Femtosecond Laser Induced Lattice Deformation in KTN Crystal
Abstract
:1. Introduction
2. Methods
2.1. Sample Preparation
2.2. Femtosecond Laser Modification
2.3. Confocal μ-Raman Measurement and Surface Morphology Analysis
3. Results and Discussion
3.1. Microstructure
3.2. Lattice Dynamics
3.3. Volumetric Expansion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, X.; Wang, T.; Chen, P.; Zhou, C.; Ma, J.; Wei, D.; Wang, H.; Niu, B.; Fang, X.; Wu, D.; et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 2022, 609, 496–501. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, S.; Chen, F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: Fabrication and application. Opto-Electron. Adv. 2020, 3, 190042. [Google Scholar] [CrossRef]
- Ma, Z.C.; Zhang, Y.L.; Han, B.; Hu, X.Y.; Li, C.H.; Chen, Q.D.; Sun, H.B. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 2020, 11, 4536. [Google Scholar] [CrossRef]
- Roth, G.L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Polymer Photonic Crystal Waveguides Generated by Femtosecond Laser. Laser Photonics Rev. 2021, 15, 2100215. [Google Scholar] [CrossRef]
- Li, L.; Kong, W.; Chen, F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances. Adv. Photonics 2022, 4, 024002. [Google Scholar] [CrossRef]
- Velpula, P.K.; Kramer, D.; Rus, B. Femtosecond Laser-Induced Damage Characterization of Multilayer Dielectric Coatings. Coatings 2020, 10, 603. [Google Scholar] [CrossRef]
- Liu, B.; Liu, S.; Yang, L.; Chen, Z.; Zhang, E.; Li, Z.; Wu, J.; Ruan, X.; Xiu, F.; Liu, W.; et al. Light-Tunable Ferromagnetism in Atomically Thin Fe3GeTe2 Driven by Femtosecond Laser Pulse. Phys. Rev. Lett. 2020, 125, 267205. [Google Scholar] [CrossRef]
- Li, Q.; Perrie, W.; Li, Z.; Edwardson, S.P.; Dearden, G. Two-photon absorption and stimulated emission in poly-crystalline Zinc Selenide with femtosecond laser excitation. Opto-Electron. Adv. 2022, 5, 210036. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; He, S.; Tian, Q.; Xu, B.; Wu, P. Circular cladding waveguides in Pr:YAG fabricated by femtosecond laser inscription: Raman, luminescence properties and guiding performance. Opto-Electron. Adv. 2021, 4, 200005. [Google Scholar] [CrossRef]
- Sun, K.; Tan, D.; Fang, X.; Xia, X.; Lin, D.; Song, J.; Lin, Y.; Liu, Z.; Gu, M.; Yue, Y.; et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Butkute, A.; Jonusauskas, L. 3D Manufacturing of Glass Microstructures Using Femtosecond Laser. Micromachines 2021, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Dostovalov, A.; Bronnikov, K.; Skvortsov, M.; Wabnitz, S.; Babin, S. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: Technology, sensor and laser applications. Opto-Electron. Adv. 2022, 5, 210055. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Chen, T.; Ma, G.; Zhang, W.; Huang, L. Influence of Pulse Energy and Defocus Amount on the Mechanism and Surface Characteristics of Femtosecond Laser Polishing of SiC Ceramics. Micromachines 2022, 13, 1118. [Google Scholar] [CrossRef] [PubMed]
- Florian, C.; Wonneberger, R.; Undisz, A.; Kirner, S.V.; Wasmuth, K.; Spaltmann, D.; Krüger, J.; Bonse, J. Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy. Appl. Phys. A Mater. Sci. Process. 2020, 126, 266. [Google Scholar] [CrossRef][Green Version]
- Volpe, A.; Gaudiuso, C.; Di Venere, L.; Licciulli, F.; Giordano, F.; Ancona, A. Direct Femtosecond Laser Fabrication of Superhydrophobic Aluminum Alloy Surfaces with Anti-icing Properties. Coatings 2020, 10, 587. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, F.; Zhang, Y.; Xiong, X.; Ju, B.-F.; Cui, H.; Chen, Y.-L. Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study. Appl. Surf. Sci. 2022, 576, 151722. [Google Scholar] [CrossRef]
- Zhang, J.; Du, X.; Wang, X.; Zhao, J.; Liu, B.; Lv, X.; Chen, P.; Song, Y.; Wang, Y. Super electro-optic modulation in bulk KTN:Cu based on electric-field-enhanced permittivity. Opt. Lett. 2021, 46, 4192–4195. [Google Scholar] [CrossRef]
- Yang, L.-K.; Liu, B.; Qiao, P.-Y.; Yu, H.-J.; Wang, X.-P.; Li, J.; Yang, Y.-G.; Zhang, Y.-Y.; Qiu, C.-C.; Zhang, H.-D. Measurement of the Quadratic Electro-Optic Coefficient of KTN Crystal with an Electro-Optic Modulation System in the Presence of Polar Nano-Regions. Crystals 2021, 11, 1234. [Google Scholar] [CrossRef]
- Shang, A.; Liu, R.; Chen, C.-J.; Lee, Y.G.; Chao, J.-H.; Zhang, W.; Wetherington, M.; Yin, S. Domain Engineering Enabled Giant Linear Electro-Optic Effect and High Transparency in Ferroelectric KTa1−xNbxO3 Single Crystals. Phys. Status Solidi RRL 2022, 16, 2200005. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Q.; Tian, G.; Zheng, L.; Liang, F.; Wang, X.; Wang, D.; Sang, Y.; Liu, H.; Wang, J.; et al. Periodically Poled Nonlinear Photonic Crystal KTa0.51Nb0.49O3 Combining Wide Transparent Range and Large Quadratic Coefficient. Adv. Opt. Mater. 2022, 10, 2201010. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Wu, Y.; Liang, F.; Wang, F.; Zhao, X.; Yu, H.; Zhang, H. Three-dimensional nonlinear photonic crystal in naturally grown potassium-tantalate-niobate perovskite ferroelectrics. Light: Sci. Appl. 2020, 9, 193. [Google Scholar] [CrossRef]
- Gelkop, Y.; Di Mei, F.; Frishman, S.; Garcia, Y.; Falsi, L.; Perepelitsa, G.; Conti, C.; DelRe, E.; Agranat, A.J. Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions. Nat. Commun. 2021, 12, 7241. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Liu, H.; Ren, Y.; Wu, P. Field-induced transformation of ferroelectric domain states in KTN crystal. Chin. Opt. Lett. 2021, 19, 111602. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; Li, X.; Zhao, Z.; Zhang, X.; Wang, X.; Ren, Y.; Wu, P. Unique beam deflection based on dynamic polarized nano-domains in Cu-doped KTN. Opt. Express 2021, 29, 27912–27920. [Google Scholar] [CrossRef]
- Xin, F.; Falsi, L.; Pierangeli, D.; Fusella, F.; Perepelitsa, G.; Garcia, Y.; Agranat, A.J.; DelRe, E. Intense Wave Formation from Multiple Soliton Fusion and the Role of Extra Dimensions. Phys. Rev. Lett. 2022, 129, 043901. [Google Scholar] [CrossRef]
- Svitelskiy, O.; Toulouse, J. Translational and rotational mode coupling in disordered ferroelectric KTa1−xNbxO3 studied by Raman spectroscopy. J. Phys. Chem. Solids 2003, 64, 665–676. [Google Scholar] [CrossRef][Green Version]
- Cowley, R.A.; Gvasaliya, S.N.; Lushnikov, S.G.; Roessli, B.; Rotaru, G.M. Relaxing with relaxors: A review of relaxor ferroelectrics. Adv. Phys. 2011, 60, 229–327. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Yu, Y.; Zhang, H.; Boughton, R.I. Growth of cubic KTa1−xNbxO3 crystal by Czochralski method. J. Cryst. Growth 2006, 293, 398–403. [Google Scholar] [CrossRef]
- Yang, S.; Ren, Y.; Wu, P.; Liu, H. Formation mechanism of femtosecond laser induced guiding structures in y-cut LiNbO3 crystal. Appl. Phys. Express 2022, 15, 072008. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Zhang, X.; He, S.; Liu, H.; Wu, P. Low DC Electric-Field-Induced Phase Transition in KTa0.59Nb0.41O3 Crystal. Cryst. Growth Des. 2019, 20, 1248–1253. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Liu, H.; Zheng, D.; Akhmadaliev, S.; Zhou, S.; Wu, P. Obvious phase transition status induced by He+-ions implantation in KTN crystal. Acta Mater. 2021, 221, 117376. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Tsukada, S.; Svirskas, Š.; Banys, J.; Kojima, S. Vibrational Dynamics of Ferroelectric K(Ta1−xNbx)O3 Studied by Inelastic Light Scattering. Ferroelectrics 2019, 538, 96–104. [Google Scholar] [CrossRef]
Channel Number | Figure 3 | Channel Type | Peak (cm−1) | Calculation Method | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
1 | (a) | Intensity | Whole Spectrum | \ | 0.42 | 1 (Normalized) |
2 | (b) | Intensity | 201 (TO2) | (201)/(191) | 0.94 | 1.084 |
3 | (c) | Intensity | 278 (TO3) | (278)/(268) | 0.85 | 0.993 |
4 | (d) | Intensity | 543 (TO4) | (543)/(570) | 0.92 | 0.988 |
5 | (e) | Shift | 201 (TO2) | \ | 197.5 cm−1 | 205.8 cm−1 |
6 | (f) | Shift | 278 (TO3) | \ | 274.3 cm−1 | 281.6 cm−1 |
7 | (g) | Shift | 543&570 (TO4&TO4 + TA) | \ | 544.0 cm−1 | 579.0 cm−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhang, B.; Li, Y.; Wang, X.; Chen, F.; Wu, P.; Liu, H. Femtosecond Laser Induced Lattice Deformation in KTN Crystal. Micromachines 2022, 13, 2120. https://doi.org/10.3390/mi13122120
Yang Q, Zhang B, Li Y, Wang X, Chen F, Wu P, Liu H. Femtosecond Laser Induced Lattice Deformation in KTN Crystal. Micromachines. 2022; 13(12):2120. https://doi.org/10.3390/mi13122120
Chicago/Turabian StyleYang, Quanxin, Bin Zhang, Yuanbo Li, Xuping Wang, Feng Chen, Pengfei Wu, and Hongliang Liu. 2022. "Femtosecond Laser Induced Lattice Deformation in KTN Crystal" Micromachines 13, no. 12: 2120. https://doi.org/10.3390/mi13122120