: (a) Reflection coefficient. (b) Simulated gain and AR.

The simulated LHCP radiation pattern and the cross-polarization (RHCP) for two
orthogonal planes of the circularly polarized conical corrugated horn antenna at 20, 24 and
30 GHz are presented in Figure 19. As can be observed from Figure 19, the circular polarized
horn antenna had stable directional patterns over the wide operating bandwidth. The
sidelobe levels in the xoz plane and yoz plane were less than −26 dB. The cross-polarization
levels in in the xoz plane and yoz plane were less than −23 dB.
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4. Conclusions

We presented and verified a broadband circularly polarized conical corrugated horn
antenna incorporating an improved dovetail-shaped dielectric plate circular polarizer. It
consisted of three parts, and each part was designed and optimized independently. One of
the most important parts was the design of the circular polarizer. By changing the shape of
the dielectric plate, an improved dovetail-shaped dielectric plate was proposed, which was
proven to be superior to the traditional dovetail-shaped dielectric plate.

As the dielectric plate needs to be fixed inside the circular waveguide, it is necessary
to fix the dielectric plate by digging fixed grooves in the inner wall of the waveguide. The
performance of the circular polarizer was affected by the fixed grooves on the circular
waveguide wall. In the proposed circular polarizer, a SIW structure was designed as a
wall to eliminate the influence of fixed slots on the circular polarizer. Previous designs
eliminated the influence of the fixed grooves on the circular polarizer by digging the
compensation grooves in the plane orthogonal to the fixed grooves.

Finally, the simulated |S11| of the proposed dielectric plate circular polarizer was less
than −20 dB in the frequency band from 17.57 to 33.25 GHz. Then, a conical corrugated
horn antenna with five corrugations and a four-level metal stepped waveguide convertor
were designed and optimized. The simulated −10 dB impedance and 3 dB axial ratio (AR)
bandwidths of the horn antenna integrated with the polarizer were 61% (17.1–32.8 GHz)
and 60.9% (17.76–33.32 GHz), respectively. The simulated peak gain was 17.34 dBic. The
measured −10 dB impedance was 52.7% (17.2–27.5 GHz).

Table 1 shows the performance comparison of the proposed horn antenna and other
CP horn antenna. The proposed CP horn antenna had a better axial ratio and impedance
bandwidths when compared with those seen in [5–7]. In addition, the proposed CP horn
antenna structure is simpler, and the processing is easier.

Table 1. Comparisons of the antenna performance with previously proposed antennas.

Reference Antenna Type Impedance
Bandwidth AR Bandwidth Peak Gain

This work Improved dovetail-shaped dielectric plate
circular polarizer and horn antenna

52.7%
(17.2–27.5 GHz)

60.9%
(17.76–33.32 GHz) * 17.34 dBic *

[5] Metasurface polarizer and horn antenna 7.4%
(28.5–30.7 GHz)

7.4%
(28.5–30.7 GHz) N.A. */14.2 dBic

[6] Tapered elliptical waveguide and horn
antenna

41.8%
(170–260 GHz)

41.8%
(170–260 GHz)

31.9 dBic */31.3
dBic

[7] Hexagonal waveguide and horn antenna 43.4%
(90–140 GHz)

37%
(96–140 GHz) N.A. */18.7 dBic

*: Simulated result. N.A.: not available.
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