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Abstract: The existence of conveyor foreign objects poses a serious threat to the service life of conveyor
belts, which will cause abnormal damage or even tearing, so fast and effective detection of conveyor
foreign objects is of great significance to ensure the safe and efficient operation of belt conveyors.
Considering the need for the foreign object detection algorithm to operate in edge computing devices,
this paper proposes a hybrid compression method that integrates network sparse, structured pruning,
and knowledge distillation to compress the network parameters and calculations. Combined with a
Yolov5 network for practice, three structured pruning strategies are specifically proposed, all of which
are proven to have achieved a good compression effect. The experiment results show that under the
pruning rate of 0.9, the proposed three pruning strategies can achieve more than 95% compression
for network parameters, more than 90% compression for the computation, and more than 90%
compression for the size of the network model, and the optimized network is able to accelerate
inference on both Central Processing Unit (CPU) and Graphic Processing Unit (GPU) hardware
platforms, with a maximum speedup of 70.3% on the GPU platform and 157.5% on the CPU platform,
providing an excellent real-time performance but also causing a large accuracy loss. In contrast, the
proposed method balances better real-time performance and detection accuracy (>88.2%) when the
pruning rate is at 0.6~0.9. Further, to avoid the influence of motion blur, a method of introducing prior
knowledge is proposed to improve the resistance of the network, thus strongly ensuring the detection
effect. All the technical solutions proposed are of great significance in promoting the intelligent
development of coal mine equipment, ensuring the safe and efficient operation of belt conveyors,
and promoting sustainable development.

Keywords: foreign object detection; belt conveyor; deep learning; computer vision; lightweight
CNNs; network compression

1. Introduction

In the modern coal mining industry, the belt conveyor assumes an important role as a
“coal porter”. Benefitting from its advantages of low running resistance and continuous
transport, belt conveyors have become the preferred equipment for coal transport in
underground or opencast coal mines, and are currently developing in the direction of
large-scale, intelligent, and energy-saving [1,2]. In detail, the intelligence of belt conveyors
mainly means that the conveyor relies on various advanced sensors to realize its own
self-perception of operation state, and make independent decisions to complete its own
efficient operation with the optimal strategy and cooperate with the whole production
process ideally, and it is also an important measure to guarantee the safe operation of belt
conveyors [3].
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However, due to the complexity of the working environment and the diversity of
transport categories, the coal flow is often mixed with metal objects such as anchor rods,
bolts, and iron sheets that are left behind, or large pieces of coal gangue that are mined
from the upstream. These irregular objects can easily cause jamming of the chute, which
will cause damage to the conveyor belt or even tear it directly, seriously threatening the safe
operation of the belt conveyor and increasing the operation resistance of the belt conveyor,
causing unnecessary energy waste [4,5]. Therefore, to reduce unnecessary damage to the
conveyor belt and ensure its service life, it makes sense to identify and detect foreign objects
embedded in the transported materials. This is a proactive measure to prevent conveyor
belt damage, which nips potential risks in the bud [6]. Based on the above reasons and
situation, many researchers have already carried out a lot of research work.

From the perspective of the detection method of conveying foreign objects, it can
be divided into the manual detection and automatic detection methods. Among them,
the manual detection method mainly relies on workers’ eyes to identify foreign objects,
which is labor-intensive and only applicable to low-speed belt conveyors. Meanwhile, the
automatic detection methods include the iron remover method [7,8], ray method [9,10],
dielectric characteristic-based distinction method [11–13], machine vision method, etc. All
these methods have their own limitations. In detail, the iron remover method is suitable for
metal iron foreign objects, but is invalid for other foreign objects such as wooden sticks; the
ray method has a certain degree of radiation, which is safe for human health. The dielectric
characteristic-based distinction method is also limited to the distinction between coal and
gangue, and cannot be used to distinguish other types of foreign objects. In contrast, the
machine vision method benefits from its technical uniqueness of non-contact recognition
and measurement, making it a good development in this field in recent years.

In detail, the detection methods based on machine vision can be divided into the
traditional image processing-based method and deep learning-based method, according to
the development process. Among them, the traditional image processing-based method is
more commonly applied to the distinction between coal and coal gangue, which mainly
uses the differences of targets in color, texture, shape, etc., as features, and then uses
classifiers such as SVM to differentiate [14–18].

Compared with the traditional image processing-based method, the deep learning-
based method is more commonly applied to the detection of more types of foreign objects.
CK. Xiao et al. [19] have proposed a foreign object recognition method based on improved
Faster Region-CNN (R-CNN) for coal gangue and iron flakes mixed in coal, and the
detection accuracy has reached 95.35%; Wang Y et al. [20] further expanded the category
of foreign objects to include four types: large coal, anchor, wood rod, and wood block. In
addition, they used depthwise separable convolution instead of ordinary convolution in
the backbone feature extraction network VGG16 of Single Shot MultiBox Detector (SSD)
network, which reduced the number of parameters and improved the detection speed
to a certain extent. Zhang K et al. [21] also attributed the categories of foreign objects to
four types: rigid sticks, rigid planks, soft ropes, and soft cloth, and integrated depthwise
separable convolution, attention mechanism, and classification activation map into Unet,
which effectively improved the accuracy of foreign object detection on its self-made data
set, as the detection accuracy has reached 97%. Further, from the algorithmic level, Ma G
et al. [22] proposed to introduce depthwise separable convolution into a Centernet network
to improve the detection speed of foreign object detection. The experimental data showed
that the proposed algorithm can efficiently detect coal gangue, bolts, drill bits, and channel
steel. Recently, Zhang MC et al. [6] prioritized the establishment of a conveying foreign
objects dataset containing six types of foreign bodies, and further considered the higher
real-time requirements of the target detection network for conveyors running at high
belt speeds. They then introduced the Mobilenet series, Resnext series, and Shufflenetv2
series into the Yolov4 network, which effectively guarantees the detection accuracy and
detection speed.
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All the above schemes and methods have achieved good detection results in the labo-
ratory, but there are still certain defects and deficiencies in practical application. Because
the current video monitoring of belt conveyors in coal mines mostly uses network cameras
for data collection, which do not have the ability to intelligently analyze, the collected data
needs to be uploaded to the central server for centralized processing [23]. Due to the limi-
tation of signal transmission bandwidth, there is a high network delay in this processing
method, which has a great impact on the real-time processing and accuracy of the system
early warning, and the simultaneous transmission and processing of multi-channel video
data also requires a higher computing power of the central server [24,25].

In contrast with the centralized processing method, the edge computing method dis-
perses the data processing tasks to the data acquisition end, thereby reducing the delay in
the data transmission process and reducing the computing pressure of the central server,
so it is more suitable for real-time. However, the computing power of edge computing
devices is usually poor, and it is difficult for them to support complex deep neural networks.
Therefore, to enable edge computing devices to have the same real-time processing capabil-
ities, the corresponding algorithms or networks must be compressed and lightweighted
to reduce the complexity and reduce the amount of computation. The existing methods
of using compact convolution kernels instead of ordinary convolutions, such as using
depthwise separable convolutions, have been proven to be time-consuming [26], so it is
necessary to explore new acceleration methods.

In view of the current situation of conflict between the bottleneck of edge comput-
ing equipment or central server computing power and the high-performance network
requirements of enterprises, this paper conducts research on an efficient identification and
detection method of non-coal foreign objects based on hybrid compression optimization,
aiming to use neural network compression techniques to lighten and improve the detection
network for non-coal foreign objects, thereby compressing the number of parameters and
the storage space occupied by the network model, and making the network less compu-
tationally intensive and faster in inference detection without losing detection accuracy,
increasing its potential use in edge computing devices.

The remainder of the paper is organized as follows: Section 2 presents the relevant
datasets and hardware configurations. Section 3 introduces the target detection network
and its improvements, especially the principle and method of hybrid compression. The
results of a case study and related discussion are presented in Section 4. Finally, the
conclusions of the study are summarized in Section 5 and the future work is presented in
Section 6.

2. Data Preparation and Hardware Basics

Data, computing power, and algorithms are the three essential elements of artificial
intelligence. When both the computing power and algorithms (networks) have been
determined, the quantity and quality of data directly determine the upper limit performance
of deep learning target detection networks. Due to the particularity of the detection objects,
there is no non-coal foreign objects dataset available for network training and testing in
the existing public datasets. This study uses the same dataset constructed by researchers
Mengchao Zhang and Yuan Zhang et al. [6]. In the dataset, there are 10,448 images with
31,288 labels, including 6 types of conveying foreign objects: coal gangue, wooden stick,
bolt, iron sheet, angle iron, and iron rod.

The computing power is determined by the performance of the hardware. In this
paper, three different devices that contain three CPU platforms (C1, C2, C3) based on
different architectures and three GPU platforms (G1, G2, G3) are selected for algorithm
or network testing, whose specific model can be clearly found in Table 1. Meanwhile, the
algorithm-running environment and programming language usage are also given in detail
in Table 1.
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Table 1. Hardware usage and algorithm operation platform.

Devices
OS Python Pytorch

Composition #1 #2 #3

CPU E5-2620V3 (C1) i7-9750H (C2) i5-12400F (C3)

Windows10 3.6.13 1.8.0
GPU RTX 2060 (G2) GTX 1650 (G1) RTX 3080 (G3)
Memory size
with frequency 64G-1866 MHz 24G-2666 MHz 32G-3200 MHz

On the premise that the data and computational power are well determined, and
to select a better target detection network for optimization, this paper gives priority to
training a variety of target detection networks in the dataset, including the anchor-based
one-stage target detection networks: SSD, Yolov3, Yolov4, Yolov5 [27], and also including
the anchor-free-based target detection networks: CenterNet and YoloX. The performance of
various networks in the dataset (on G2 platform) is shown in Table 2.

Table 2. Performance of multiple target detection networks in non-coal foreign objects datasets.

Model Parameter/M GFLOPs Model Size/MB mAP0.5 FPS

CenterNet 32.72 93.20 125 94.58% 23.2
SSD 26.35 52.55 93.2 92.96% 45.3

Yolov3 61.60 123.49 235 91.57% 26.7
Yolov4 64.03 128.43 245 92.14% 22.5

Yolov5-s 7.03 15.9 13.7 98.0% 65.3
Yolov5-m 20.89 48.1 40.8 98.5% 54.5
Yolov5-l 46.16 108 88.5 98.7% 34.9
YoloX-s 8.94 26.65 68.7 88.95% 57.5
YoloX-m 25.28 73.52 193 89.06% 42.7
YoloX-l 54.15 155.33 414 88.07% 37

According to the results shown in Table 2, it can be found that the Yolov5-s network
has achieved a higher prediction accuracy with the fastest prediction speed due to its
fewer parameters, fewer calculation amount, and small model size occupation. Therefore,
compared with other networks, the Yolov5-s network has a higher cost performance ratio,
so we established Yolov5 as the main line to carry out the subsequent corresponding
optimization work.

3. Network Structure and Hybrid Compression Optimization Method
3.1. Network Structure

The structure of a typical target detection network usually consists of three parts: a
feature extraction network, a feature enhancement network, and a prediction network. The
former two are also called the backbone and neck, respectively. The prediction network uses
the features extracted by the backbone and neck networks for prediction and regression
to identify and locate the targets in the images. The structure of the Yolov5 network used
in this paper is shown in Figure 1. Among them, the CSPDarknet network is used as
the backbone, for which a large number of Cross Stage Partial (CSP) modules are used to
increase the depth of the network to enhance the feature extraction capability of the network.
Meanwhile, to avoid the gradient disappearance caused by the increase of network depth,
in the CSP module many Resunit units are used to enhance the feature information, which
further ensures the effective extraction of deep features. Furthermore, in the neck part of
the feature enhancement network, upsampling and feature pyramid structure are used
to fully integrate high-level semantic feature information with low-level location feature
information, which makes up for the problem of less target location information in high-
level feature information and effectively ensures the detection accuracy.
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3.2. Hybrid Compression Optimization Method

Many studies have shown that the deep neural networks are facing severe over-
parameterization, that is, there is a huge redundancy in the internal parameters of the
network model, and deep neural networks may only need to train 5% of the parameters
and use them to predict the rest of the network parameters, which can be comparable to
the original ones [28]. Therefore, with the gradual transformation of deep neural networks
from academia to industry in recent years, network compression and lightweight methods
have gradually become a research hotspot. Among them, low-rank decomposition [29,30],
sparse training [31], structure pruning [32–36], weight quantization [37,38], knowledge dis-
tillation [39,40], compact convolution kernel design, etc., have all proved to be very effective
network compression methods. This paper proposes a hybrid compression optimization
method that integrates sparse training, structural pruning, and knowledge distillation.
The specific implementation process is shown in Figure 2, and it will be explained and
described in detail below.
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3.2.1. Sparse Training and Structural Pruning

As the feature information is extracted by the deep neural network through the
convolutional layer, its distribution will shift or change with the increase of network depth
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or training, generally towards the upper and lower limits of the value interval of the non-
linear function. Taking the sigmoid and tanh activation functions as an example, as shown
in Figure 3, the gradient of the neural network in the highlighted interval is very small,
which is not conducive to the reverse neural network propagation, or will lead to slower
convergence of the network, or will also lead to overfitting of the network.
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Therefore, in the deep neural network, the combination of convolution layers, batch
normalization (BN) layers, and activation function is generally used: the feature information
extracted by convolution layers is preferentially adjusted by BN layers for data distribution,
and then the nonlinear information will be introduced by the activation function, thereby
improving the expressive ability of the neural network to the model; the specific structure
can be found in the CBL module shown in Figure 1. In detail, the use of BN layers is to
re-adjust the data distribution of the feature information of each channel extracted by the
convolution layers to make it meet a relatively standard normal distribution, which ensures
the result of each layer of the convolution calculation can be transmitted within an effective
range, thus avoiding the disappearance of the gradient and speeding up the convergence
speed. The specific implementation method is as follows:

Assuming that the input information of BN layers is a mini-batch consisting of m
samples, B =

{
x(1), · · · , x(m)

}
, then the output result of batch normalization can be

obtained by the following steps:
(1) Firstly, find the mean µB and variance δ2

B of the mini-batch B:

µB =
1
m

m

∑
i=1

x(i) (1)

δ2
B =

1
m

m

∑
i=1

(x(i) − µB)
2

(2)

(2) Secondly, standardize x(i) based on the above mean and variance:

x̂(i) =
x(i) − µB√

δ2
B

(3)

(3) Thirdly, to ensure that the denominator in Equation (3) is greater than 0, a tiny
constant ε greater than 0 is introduced, then Equation (3) can be corrected as Equation (4):

x̂(i) =
x(i) − µB√

δ2
B + ε

(4)
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(4) Further, since the standardized x̂(i) will basically be limited to a normal distribution,
which will reduce the expressive ability of the network, two learnable parameters could be
introduced for further adjustment of the data distribution, namely the scaling parameter γ
and the bias parameter β, both of which will be automatically updated when the neural
network backpropagates for gradient descent. At this point, Equation (4) can be further
corrected as follows:

x̂(i) = γ× x(i) − µB√
δ2

B + ε
+ β (5)

Through the above process, the BN layer could complete the batch normalization of
the feature information of each channel, and then, through the activation function, more
nonlinear information could be further introduced to the features. It can be seen from
Equation (5) that when the scaling parameter γ is close to 0, no matter what the feature
information of the channel is, the result of batch normalization will only be determined
by the bias parameter β, and it has nothing to do with the channel feature information.
Therefore, we can judge the importance of the network channel according to γ: in the
training process, when γ approaches 0, the feature information of the corresponding
channel will become useless information, and the network will become more sparse, which
is the essence of network sparse training.

Since the scaling parameter γ and the bias parameter β are involved in the training
process of the network, a penalty term can be added to the loss function to constrain it so
that more of the γ converges to 0, thus achieving a greater degree of sparsity. In this paper,
L1 regularization is used as a penalty term added to the original loss function to drive the
scaling parameter γ to approach 0 during training, resulting in a sparse network model.
The new loss function after the penalty term added is shown in Equation (6).

Ln = ∑
(x,y)

l( f (xb, W), yb) + λ∑ |γ| (6)

where Ln denotes the loss function with the penalty term added; ∑
(x,y)

l( f (xb, W), yb) denotes

the original loss function; (xb, yb) denotes the data and label provided by the dataset; W is
the weights trained by the network; and λ is the regularization coefficient.

As shown in Equation (6), the loss function after adding the penalty term differs from
the original loss function by taking |γ| into account. In detail, since the overall loss function
Ln is finally descended towards the direction of minimization, the value of |γ| is not allowed
to increase; as the training progresses, the value of |γ|will gradually approach 0, which will
lead to the failure or uselessness of the feature information of the corresponding channel
and achieve the purpose of network sparseness. The value of the regularization coefficient
λ determines the speed and constraint of network sparseness; the larger the value, the
faster the network becomes sparse and the stronger the constraint.

Based on the sparse training of the network, the value of |γ| can be used as a criterion
to measure the importance of the network channels. By pruning the channel where |γ|
is closest to 0, a more lightweight network can be obtained. Further, since the calcula-
tion result of each channel in the output feature layer is also closely related to the filter,
the judgment of the filter weight is also one of the factors to measure the importance
of the channel. Therefore, we propose a channel importance scoring standard that com-
prehensively considers the BN layer scaling parameters and filter weights, as shown in
Equations (7) and (8).

Ex =
k

∑
j=1

R(Wj) (7)

mi = γi × Ei (8)

where Ex denotes the sum of the absolute values of the weights of filter x; k denotes the
number of convolution kernels in the filter; Wj denotes the j-th convolution kernel in filter x;
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R(Wj) indicates the L1 norm of the convolution kernel Wj; γi denotes the scaling parameter
for the i-th channel; and mi is the importance score of the i-th filter.

The evaluation of the importance of each channel can be completed by Equation (8),
and the comprehensive score set M = {m1, m2, . . . , mn} can be obtained. Finally, the
pruning threshold of the filter in each convolutional layer can be obtained by Equation (9)
and the preset pruning rate.

λpr = sortpr(M) (9)

where λpr is the pruning threshold; and sortpr(·) denotes the ascending sort function, which
will output the value at position pr.

Then, from the network structure of Yolov5-s shown in Figure 1, it can be found
that the BN layers in the network are distributed in three positions, namely the CBL
(Conv_BN_LeakyRelu) module used for channel number adjustment in the backbone, the
CSP 1_X module used for network expansion in the backbone, and the CSP 2 module used
for feature enhancement in the neck. This paper proposes three pruning strategies based on
the distribution characteristics of the BN layer in the network, with the difference between
them lying in the different processing ways of the BN layer in the CSP module.

(1). Pruning strategy 1:

In the structure of the CSP1_X module shown in Figure 1, there is a residual-like unit
called Resunit, whose structure is also clearly given. From that, it can be clearly found
that there is a residual edge (shortcut) and convolution layer splicing together through an
add function for subsequent feature extraction. Due to the use of the add function, the
two feature layers need to be consistent in dimension. Therefore, in pruning strategy 1, we
do not perform pruning on the two convolution layers that are directly connected at the
beginning and end of the shortcut to avoid dimensional processing.

(2). Pruning strategy 2:

Since pruning strategy 1 cannot sufficiently compress the network, in pruning strategy
2 we also prune the two convolutional layers that are directly connected to the shortcut.
During the dimension processing, the number of remaining channels of the convolutional
layer connected to the front end of the shortcut is taken as a reference to prune the channels
of the convolutional layer inside the CSP module.

(3). Pruning strategy 3:

In pruning strategy 3, the pruning threshold will no longer refer to the importance
score of the number of channels in each convolutional layer. Instead, after sparse training, a
globally-based comprehensive score set is obtained based on Equation (8), and the pruning
threshold is determined according to Equation (9) and the artificially set pruning rate.
However, global pruning threshold cannot guarantee the integrity of some special network
structures, such as residual blocks, so we also introduce a local security threshold to ensure
the integrity of channel connections.

3.2.2. Network Fine-Tune and Knowledge Distillation

As the pruning process breaks the structure of the original network, especially the
number of channels in the convolutional layer, the pruned model cannot be directly used for
prediction or performance evaluation. Therefore, it is necessary to fine-tune the remaining
weight parameters to re-learn and iteratively update them in the dataset, so that they can
re-learn the data feature distribution and achieve better prediction results.

The fine-tune process is the same as the normal training process, but the number of
remaining parameters varies depending on the degree of pruning, so in some networks
with a large degree of pruning, the effect of the fine-tune is not obvious because it is difficult
to fit the data sample features well with a small number of parameters. In this paper, we
propose to introduce the knowledge distillation strategy into the fine-tune stage and use the
original unpruned Yolov5-s network as the teacher network to guide the pruned network
to converge quickly and improve the prediction performance.
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4. Results and Discussion
4.1. Results of Network Sparse Training

In this paper, the regularization coefficients λ are firstly set as 0, 0.001, 0.0015, and 0.002,
respectively, and the original Yolov5-s network is sparsely trained for 100 epochs. Then, the
distribution changes of scaling parameter γ during the training process are visualized in
Figure 4. When λ = 0, the distribution of scaling parameter γ basically presents a normal
distribution with a mean value of 1.0, as shown in Figure 4a. In this case, there are very
few γ at the 0 position, so it cannot be pruned. When λ = 0.001, the distribution of scaling
parameter γ gradually moves to the left from the top normal distribution and approaches 0
as the training progresses, which indicates that with the deepening of network training, L1
regularization as a penalty term has a good effect on the sparsity of the network and makes
the difference of weight distribution of the BN layer more obvious, which provides a good
criterion for channel and convolution kernel pruning. At the same time, from Figure 4b–d,
it can be seen that as the value of λ increases, the training step size required to achieve
the same degree of network sparsity decreases, which also confirms the correctness of
Equation (6). Further, the results of sparse network training when λ = 0.0015 are used for
subsequent channel and convolution kernel pruning.
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4.2. Results of Network Pruning

Three different pruning strategies are respectively adopted to prune the sparse Yolov5-
s network, and the pruning rate ranges from 0.1 to 0.9. The effects of different pruning
rates on network performance are respectively counted and shown in Table 3. Due to the
damage of structural pruning to the network structure, it is difficult for the pruned network
model and the corresponding weight to achieve high prediction accuracy. Therefore, in
Table 3, we count more changes in the number of parameters and the size of the network
model.
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Table 3. The effect of different pruning strategies and different pruning rates on network performance.

Pruning Rate
Pruning Strategy 1 Pruning Strategy 2 Pruning Strategy 3

Parameters/M Model
Size/MB Parameters/M Model

Size/MB Parameters/M Model
Size/MB

0 7.03 13.7 7.03 13.7 7.03 13.7
0.1 6.16 11.85 5.44 10.5 6.44 12.4
0.2 5.38 10.35 4.37 8.4 5.74 11.05
0.3 4.57 8.8 3.56 6.9 4.92 9.45
0.4 3.66 7.05 2.73 5.3 3.92 7.55
0.5 2.79 5.4 1.95 3.8 2.95 5.7
0.6 2.04 4 1.24 2.45 2.06 4.03
0.7 1.41 2.79 0.71 1.44 1.33 2.63
0.8 0.74 1.5 0.35 0.75 0.61 1.25
0.9 0.13 0.35 0.102 0.28 0.103 0.28

It can be seen from the above table that under the three pruning strategies, with the
increase of the pruning rate, the parameters of the network scale and the size of the model
show a significant downward trend: when pruning strategy 1 is adopted, as the pruning
rate increases from 0.1 to 0.9 the amount of parameters decreases from 7.03 million (M) to
0.13 M, the parameter compression ratio reaches 98.15%, the corresponding network model
size (weight occupied space) decreases from 13.7 MB to 0.35 MB, and the compression
ratio reaches 97.44%. Similarly, when pruning strategy 2 is adopted, with the increase
of the pruning ratio the parameter amount of the network model drops to 0.102 M, the
compression ratio reaches 98.5%, the model size decreases from 13.7 MB to 0.28 MB, and
the compression ratio reaches 97.9%. When pruning strategy 3 is adopted, the amount of
network parameters drops from 7.03 M to 0.103 M, the compression ratio reaches 98.5%,
the network model size drops from 13.7 MB to 0.28 MB, and the compression ratio reaches
97.9%. Then, by comparing the compression effects of the three pruning strategies it can be
found that pruning strategies 2 and 3 have a more significant effect on the compression of
parameters and model size.

Further, the number of remaining channels in each convolutional module under
different pruning rate settings is counted separately in Figure 5. It can be found that under
the three pruning strategies, the pruning of the convolutional channels is more concentrated
in the front-end and middle layers of the network model, while the parameters of the deep
few layers are retained after pruning. This is due to the prediction mechanism of the
network. The deep network of the network needs to maintain a certain dimension for
predicting the probability and location of the target. The distribution of the number of
channels obtained after pruning shown in Figure 5 can also provide a reference for future
simplified network structure design.

4.3. Results of Network Fine-Tune and Knowledge Distillation

In the fine-tuning stage of the network, the normal network fine-tuning method (FT 1)
and the network fine-tuning method with knowledge distillation (FT 2) are used to retrain
the pruned network for recovery and further testing of the network prediction performance.
In FT 2, the original Yolov5-s network before sparse training is used as the teacher network,
and the distillation temperature is set as 3 preferentially. Then, in the finetune process the
total number of fine-tuning training steps (epochs) is set as 50, the batch size is set as 16,
and two fine-tuning methods are counted, respectively. The effect of the two fine-tuning
methods on the recovery of the network performance after pruning is counted separately,
as shown in Table 4.
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Table 4. The effect of different fine-tuning methods on the recovery of prediction accuracy.

Pruning
Rate

Pruning Strategy 1 Pruning Strategy 2 Pruning Strategy 3

FT 1 FT 2 FT 1 FT 2 FT 1 FT 2

0.1 97.8% 97.7% 96.2% 97.4% 97.7% 97.7%
0.2 97.3% 97.3% 96.3% 97.0% 97.6% 97.6%
0.3 97.1% 97.1% 95.7% 96.5% 97.3% 97.3%
0.4 96.5% 96.7% 95.3% 95.9% 96.7% 96.8%
0.5 96.3% 96.1% 95.1% 95.2% 96.3% 96.3%

0.6 95.4% 95.2% 93.9% 93.8% 95.8% 95.7%
0.7 94.9% 94.3% 91.6% 90.7% 93.9% 94.9%
0.8 92.4% 92.4% 89.3% 88.2% 92.3% 92.1%

0.9 58.4% 80.4% 62.6% 66.2% 78.5% 81.4%

From the data shown in Table 4, it can be seen that at pruning rates of 0.1–0.5, both
FT 1 and FT 2 have good recovery results for most of the pruned networks, and the effects
of both are very similar; both can restore the performance of the pruned networks to
close to that of the original networks, which fully proves that there is indeed some over-
parameterization in the original networks, but also shows that under a small pruning rate,
the effect of the fine-tuning with knowledge distillation method is not obvious. When the
pruning rate is 0.6–0.8, the overall effect of the fine-tuning strategy becomes less and less
obvious as the pruning rate increases, and when the pruning rate rises to 0.8 the network
accuracy after fine-tuning still loses more than 5% compared to the original network; when
the pruning rate further increases to 0.9, the difference between the effects of the two
fine-tuning methods is particularly obvious: For pruning strategy 1, FT 1 can restore the
pruned network accuracy to 58.4%, while FT 2, introducing the knowledge distillation
strategy, can restore the network accuracy to 80.4%, which is 22% higher than that of the FT
1; For pruning strategy 2, FT 2 can improve the accuracy of the network by 3.6% compared
with FT 1; For pruning strategy 3, the effect of FT 2 is relatively weak, with only a 2.9%
improvement compared to FT 1.

The data in Table 4 can represent the result of network fine-tuning, but cannot accu-
rately reflect the dynamic adjustment process of the re-training process. Therefore, we
further visualize the training loss and accuracy changes of the network with different
fine-tuning methods for pruning rates of 0.6 to 0.9, as shown in Figure 6.

By comparing the fine-tuning results of the network under different pruning rates
in Figure 6, it can be found that: (1) when the pruning rate is 0.9, the training loss of
the network in the fine-tuning process is significantly higher than that of other pruning
rates, and the prediction accuracy mAP is also obviously lower than that of others; and
(2) the network fine-tuning method with knowledge distillation can make the loss reduction
process more stable, and can accelerate the convergence of the network to a certain extent,
thereby reducing the training cost.

By observing the changing trend of different pruning strategies in the network fine-
tuning process, it can be found that when the network obtained by pruning strategy 2 is
fine-tuned, the training loss and accuracy of the network have great fluctuations, especially
when the pruning rate is 0.9; while the training loss basically presents a steady declining
trend, its accuracy on the validation set has huge fluctuations, which means that the current
network may be in the following two states: either the network is in a state of overfitting
where network generalization ability is poor, so the training set weight does not fit the
validation set of data distribution; or the network is in a special form of “owe fitting” where
only a small amount of parameters in the network are not enough to fit the characteristics
of the data distribution, and as some of the channel numbers have fallen to a minimum
of 1, each fall in vectors based on tiny iteration will also lead to sharp fluctuations in the
performance of the network, and so cannot be fine-tuned to have a very good training effect.
According to the actual scenario in this paper, the situation in this paper belongs to the
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second state, that is, the network is in the state of underfitting, and excessive pruning leads
to the reduction of the network capacity and the deterioration of generalization ability,
which is not suitable for use in the future.
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4.4. Inference Speed Test of the Network

The pruned networks recovered some of their performance after fine-tuning, and could
be further used to test the inference speed of the networks since the different fine-tuning
methods affect the accuracy of the network but not the number of parameters or the infer-
ence speed. Then, the computation and inference speed of the improved network model
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with different pruning rates for the three pruning strategies are compared in Tables 5 and 6,
on the different hardware displayed in Table 1 (G1: GTX 1650-4G, Turing architecture; G2:
RTX 2060-6G, Turing architecture; G3: RTX 3080-10G, Ampere architecture). All tests on
inference speed are the averages obtained by repeating the experiment more than 900 times.

Table 5. Computational statistics of the network model after pruning (/GFLOPs).

Pruning Strategy
Pruning Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 12.4 10.1 8.4 6.8 5.6 4.7 4.0 3.2 2.4
2 10.0 7.5 5.9 4.8 3.8 3.1 2.5 2.2 1.9
3 13.3 10.9 8.7 7 5.4 4.4 3.6 2.8 2.2

Table 6. The inference speed statistics of the pruned network model on different GPUs (/FPS).

Pruning Rate
Pruning Strategy 1 Pruning Strategy 2 Pruning Strategy 3

G1 G2 G3 G1 G2 G3 G1 G2 G3

0 52.2 65.3 148.1 52.2 65.3 148.1 52.2 65.3 148.1
0.1 59.3 67.1 150 74.1 70.2 147.1 72.2 69.4 146
0.2 64.7 68.7 151.5 75.8 71.9 145.6 75.3 72.2 148.1
0.3 63.1 69.7 149.3 82.6 68.7 150.4 79.4 67.3 150.4
0.4 63.8 69.2 153.8 82.9 71.2 149.3 86.2 70.9 151.5
0.5 69.0 70.7 152.7 88.1 70.2 152.7 86.6 72.2 152.7
0.6 69.1 71.7 153.8 83.7 71.9 151.5 86.6 69.4 149.3
0.7 69.3 69.0 151.5 85.1 67.6 151.5 86.6 69.7 153.8
0.8 67.3 66.2 153.8 82.6 68.3 151.5 86.2 69.0 153.8
0.9 66.4 66.4 139.9 80.3 67.1 146 88.9 69.0 176.2

Table 5 shows the computation statistics of the network model after pruning; it can
be found that as the pruning rate increases, the computation of the network shows an
obvious decreasing trend. For pruning strategy 1, the network computation amount drops
to 2.5 GFLOPs when the pruning rate is 0.9, which is a decrease of 84.9%. For pruning
strategy 2, the computation is the lowest among the three pruning strategies, at 1.9 GFLOPs
with a decrease of 87.5%. Then, for pruning strategy 3, the computation of the network
model is 2.2 GFLOPs at a pruning rate of 0.9, a decrease of 85.5%. In summary, it shows
that the pruning strategy proposed in this paper has a significant effect on the compression
of the network model computation.

As for the detection speed, the test data of the fine-tuned networks on GPUs shown
in Table 6 show that the pruned networks achieved a certain degree of improvement in
inference speed on three different hardware bases. On G1, pruning strategy 3 achieved
the fastest inference speed of 88.9 FPS at a pruning rate of 0.9, which is 70.3% faster than
the inference speed of 52.2 FPS achieved by the original network without pruning. On G2,
pruning strategy 3 achieved the fastest inference speed of 72.2 FPS at a pruning rate of 0.5,
which was 52.2% and 68.7% higher than the original network’s inference speed of 65.3 FPS.
On G3, thanks to the powerful hardware performance, firstly, the inference speed of the
original network was increased to 148.1 FPS, and then pruning strategy 3 achieved the
fastest inference speed of 176.2 FPS at a pruning rate of 0.9, which is a 28.1% improvement
compared to the original network.

Comparing the performance of the three pruning strategies on three different hardware
(GPU), it can be found that, compared with pruning strategies 1 and 2, pruning strategy 3
has a more significant effect on speeding up network inference. At the same time, it can
also be proven that the same network model has different inference speeds on different
hardware architectures and platforms, and the lightness of the network cannot be measured
by the number of parameters and the amount of calculation alone. This is consistent with
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the conclusion obtained in ShuffleNet v2 [26]: the inference speed of the network was
not only affected by factors such as the amount of computation and parameters, but also
limited by the memory access cost (Mac) and the degree of parallelism of chip processing.
Therefore, in Table 7 we continue to compare the inference of the networks obtained by the
three pruning strategies on three different CPU hardware, also given clearly in Table 1 (C1:
E5-2620V3, Haswell E architecture; C2: i7-9750H, Coffee Lake architecture; C3: i5-12400F,
Alder Lake-H architecture).

From the results shown in Table 7, it can be found that with the increase in the pruning
rate, the inference speed of the network obtained by the three pruning strategies on the
three different CPUs is steadily improving, which basically shows a positive correlation
with the pruning rate, and both achieved the fastest inference speed when the pruning rate
is 0.9. On C1, pruning strategy 2 achieved the fastest inference speed of 10.3 FPS, compared
with 4.0 FPS achieved by the original network, and the inference speed is improved by
157.5%. On C2, pruning strategy 2 achieved the fastest inference speed of 8.9 FPS, an
increase of 128.2% compared to 3.9 FPS. On C3, it is still pruning strategy 2 that achieved
the fastest inference speed of 20.7 FPS, which is 143.5% faster than the 8.5 FPS achieved by
the original network.

Comparing the data shown in Tables 6 and 7, the network lightweight method pro-
posed in this paper has a more obvious speed-up effect on the CPU architecture; at the
same time, the practical effect of pruning strategy 2 and pruning strategy 3 is better.

Table 7. The inference speed statistics of the pruned network model on different CPUs (/FPS).

Pruning Rate
Pruning Strategy 1 Pruning Strategy 2 Pruning Strategy 3

C1 C2 C3 C1 C2 C3 C1 C2 C3

0 4.0 3.9 8.5 4.0 3.9 8.5 4.0 3.9 8.5
0.1 4.3 4.3 9.4 5.5 4.7 10.4 4.6 4.2 9.1
0.2 4.8 4.8 10.8 5.5 4.7 10.4 4.6 4.6 10.0
0.3 5.0 5.1 11.5 7.0 5.9 13.7 6.1 5.2 11.6
0.4 5.5 5.4 12.3 7.0 6.3 15.3 6.6 5.5 12.5
0.5 6.3 5.8 13.2 7.8 6.8 15.9 7.0 6.0 13.6
0.6 7.0 5.9 13.9 8.4 7.3 17.1 7.4 6.4 14.8
0.7 7.0 6.3 14.8 8.6 7.6 17.9 7.7 6.8 15.4
0.8 7.3 6.5 15.6 9.2 7.9 18.9 8.4 7.3 17.0
0.9 7.9 7.2 16.3 10.3 8.9 20.7 9.3 8.0 18.8

4.5. Subjective Effect of Network

The above test results can only describe the performance of networks from a quan-
titative point of view and cannot visually show the detection effect. Thus, in Figure 7
we have randomly selected four images from the test set of the dataset for the subjective
performance description of the networks. In particular, Figure 7a–d shows the detection
effect achieved by the original Yolov5-s network, and (e)–(h), (i)–(l) show the detection
results achieved by pruning strategy 3 and fine-tuning method 2 when the pruning rate is
0.8 and 0.9, respectively.

In contrast, it can be found that the detection results of the network with a pruning
rate of 0.8 are basically similar to the original network, both in terms of the category of the
detected target and the positioning of the target; meanwhile, in the network with a pruning
rate of 0.9, the detection performance is slightly decreased, which is reflected in the missed
detection (Figure 7i,l), false detection (Figure 7j), and inaccurate positioning of the target
position (Figure 7k).

Further, we applied a certain amount of motion blur to the images in Figure 7 and
again detected the image using the three networks mentioned above, and the results can be
found in Figure 8. It can be clearly found that all three networks have a poor resistance to
the motion blur, with varying degrees of missed and false detections.
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Figure 7. Detection results of the network before and after the improvement in test dataset, (a–d) be-
long to the result achieved by the original Yolov5-s network, (e–h) are the detection results achieved
by the improved network when the pruning rate is 0.8, and (i–l) are the detection results when the
pruning rate is 0.9.

The root cause of the above case may stem from the data level. Because there is no blur
information in the input image features of the network, it is impossible for the subsequent
feature extraction network to learn such blur features, and naturally it will not make correct
judgments or identification on the blurred image information. Therefore, we only need
to pass the information of image blur into the network as prior knowledge, and then the
effective resistance to motion blur can be realized.

In view of the above, we propose an improvement to the target detection network by
means of online data enhancement to pass the prior knowledge. As can be seen from Yolov5,
data enhancement techniques such as mosaic and cutmix are applied to images before they
are fed into the network for feature extraction, such as stitching and transformations, to
enrich the background information and improve the generalization ability of the target
detection network. Therefore, in this paper, the image is firstly blurred with the help of the
Albumentations tool library with a probability of 0.5 before data enhancement is applied to
the image. This online data enhancement approach does not add additional samples to the
dataset, nor does it require additional data annotation, and is therefore less laborious and
easier to implement.
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Figure 8. Detection results of blurred images before and after the improvement, (a–d) belong to the
result achieved by the original Yolov5-s network, (e–h) are the detection results achieved by the
improved network when the pruning rate is 0.8, and (i–l) are the detection results when the pruning
rate is 0.9.

Finally, we repeated the above optimization, including retraining and lightening of the
network, and re-detected the images in Figure 7 using the same three networks as above,
with the results shown in Figure 9. Comparing the images in Figures 7 and 8, the network
enhanced with the prior knowledge is more resistant to motion blur and is well suited to
images with motion trailing.

4.6. Discussion

In this paper, taking foreign object detection as the application scenario, a hybrid
compression optimization strategy that integrates network sparse, structure pruning, and
knowledge distillation is proposed based on the Yolov5 network, which realizes huge
compression for the number of network parameters and calculation amount.

However, considering the inference speed of the optimized network on hardware, the
acceleration effect is not very ideal, which may be caused by the following problems, and
this is also the focus of follow-up work:

1. Memory factors may lead to different inference speeds. Due to the different
frameworks of the three different CPU platforms, the required motherboard types and
supported memory dynamic frequencies are different. Therefore, when testing the network
inference speed, we actually used three different types of motherboards and memory for
the network performance test. The corresponding frequency and size of the memory may
have an impact on the network inference speed.
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Figure 9. Detection results of blurred images after online data enhancement, (a–d) belong to the result
achieved by the original Yolov5-s network, (e–h) are the detection results achieved by the improved
network when the pruning rate is 0.8, and (i–l) are the detection results when the pruning rate is 0.9.

2. The different hardware architectures of CPUs and GPUs may lead to different
network acceleration effects after structured pruning, especially the parallel computing
framework technology—Compute Unified Device Architecture (CUDA).

3. At the same time, due to the limitation of hardware conditions, we did not run it
on real edge computing devices, such as Jetson nano, Jetson NX, and so on. In the future,
we will combine the actual situation and further combine weight quantization, Tensor RT
acceleration, etc., to accelerate network inference.

5. Conclusions

The existence of conveying foreign objects poses a serious threat to the service life of the
conveyor belt, which in turn seriously affects the safe and efficient operation of coal mine
production. In this paper, considering the needs of the conveying foreign object detection
networks running on edge computing devices, based on the Yolov5 network, a hybrid
compression optimization strategy that integrates network sparse, structural pruning,
and knowledge distillation is proposed. The number of parameters and computation of
the delivery foreign object detection network have been extremely compressed, which
effectively improves the possibility of the application of the conveying foreign object
detection network in edge computing equipment, and also helps reduce the abnormal
damage to the belt, thereby reducing unnecessary downtime and production costs and
increasing the sustainable capability of coal mines. Compared with previous work, the
main contributions and summaries of this paper are as follows:
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1. A hybrid compression optimization strategy that integrates network sparse, struc-
ture pruning, and knowledge distillation is proposed, which compresses Yolov5’s network
parameters and computation by more than 90% and 95%, respectively. The inference speed
can be increased by more than 157.5% on three different CPUs and more than 70.3% on
three different GPUs.

2. The network fine-tuning method incorporating the knowledge distillation strategy
is helpful for the recovery of network performance after pruning and compression, which
can stabilize the loss turbulence during the network training process and accelerate the
convergence of the network.

3. An online data enhancement strategy has been proposed in this paper with the help
of the Albumentations tool library, which improves the network’s resistance to motion blur
by means of introducing prior knowledge.

4. Whether the network is lightweight or not cannot be measured simply by the
number of parameters and calculations, but should be based on the speed of specific
practical reasoning.

6. Future Work

In future work, we will address the areas for improvement that were identified in the
discussion section to further increase the possibility of applying the proposed algorithm in
industrial practice.
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