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Abstract: The potential use of nanomaterials in medicine offers opportunities for novel therapeutic
approaches to treating complex disorders. For that reason, a new branch of science, named nanotox-
icology, which aims to study the dangerous effects of nanomaterials on human health and on the
environment, has recently emerged. However, the toxicity and risk associated with nanomaterials are
unclear or not completely understood. The development of an adequate experimental strategy for
assessing the toxicity of nanomaterials may include a rapid/express method that will reliably, quickly,
and cheaply make an initial assessment. One possibility is the characterization of the hemocompatibil-
ity of nanomaterials, which includes their hemolytic activity as a marker. In this review, we consider
various factors affecting the hemolytic activity of nanomaterials and draw the reader’s attention to
the fact that the formation of a protein corona around a nanoparticle can significantly change its
interaction with the red cell. This leads us to suggest that the nanomaterial hemolytic activity in
the buffer does not reflect the situation in the blood plasma. As a recommendation, we propose
studying the hemocompatibility of nanomaterials under more physiologically relevant conditions, in
the presence of plasma proteins in the medium and under mechanical stress.

Keywords: nanomaterials; nanoparticles; red blood cells; hemocompatibility; nanotoxicity; hemolytic
activity

1. Introduction

Engineered man-made nanomaterials have several applications in the field of
biomedicine for diagnosis [1], drug delivery [2], and therapeutics [3]. The International
Organization for Standardization defines nanomaterials as structures with a size range from
1 to 100 nm in one, two, or three dimensions [4]. Scanning Electron Microscopy (SEM) and
Transmission Electron Microscopy (TEM) [5,6] are the primary tools for the visualization of
nanomaterial shapes (as illustrated in Figure 1). An extensive library of images of various
nanomaterials has been collected [7–11].

Nanomaterials are drawing increasing interest from many branches of medical prac-
tices and research [6]. Their use in medical devices or as drug carriers offers opportunities
for novel therapeutic approaches to treat complex disorders such as malignant, inflamma-
tory, and neurodegenerative diseases [12–14].

Humans may be exposed to nanomaterials through inhalation (respiratory tract), skin
contact, ingestion, or intravenous (IV) injection. The tiny size of nanomaterials allows for
them to pass more easily through cell membranes [15,16]. Moreover, some nanomaterials
are readily distributed throughout the body, where they are deposited in the mitochondria
of the target organs and may trigger tissue injury [15]. Possible pathways for nanoparticle
uptake and intracellular transport routes have been extensively discussed in the literature,
and several recent reviews are hereby recommended [17,18].
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Figure 1. The nanoparticle-based monolayers. (a–f), scanning electron microscopy images of the
different fluorescent silica nanoparticles (NPs) monolayers, constructed with 35 nm, 50 nm, 100 nm,
200 nm, 300, and 450 nm NPs, respectively. (g) Table of the mean sizes, standard deviation, and NPs
surface density (number of particles per 10 µm2) corresponding to each NP size (all these data were
obtained using ImageJ with manual thresholding). “Reproduced from [19]”.

Despite the advantages offered by nanotechnology, the potential risk of intended and
unintended human exposure to nanomaterials is increasing as nanotechnology develops.
Novel nanomaterials are currently widely used without thoroughly assessing their poten-
tial health risks. The knowledge regarding their toxic potential is still limited, without
appropriate regulatory measures being implemented [4,20,21].

Early studies on asbestos and man-made nanomaterials, such as diesel exhausts, have
shown that they can accumulate in the human body, especially after daily exposure, such as
in occupational settings. Long-term and short-term toxicity to humans and animals caused
by nanomaterials has already become a serious concern. Therefore, a new branch of science,
named nanotoxicology [22,23], has emerged, aiming to study nanomaterials’ hazardous
effects on human health and on the environment.

In many cases, novel nanoparticles (NPs) are widely manipulated without thoroughly
assessing their potential health risks. The broad range of composition and physicochemical
properties of NPs (colloidal stability, purity, inertness, size, shape, charge, etc.) make them
ubiquitous and determine their interactions with other biological materials and the extent
of their toxicity [24,25]. As with regular particles, the NP surface forms the point of contact
with cells. Therefore, surface area and surface chemistry are essential determinants of NPs
toxicity [26]. The geometry of NPs, determining their effective surface area, affects not only
the interaction between NPs and plasma proteins but also the mechanism and degree of
cellular absorption and, consequently, the potential toxicity of NPs [27].

Several approaches can be used to assess NP toxicity; these include epidemiological
studies, human clinical studies, animal models, and in vitro models [28–33].

Whatever their use, source, and route of exposure (whether oral, respiratory, or der-
mal), NPs can enter the bloodstream. Several studies have reported that, due to their
small size, free NPs can penetrate the alveolar lining [34–36], cause inflammatory reac-
tions, and subsequently enter the bloodstream [37]. The circulation then distributes such
NPs throughout the body, allowing their penetration into various organs, where they are
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partially metabolized, excreted, or retained. Moreover, in the bloodstream itself, the NPs
interact with various blood cells [27], especially red blood cells (RBCs), the most abun-
dant cellular component in circulation. The exposure of RBCs to NPs leads to various
biochemical/biophysical and morphological changes that can significantly affect their
functionality [38,39].

Under in vivo conditions (in the bloodstream), the contact between an NP and an RBC
occurs in plasma, where all its components (proteins, hormones, vitamins, sugars, and
inorganic ions) can affect this interaction. The effect of proteins is the most studied of all the
plasma components. It is convincingly documented that the particle’s surface is covered
with a corona formed by adsorbed proteins in the plasma [40]. However, most publications
on this subject describe NP–RBC interaction occurring in a buffer. Accordingly, this aspect
is the focus of the first section of our review. Next, we briefly discuss the process of corona
formation around an NP. Several recent reviews [41–43] are recommended for a more
detailed presentation of this subject. The following section examines the RBC interaction
with corona-coated NPs. A separate section discusses the various methods for assessing NP
hemotoxicity. In the last section, we outline the directions for further research in this area.

2. Interaction of NPs with Red Blood Cells (RBCs) in a Protein-Free Medium

NPs (see Table 1) interact with cells differently than small molecules and are incorpo-
rated into the cell by active, energy-dependent processes. Direct NP/RBC contact can cause
a change in the state of the cell membrane [44] and, in many cases, disrupts the membrane
integrity leading to hemolysis. It has been previously shown that the adsorption of NPs
onto the RBC surface can provoke alterations in cell morphology [45,46], the elevation
of osmotic fragility [47] and rigidity [48], alterations in cells’ aggregability and adhesion
to endothelial cells [49], and membrane vesiculation [50]. The consequences of the NP
interaction with a cell are discussed in detail in a recent review by Tian et al. [50].

Table 1. List of NPs and their hemolytic activity.

# NPs Size, nm [NP] in Blood, mg/mL Ref.

1 PS plain 50; 100; 200 0.001 ÷ 0.05 [51–55]

2 Amino-modified PS 50; 100; 200 0.001 ÷ 0.05 [56–58]

3 Carboxyl-modified PS 50; 100; 200 0.001 ÷ 0.05 [56,59]

4 TiO2 15; 20; 30 0.02 ÷ 1.0 [60–62]

5 Fe3O4 10; 20; 50; 100 1.5 ÷ 4.0 [63–65]

7 MgO 25; 40; 60 1.0 ÷ 20.0 [66,67]

8 Gold 3; 5; 50; 100 0.05 ÷ 0.5 [68–71]

9 Silver 35 0.020 ÷ 1.0 [68,72–74]

10 Mesoporous hollow silica 60; 110 0.03 ÷ 1.5 [75–77]

11 ZnO 20; 50 0.8 ÷ 10 [78–80]

12 Selenium 70–200 0.0005 ÷ 0.2 [32,81]

As has been summarized in several reviews [82,83], RBC hemolysis is the most ex-
tensively discussed effect of NPs. The NP hemolytic activity is considered the primary
criterion for hemocompatibility [82]. Oberdörster et al. [26] proposed a list of physicochem-
ical characteristics that might be important for understanding the biological activity and
toxic properties of NPs.

In particular, the hemolytic activity of nanomaterials has been extensively studied
using polystyrene nanoparticles (NPPS) [48,49,54,84]. In a previous study [49], we reported
that the NPPS hemolytic activity is a function of their concentration, size, and protein
concentration in the medium.
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The mechanism of hemolysis induced by NPPS has not yet been defined, but it
nevertheless has to be NP adhesion-dependent so that changes in RBC/NP interaction
conditions will modulate the level of cell hemolysis. Thus, the destabilization of the RBC
membrane [40] by the interaction of NP with the cell lipid bilayer may activate membrane
defects [41,42] that cause RBC hemolysis, implying that the attenuation of NP adhesion to
RBC can reduce the hemolysis.

Peetia and Labhasetwar [85] observed that plain NPPS induced a decrease in the cell
membrane surface pressure, which was inversely proportional to the particle size, indicat-
ing a loss of phospholipids from the interface into the bulk. The authors [86] related this
to the interaction of the phospholipid hydrophobic chains with hydrophobic NPs, which
then mobilize the phospholipid molecules from the interface into the subphase, causing
destabilization of the membrane. Moreover, the authors conclude that the modification of
the particle surface leads to significant changes in the nature of its interaction with the cell
membrane. It was found that double-stranded and single-stranded cationic surfactants on
NPs interact differently with model membranes [86]. NPs that exhibit stronger biophysical
interactions with the membrane also show greater cellular uptake.

Moreover, the authors conclude that the functionalization of the particle surface
leads to significant changes in the nature of its interaction with the membrane [86]. It
was found [86] that the di-chained and single-chained cationic surfactants on NPs have
different interaction mechanisms with model membranes. Saha et al. [87] found that a
linear hemolytic profile with increasing NP surface hydrophobicity is exhibited in the
absence of plasma proteins.

The generation of oxidative stress (OS) by NPs is widely discussed in the literature [88–90],
with convincing data suggesting that it is a common cause of damage to RBCs [91–97],
leading to cell dysfunction [94,96–98] and ultimately to hemolysis [99,100]. Several studies
have demonstrated the significance of reactive NPs’ surface in ROS generation [90,101].
Free radicals are generated when the oxidants and free radicals are bound to the particle
surface. For example, for silica NP (NPSiO2), surface-bound radicals such as SiO• and
SiO2• are responsible for the formation of ROS such as OH• and O2• [102].

Special attention was paid to evaluating the undesirable effects of gold and silver NPs
(NPAu/NPAg), which are increasingly used in biomedical applications [68,69,72,74,103].
The increased interest in these nanoparticles is associated with their ability to penetrate
bacterial cell membranes, change the structure of cell membranes, and even lead to cell
death [104]. The effectiveness of NPAg is due to its nanosize, large surface area to volume
ratio, and the ability to produce reactive oxygen species and release silver ions [105]. Finally,
the generation of ROS and OS by gold and silver NPs leads to cytotoxicity and genotoxi-
city. [105,106]. Regarding the effect of gold and silver nanoparticles on RBCs [107,108], it
was found that their incubation with cells caused significant hemolysis [109].

Interestingly, the interaction between NPAg and a red cell leads not only to a change in
its membrane composition but also to an alteration in intracellular hemoglobin properties.
Barkur et al. [110] studied the effect of NPAg and NPAu on RBCs using Micro-Raman
Spectroscopy and observed spectral modifications, which implicate the deoxygenation of
hemoglobin in NP-treated RBCs. The interaction of RBCs with NPs generally adversely
affects the hemoglobin’s ability to bind oxygen, with NPAg demonstrating a relatively more
substantial adverse effect than NPAu [110]. The authors hypothesized that OS triggered
by NPAg caused more profound changes in the RBCs and, consequently, higher spectral
variations. Barkur et al. [110] confirmed the two mechanisms involved in metal NP-induced
hemoglobin deoxygenation on RBCs: the adherence of NP to the RBC membrane and OS
generation. Perevedentseva et al. [61] also used Raman Spectroscopy to study the effect of
NPTiO2 on the hemoglobin oxygenation state in the RBC cytoplasm. The authors postulated
that the adsorption of NPTiO2 onto the cell surface leads to the partial deoxygenation of
hemoglobin [61].
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3. RBC as Carriers of Nanoparticles

Since RBCs are the most abundant cellular component in circulation, RBC-based
drug delivery systems (DDSs) [111] have been the subject of extensive research in the last
decades [112–116]. “Hitchhiking with RBCs” is a drug-delivery method that can increase
drug concentration in target organs by orders of magnitude [117]. Accordingly, a new class
of delivery systems [71,118–120] has been developed, consisting of human RBCs bearing
NPs loaded with therapeutic agents [118]. In addition, some groups have taken a new
approach to increase the circulation time of NPs by forming an RBC-NP complex, which
reduces the rate of NPs’ removal from the bloodstream [121,122]. Since the attachment
of NP to RBC leads to a significant change in a wide range of cell properties, a thorough
study of the RBC-NP complex behavior in vitro and in vivo is necessary. In particular, it
is essential to assess the sensitivity of the RBC-NP complex to oxidative, mechanical, and
osmotic stresses [47,48].

Several studies have demonstrated the applicability of this approach in nanomedi-
cine [111,123,124]. However, the effect of modified cells on the behavior of native RBCs has
been little studied. In this regard, of particular interest is the work of Barshtein et al. [38],
which examined the effect of RBC-NPPS on the aggregation of RBCs and their adhesion
to endothelial cells (EC). Red cells were incubated with NPPS, washed, and added to
a suspension of untreated RBCs at varying concentrations. The RBC-NPPS complexes
induced red cell aggregates (in PBS) and markedly elevated RBC adhesion to EC. These
effects were augmented by (a) increasing the concentration of RBC-NPPS and (b) decreasing
the NPPS size. This implies that the RBC-NP complex can induce strong interaction with
native RBCs and form large and robust aggregates with native red cells [38,39,125], as
well as enhance RBC/EC interaction [58,99]. Han et al. [39] discussed the mechanism
of RBC aggregation that was modulated by hydroxyapatite NPs and concluded that NP-
induced RBCs aggregation could be attributed to the bridging force via the surfaces of
NPs and RBCs. The authors consider two alternative RBC aggregation models proposed
to describe RBCs aggregation in a medium containing macromolecule and suggest the
bridging model [126,127] as a preferred one.

4. Corona Formation

In the blood, a layer of plasma components is adsorbed onto the NP surface, modifies
its properties, and imparts it with a new identity [128,129]. Therefore, under physiological
conditions, RBCs do not directly interact with the NP surface, but rather with plasma pro-
teins bound to the particle with varying strengths [130–132], named “corona” [129,133–135].
For a single-protein solution, it has been shown that the protein binds to the NP with mi-
cromolar affinity, depending on surface properties [134,136,137]. However, when NP is
suspended in plasma (which contains numerous types of proteins), proteins that first ad-
sorb to its surface are later replaced by others (Vroman effect, [138]) with a higher affinity
for the surface [138–140]. The exchange mechanisms are still being explored [139,141,142].
The character of the surface has been shown to affect the affinity [143,144] and the eventual
balance between the adsorbed proteins [145,146]. Moreover, the stability of the protein
layer on the NP can affect the NP-RBC interaction (adhesion [147], hemolytic activity [49]),
and cellular uptake [148]).

In addition, the protein corona composition is sensitive to the NP surface functional-
ization. For example, Kelpsiene et al. [149] found that aminated NPPS bind a different set
of proteins than carboxylated NPPS.

Notably, modern approaches that use artificial intelligence are now being imple-
mented to predict corona composition and help explain the biological compatibility of
NPs [150–153]. Moreover, the method reported by Bun and colleagues [150] successfully
predicted cellular recognition (e.g., cellular uptake by macrophages and cytokine release)
and nanotoxicity mediated by functional corona proteins.
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As we demonstrated, forming a corona around nanomaterials is a complex pro-
cess, and, for a comprehensive introduction to this topic, we recommend several re-
views [128–132] selected from a long list of relevant publications.

5. RBC Interaction with Corona-Coated NP

The NP adhesion to the cell surface is critical in determining their interaction level.
The inhibition of NP/RBC adhesion may be induced by covering the surface with corona
proteins [148,154]. The corona can be created intentionally (by pretreatment of particles) or
spontaneously (following the interaction of NP with plasma proteins). As noted above, in
the plasma or other body fluids, the NP/RBC interaction is not with the NP itself but with
the particle’s corona proteins. The biophysical explanation for the relationship between
protein adsorption onto NP surfaces and the NP interaction with red cells is complicated,
as many factors, such as the NP and RBC properties and the environment around them,
influence this.

In a previous publication [49], we suggested that the protein coating of NPs should
decrease their hemolytic activity. To test this hypothesis, we determined the hemolytic
activity of uncoated and albumin-treated NPPS (as albumin is an inhibitor of NP/RBC in-
teraction [147]). It was found that at a concentration of 0.05% albumin, the NPPs’ hemolytic
capacity is totally inhibited, despite the fact that, at this concentration, only 30–50% of the
NP surface is covered with protein [134,155]. Thus, we concluded that the formation of an
albumin corona on NPPs leads to a sharp decrease in their hemolytic activity.

Similarly, Yeo et al. [156] found that gold nanorods treated with a serum to form a
protein corona on their surface exhibited hemolytic activity of less than 0.2%, with no
observable effect on RBC morphology.

Saha et al. [87] considered a more complex issue. They synthesized a class of cationic
NPAu with the same core size (~2 nm) but different surface functionalities induced by
changing the surface hydrophobicity and determined their hemolytic activity in the pres-
ence and absence of plasma proteins. They found a critical synergy between the chemical
functions of the NP surface and the protein corona, with corona formation leading to a
sharp decrease in the NP hemolytic activity. The presence of plasma proteins prevented the
hemolytic activity of both hydrophilic and hydrophobic NPs [87].

6. Methods for Assessment of Nanomaterials’ Hemotoxicity

Nano-toxicology is a fast-developing area of nanoscience and nanotechnology. Current
studies on the toxic effects of NPs, aiming to identifying the mechanisms of their harmful
effects, are carried out in cell culture and animal models [54,55,57,59,157–162].

The toxicity of NPPS has received special attention [162–165]. These particles can
be easily synthesized in a wide range of sizes, and their surfaces can be given different
functionality [59]. Thus, they are ideally suited as a model for studying the effect of
particle surface characteristics on various biological parameters both in vitro and in vivo.
Sarma and colleagues [54] have analyzed the cytotoxic and genotoxic potential of NPPS
on human peripheral lymphocytes (in vitro), while Loos et al. [59] have summarized
information regarding the effect of functionalized (positively and negatively charged) NPPS
on macrophages and THP-1 cells (in vitro). These studies indicate that while polystyrene
is non-toxic, functionalized nanoparticles may behave differently than bulk material, and
surface chemistry plays a critical role in determining the effect of NPPS on various cells.

The toxicity of NPPS was also analyzed in vivo in animal models [159–162]. Fan
et al. [160] observed the accumulation of fluorescent NPPS in various organs of mice after
oral ingestion, including in the liver, kidney, spleen, and pancreas. The main mechanism of
damage to the internal organs was the impairment of liver function and lipid metabolism.
Yasin and colleagues also identified the striking hepatoxicity of NPPS (in a dose-dependent
manner) [162] in rats. In addition, a recent in vivo study showed that PSNPs induced repro-
ductive toxicity [161] in mice, caused fetal growth restriction, and significantly impaired
cholesterol metabolism in both the mice’s placenta and the fetus [159].
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However, the toxicity and risk associated with the use of NPs still need to be under-
stood in their entirety [95]. The development of an adequate experimental strategy for
estimating NPs’ toxicity should include the choice between in vitro (cell lines) and in vivo
(animal models) methods or a combination of both, as both methods have advantages
and disadvantages. The NP toxic effects on individual cell components and tissues are
more accessible for in vitro analysis, while in vivo models enable the assessment of NP
toxicity for individual organs or the whole organism [163]. It seems more logical to first test
NP toxicity on cells, and if toxic effects are clearly demonstrated, this may spare the need
for animal testing, in accordance with the global trend of reducing the number of animal
experiments [97,98].

The rapid growth of nanomedicine and the development of more and more new NPs
make in vivo toxicity tests undesirable on both ethical and financial grounds, creating an
urgent need to develop in vitro cell-based assays that accurately predict in vivo toxicity
and facilitate safe nanotechnology.

Of all the cell types [164] that can be used to assess the toxicity of nanomaterials, the
choice of RBC as a target cell seems to be the most useful. As noted above, irrespective
of their use, source, and route of exposure, NPs enter the bloodstream and interact with
RBCs, the major cellular component in the circulation (4–5 million RBCs per 1 µL of
blood), producing a negative effect on their functionality. As RBCs are well characterized,
accessible, and easy to manipulate, they make an excellent candidate for being the target
cells for nanotoxicity assessment.

Numerous studies have examined the NP-RBC interaction, focusing on the hemolytic
potential of NPs [49,165], suggesting that this is the critical test of NP safety [75,166].
Although hemolysis tests have been conducted with various NPs, comparing results
across studies is difficult due to the variability of protocols implemented for particle
characterization and hemolysis testing [52].

The American Society for Testing and Materials (ASTM) published (2008) a standard
test protocol for the assessment of NPs’ hemolytic properties [166], which determines the
percentage of hemoglobin (Hb) released after NP-RBC interaction. The hemolytic assay
has proven to be a promising test for surveying nanomaterial toxicity [167] due to its low
cost, good reproducibility, and quick results [77]. To date, hemolytic activity has even been
demonstrated with therapeutic NPs in vitro [73,168,169] and in vivo [170,171], indicating
the potential adverse effects of NPs, which may limit their applications in nanomedicine.

Cho et al. [172] studied the nanotoxicity of a panel of NPs (CeO2, TiO2, carbon black,
SiO2, NiO, Co3O4, Cr2O3, CuO, and ZnO). The authors compared the acute lung inflammo-
genicity in a rat model with in vitro toxicity. For in vitro testing, eight different cell-based
assays were used, including epithelial cells, monocytic/macrophage cells, human erythro-
cytes, and combined culture. Cytotoxicity in differentiated peripheral blood mononuclear
cells was the most accurate, demonstrating 89% accuracy and 11% false negative results in
predicting acute pulmonary inflammation. However, only hemolysis tests demonstrated a
100% match with lung inflammation at all NP concentrations. Other in vitro cellular assays
showed a weaker correlation with in vivo inflammatory activity.

An analysis of the related literature supports the finding that NP-induced hemolytic
activity can assess in vivo NP toxicity and has been proposed as a critical test in determining
NP hemocompatibility [75,77,166,173]. However, despite the attempts to develop a unified
protocol to determine NPs’ hemolytic activity, the measurement conditions used by various
research groups still differ significantly [52].

For a universal protocol, it is necessary to consider that forming a protein corona
around NP inhibits its effective hemolytic activity. In addition, the interaction between a
red cell and a nanoparticle in the bloodstream occurs under flow-induced mechanical stress,
which can cause RBC deformation [174] and stimulate NP hemolytic activity [47]. Thus, it
would be appropriate to test NP hemocompatibility under mechanical stress conditions in
a medium supplemented by plasma proteins or in the plasma itself (and not in a buffer, as
is customary in many laboratories).
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The ability of an NP to change RBC properties can be expressed as an alteration in its
functionality and, in its extreme form, as the destruction of the cell [38,175,176]. Therefore,
other properties of red cells, such as their aggregability, deformability, and adhesion to EC,
should be considered alternative markers to NP hemolytic activity [38,175,176].

All of the mentioned studies demonstrate the protective role of the protein corona
formed on the nanomaterial’s surface, improving the NP hemocompatibility and provid-
ing promising options for the design of therapeutic nanomaterials without prohibitive
toxic effects.

Thus, we can summarize that the NPs’ characteristics and the plasma composition
are the dominant factors determining the NPs’ hemocompatibility. Additional factors that
can affect the NP hemolytic ability inclue the properties of the RBCs themselves and the
presence of mechanical stress (Figure 2). For these reasons, when developing a protocol for
testing the hemolytic activity of NPs, it is necessary to consider all four factors.
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7. Conclusions

The application of nanotechnology to medicine is expected to have a revolutionary
impact on health care [115–117] and has already stimulated the emergence of relatively new
areas, such as nanotoxicology. It is evident that, with the expansion of NP use, the need to
assess the toxicity of new materials also grows. However, assessing NP toxicity is a costly
process that includes several steps. As discussed above and further detailed in additional
publications [70,177,178], an in vitro assay is a superior method for preliminary toxicity
assessments. While, at present, the tests for NPs’ hemolytic activity are the most widely
adopted, they ignore several important factors, particularly the need to assess hemolysis in
the presence of plasma proteins and under conditions of mechanical stress. Furthermore,
when considering the use of NPs for treating pathologies related to impaired RBC function
(e.g., diabetes, hemoglobinopathies, and others), toxicity testing should be carried out using
cells specific to these conditions.

Finally, we hope this review will promote further research on NP-RBC interactions
and encourage researchers to develop simple and effective in vitro tests to assess NP
hemocompatibility.
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