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Abstract: This paper presents a 10-bit successive approximation register analog-to-digital converter
with energy-efficient low-complexity switching scheme, automatic ON/OFF comparator and au-
tomatic ON/OFF SAR logic for biomedical applications. The energy-efficient switching scheme
achieves an average digital-to-analog converter switching energy of 63.56 CVref

2, achieving a re-
duction of 95.34% compared with the conventional capacitor switching scheme for CDACs. With
the switching scheme, the ADC can lower the dependency on the accuracy of Vcm and complexity
of DAC control logic and DAC driver circuit. Moreover, dynamic circuits and automatic ON/OFF
technology are used to reduce power consumption of comparator and SAR logic. The prototype
is designed and fabricated in a 180 nm CMOS with a core size of 500 µm × 300 µm (0.15 mm2). It
consumes 7.6 nW at 1 kS/s sampling rate and 1.8-V supply with an achieved signal-to-noise-and
distortion ratio of 45.90 dB and a resulting figure of merit of 51.7 fJ/conv.-step.

Keywords: analog-to-digital converter (ADC); energy-efficient; successive approximation register
(SAR)

1. Introduction

The development of low-power integrated circuits (ICs) will help bring portable and
implantable biomedical devices and biosensors to the market. Analog front end (AFE)
circuits in these products may consume most of the total power budget because they
usually need to remain online to sense input signals continuously [1]. Various biomedical
signals and their frequency ranges are shown in Table 1. Most biomedical signals have
frequencies below 1 kHz. Figure 1 shows the basic processing units in a biomedical
implantable device [2]; ADC is an intermediate unit that converts analog signals into digital
signals. Successive-approximation register (SAR) analog-to-digital converter (ADC) has
become an appropriate choice for low-power biomedical applications in recent years due
to its low-power characteristics [2–5]. Figure 2 shows the basic components in an SAR
ADC. Among the building blocks in an SAR ADC, a capacitive DAC always consumes
a significant part of the total power consumption [6–8]. Recently, some energy-efficient
switching schemes have been proposed to reduce the energy consumption of DAC capacitor
arrays. [8–10]. Compared to conventional techniques [11], Charge-Recovery [8], Charge-
Sharing [8], Capacitor-Splitting [8], Set-and-down [10], and Vcm-based [9] techniques reduce
the switching energy by 12.52%, 24.99%, 37.48%, 81.26%, and 87.52%, respectively. However,
these schemes have various drawbacks. Capacitor-Splitting [8] and Vcm-based [9] schemes
have complex DAC drive circuits, the Set-and-down scheme [10] has large common-mode
voltage shift, and the Vcm-based scheme [9] has a high dependence on the middle reference
voltage (Vcm).
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Table 1. Frequency ranges of various biomedical signals.

Biomedical Signals Frequency Range

ECG [2] 0.05–100 Hz
ECoG [12] 70–110 Hz
EMG [13] 50–150 Hz
EEG [14] 0–100 Hz
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In this paper, the energy-efficient and low-complexity switching scheme [15] is used 
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ergy was consumed due to the use of top-plate sampling technology [10]. In the second 
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method [16]. From the third comparison to the (N−1)th comparison, the reference voltage 
of the corresponding capacitor in the lower voltage capacitor array changes from gnd to 
Vref. In the last comparison, the reference voltage of the last capacitor in the lower voltage 
capacitor array changes from gnd to Vcm. From the third comparison to the last compari-
son, since there is only one capacitor-switching reference voltage for each comparison, the 
power consumption is low. As a result, the energy-efficient and low-complexity switching 
scheme achieves an average switching energy of 63.56 2

refCV . Compared with the con-
ventional switching scheme [11], this switching scheme reduces the switching energy by 
95.34%. In addition, only the least significant bit (LSB) depends on the accuracy of Vcm, 
and each capacitor only uses two reference voltages, which reduces the dependence on 
the accuracy of Vcm and the complexity of DAC control logic and DAC driver circuit. An 
automatic ON/OFF comparator is used to achieve low power consumption. The compar-
ator consists of three parts: the automatic ON/OFF clock circuit, the dynamic preamplifier 
stage, and the dynamic latch stage. The automatic ON/OFF clock circuit allows the com-
parator to work only during comparing. Automatic ON/OFF SAR Logic consists of three 
parts: automatic ON/OFF clock circuit, shift control, data latch. The automatic ON/OFF 
clock signal is generated by the comparator output signal, and the clock is output only 
when the comparator is active. In order to simplify the DAC control logic and DAC driver 
circuit, the latch of SAR logic uses a dynamic latch with differential output. When the 
proposed SAR ADC uses 180 nm CMOS process and operates at a sampling rate of 1 kS/s, 
the ADC achieves 45.90 dB SNDR and 58.79 dB SFDR and consumes only 7.6 nW [17]. The 
proposed SAR ADC is suitable for portable and implantable medical sensors. 
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In this paper, the energy-efficient and low-complexity switching scheme [15] is used
to realize successive approximation conversion. In the first comparison, no switching
energy was consumed due to the use of top-plate sampling technology [10]. In the second
comparison, no switching energy was consumed due to the closed-loop charge recycling
method [16]. From the third comparison to the (N−1)th comparison, the reference voltage
of the corresponding capacitor in the lower voltage capacitor array changes from gnd to
Vref. In the last comparison, the reference voltage of the last capacitor in the lower voltage
capacitor array changes from gnd to Vcm. From the third comparison to the last comparison,
since there is only one capacitor-switching reference voltage for each comparison, the power
consumption is low. As a result, the energy-efficient and low-complexity switching scheme
achieves an average switching energy of 63.56 CV2

re f . Compared with the conventional
switching scheme [11], this switching scheme reduces the switching energy by 95.34%. In
addition, only the least significant bit (LSB) depends on the accuracy of Vcm, and each
capacitor only uses two reference voltages, which reduces the dependence on the accuracy
of Vcm and the complexity of DAC control logic and DAC driver circuit. An automatic
ON/OFF comparator is used to achieve low power consumption. The comparator consists
of three parts: the automatic ON/OFF clock circuit, the dynamic preamplifier stage, and
the dynamic latch stage. The automatic ON/OFF clock circuit allows the comparator
to work only during comparing. Automatic ON/OFF SAR Logic consists of three parts:
automatic ON/OFF clock circuit, shift control, data latch. The automatic ON/OFF clock
signal is generated by the comparator output signal, and the clock is output only when the
comparator is active. In order to simplify the DAC control logic and DAC driver circuit,
the latch of SAR logic uses a dynamic latch with differential output. When the proposed
SAR ADC uses 180 nm CMOS process and operates at a sampling rate of 1 kS/s, the ADC
achieves 45.90 dB SNDR and 58.79 dB SFDR and consumes only 7.6 nW [17]. The proposed
SAR ADC is suitable for portable and implantable medical sensors.

This paper is organized as follows. Section 2 describes the ADC architecture and
low-power circuits. Section 3 shows the measurement results and the comparison with
other ADCs. Finally, Section 4 concludes.
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2. Proposed ADC Architecture

As shown in Figure 3, the proposed SAR ADC consists of comparator, SAR logic,
capacitor array DAC and DAC drive circuit. Because each capacitor of the capacitor array
DAC has only two reference voltages, the DAC drive circuit and DAC control logic are
simple. In addition, because the last capacitor uses Vcm as the reference voltage, the number
of unit capacitors is reduced by half.
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2.1. Switching Scheme

As shown in Figure 4, the operation of the switching scheme can be performed in five
phases: sampling, the 1st comparison, the 2nd comparison, the 3rd to (N−1)th comparison,
and the Nth comparison.

Sampling: In the sampling phase, the input signals are sampled on the top-plates of all
capacitors via sampling switch, with the bottom-plates of the largest capacitors connecting
to Vref and other capacitors to gnd.

The 1st comparison: After sampling, the sampling switches are turned off. The output
voltages of the DAC capacitor array are found to be{

VDACP(1) = Vip
VDACN(1) = Vin

(1)

The comparator compares the sampling signals (Vip and Vin) and gets D1(MSB). No
switching energy is consumed in the first comparison.

E1 = 0 (2)

The 2nd comparison (level-shift-gnd): If D1 = 1, the reference voltage of the largest
capacitor in the positive capacitor array changes from Vref to gnd. If D1 = 0, the reference
voltage of the largest capacitor in the negative capacitor array becomes gnd. As a result, the
voltage of the higher side is decreased by Vref/2, and the output voltages are found to be{

VDACP(2) = Vip − D1
Vre f

2

VDACN(2) = Vin − (1 − D1)
Vre f

2

(3)
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The comparator compares VDACP(2) with VDACN(2) and gets D2. Due to the closed-
loop charge recycling method [16], there is no switching energy consumption in the
second comparison.

E2 = 0 (4)

The 3rd to (N−1)th comparison (“up” operation): According to the previous com-
parison results, the reference voltage of the corresponding capacitor in the lower voltage
capacitor array is switched from gnd to Vref, while the other one (in the higher voltage
capacitor array) remains unchanged. For example, in the third comparison, if D2 = 1, the
reference voltage of the second largest capacitor in the negative capacitor array is switched
from gnd to Vref. If D2 = 0, the reference voltage of the second largest capacitor in the
positive capacitor array is switched from gnd to Vref. The ADC repeats the procedure until
the (N−1)th comparison is completed. The output voltages of each comparison are found
to be 

VDACP(i) = Vip − D1
Vre f

2 +
i−1
∑

j=2

(
1 − Dj

)Vre f

2j

VDACN(i) = Vin − (1 − D1)
Vre f

2 +
i−1
∑

j=2
Dj

Vre f

2j

(5)

The comparator compares VDACP(i) with VDACN(i) and gets Di. During the switching
procedure, there is only one capacitor switch for each comparison, resulting in less switch-
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ing activity and lower energy. Based on the switching energy calculation method in [6], the
switching energy of each comparison is found to be

Ei =


2N−i−1 − 2N−2i − Di−1

i−2
∑

j=1
D[j]2N−j−i−1

−(1 − Di−1)
i−2
∑

j=1
(1 − D[j])2N−j−i−1

CV2
re f (6)

Nth comparison: In the Nth comparison, the reference voltage of the last capacitor in
the lower side is switched from gnd to Vcm while the other one (on the higher side) remains
unchanged. The output voltages and switching energy are found to be

VDACP(N) = Vip − D1
Vre f

2 +
N−1
∑

j=2

(
1 − Dj

)Vre f

2j

VDACN(N) = Vin − (1 − D1)
Vre f

2 +
N−1
∑

j=2
Dj

Vre f

2j

(7)

EN =


D1(1 − DN−1)

[
2−2 − 2−N −

N−2
∑

j=1
(1 − D[j])2−j−1

]

+(1 − D1)DN−1

[
2−2 − 2−N −

N−2
∑

j=1
D[j]2−j−1

]
CV2

re f (8)

The average switching energy of the switching scheme is derived as

Eaverage =
11···1
∑

D1D2···DN=00···0

(
N

∑
i=1

Ei

)
=
(

2N−4 − 2−1 + 2−4
)

CV2
re f (9)

Figure 5 shows switching energy at each output code for different switching schemes.
The average switching energy of the switching scheme used for 10-bit SAR ADC is
63.56 CV2

re f . Compared with the conventional switching scheme [11], the used switch-
ing scheme [15] and Capacitor-Splitting [8], Set-and-down [10], and Vcm-based [9] schemes
reduce the switching energy by 95.34%, 37.48%, 81.26%, and 87.52%, respectively. Fig-
ure 6 presents the 500-run Monte Carlo simulation results of the proposed DAC switching
scheme with unit capacitor mismatch of σu/Cu = 1%. The RMS DNL and the RMS INL of
the proposed DAC switching scheme are 0.325 LSB and 0.326 LSB, respectively.

2.2. Automatic ON/OFF Comparator

A low-power two-stage full dynamic comparator is reported in [18]. In order to
save more power consumption of the comparator, an automatic ON/OFF clock circuit is
added to the comparator. As shown in Figure 7a, the comparator consists of automatic
ON/OFF clock circuit, dynamic preamplifier stage, and dynamic latch stage. In the dynamic
preamplifier stage, VDACP and VDACN are the output signals of the DAC capacitor array
and are connected to the differential inputs of the comparator. AP and AN are differential
outputs of the dynamic preamplifier stage. In the dynamic latch stage, COMP and COMN
are the comparison results, which are obtained by AP, AN, and CCLK driving the latch. In
the process of result latching, no power-to-ground current path is formed, so the comparator
only has a dynamic power supply. The automatic ON/OFF clock circuit generates the
clock for comparator operation. When the RST is high or P10 + N10 (P10 and N10 are the
10th comparison result that latched in SAR logic) is high, there is no clock output, the
comparator is in the OFF state, and the comparator has no power consumption. Figure 7b
shows the timing diagram of the comparator.
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Figure 6. DNL and INL versus output code of the proposed switching scheme.
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Figure 7. Automatic ON/OFF comparator. (a) Schematic diagram; (b) Timing diagram.

2.3. Automatic ON/OFF SAR Logic

As shown in Figure 8, the automatic ON/OFF SAR logic consists of an automatic
ON/OFF clock circuit, a sequencer, and a data register. The sequencer is a shift register that
shifts the set signal through a series of D flip-flops. The set signal is then used to activate
the Latch in the data register. When the last D flip-flop in the sequencer is triggered, the
sequencer will be reset and await the next conversion cycle. The data register is composed
of dynamic latches, which can latch the differential outputs of the comparator and output
differential data. Differential output makes DAC logic circuit simpler. The automatic
ON/OFF clock circuit is used to provide the drive clock signal for the shift register. Drive
clock is only ON while comparison results are being latched, thus reducing SAR logic
power consumption. Figure 8b shows the timing diagram of the SAR logic.

2.4. DAC Driver Circuit

As shown in Figure 9, each capacitor requires two reference voltages. The reference
voltages of C2 to C9 capacitors are Vref and gnd, and the drive circuit can be realized by
CMOS inverter. The reference voltage of C1 capacitor is Vcm and gnd, and the driving
circuit adopts a hybrid structure of CMOS transmission gate and CMOS inverter circuit.

2.5. Capacitor Array

Figure 10 illustrates the floorplan of the capacitor array DAC for a single side. Both
sides have identical layout design. DAC capacitors and dummy capacitors are repre-
sented by squares (unit capacitors) in different colors. DAC capacitors are surrounded by
dummy capacitors to minimize the proximity effects and second-order lithographic errors.
Additionally, a common centroid layout is used to reduce parasitic effects.
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3. Results

Figure 11 shows the chip micrograph of the ADC prototype fabricated in 180 nm CMOS
process with a core area of 0.15 mm2 (500 µm × 300 µm). Figure 12 shows the measurement
environment. The power supply device provides power and reference voltage for the SAR
ADC chip. The FPGA generates timing signals to control the work of SAR ADC chip. The
signal generator generates a differential sinusoidal signal and connects to the analog signal
input of the SAR ADC chip. The logic analyzer is connected to the digital signal output of
the SAR ADC chip and collects the output data. The PC takes out the measured data from
the logic analyzer and then analyzes various performance indicators of the chip. As shown
in Figure 13, the signal-to-noise-and-distortion ratio (SNDR) is 45.15 dB, and the effective
number of bits (ENOB) is 7.2 bit at 1.8 V supply and 1 kS/s sampling rate. The SAR ADC
consumes 7.6 nW, and the calculated FoM is 51.7 fJ/conv.-step. The Figure-of-Merit (FoM)
was calculated from the following equation:

FoM =
Power

2ENOB × fsamping
(10)

Table 2 shows the performance comparison between the proposed ADC and other
ADCs. Compared with another 180 nm ADC, the proposed ADC has a convincing perfor-
mance. If the proposed SAR ADC uses the 65 nm process, it may have better performance.
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4. Conclusions

This paper has presented a low-power SAR ADC for biomedical applications. The
ADC uses an energy-efficient, low-complexity switching scheme to reduce power con-
sumption. Because of the top-plate sampling and level-shift-gnd operations, the switching
scheme did not consume energy in the first and second comparisons. Thanks to the use of
Vcm for the last capacitor, the total capacitance is reduced by half, so the energy consump-
tion of DAC is also reduced. In addition, because of the automatic ON/OFF technology,
the comparator and SAR logic only generate energy consumption during operation. The
proposed SAR ADC achieves FoM of 51.7 fJ/conv.-step at 1.8 V supply and 1 KS/s sampling
rate. If the ADC adopts a low-voltage design method, more energy consumption will be
saved. The proposed low-power SAR ADC is suitable for biomedical applications.
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