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Abstract: Resonant elements can generate small amounts of energy that make them pertinent for
feeding miniaturized accelerometers with the energy needed. Suitable oscillator candidates are
Helmholtz resonators, which have been, for a long time, analyzed and designed within the context
of linear vibration. This study focuses on extracting nonlinear characteristics of a dual Helmholtz
resonator (HR), with a neck-cavity–neck-cavity configuration, mounted on an acoustic waveguide
with harmonically oscillating pressure. The mathematical model used for describing the resonator
embraces inherent nonlinear air stiffness and the damping nonlinearity of hydrodynamic origin.
Numerical solutions for the resonator’s nonlinear oscillations are obtained. Bifurcation diagrams
are produced, indicating that the dual HR behaves in a deterministic fashion within the engineering
practical limits. Phase portraits are drawn for the system, showing a quasi-periodic motion. Frequency
response curves (FRC) are found to shift to the left at the lower resonant frequency indicating a
softening behavior. FRC keep generally symmetric curves at the higher resonant frequency indicating
a mostly linear behavior.

Keywords: dual Helmholtz resonator; lumped-parameter analysis; nonlinear oscillations; bifurcation;
phase portrait; hardening and softening

1. Introduction

Accelerometers are efficient devices for measuring the linear speed change of objects
to which they are attached. Whether the object undergoes steady, transient, or oscillatory
motion, accelerometers can measure accelerations associated with these motions. To make
accelerometers more amenable to integration, they have been miniaturized by utilizing
MEMS manufacturing processes. Thus, a proof mass motion causes a change in electrical
potentials in the adjoining capacitive plates, indicating the occurrence of acceleration. Due
to their key function in enhancing manufacturing processes, environmental sustainability,
and human health, safety, and lifestyle, miniaturized accelerometers have been employed
in smart instrumentation, seismic activity sensing, automotive, marine and aerospace
navigation, and the wellbeing of living things. Although accelerometers are considered
to be low-power devices, emerging applications (such as the Internet of Things-related
functions, with repeated power-saving/standard operating modes) could trigger the need
for micro- to milli-ampere power generation. The employment of MEMS accelerometers in
an acoustic environment abound of resonating elements like Helmholtz resonators makes
it relevant to utilize these resonators for small energy harvesting. In fact, over the past
decade, Helmholtz resonators have been proposed for acoustic energy harvesting [1–6].

The Helmholtz resonator (HR) [7] started as a musical tuning idea that ended up at the
heart of noise-control engineering. For more than a century, the HR concept has stimulated
a considerable amount of research and development efforts. For the past decades, HRs
have been utilized as efficient devices for selective noise reduction in automotive mufflers,
aircraft turbofan engines, and HVAC waveguides.
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In its simple form, a HR is made of an enclosed volume of gas connected to the
“outside” by a small opening (known as a neck) including a mass of gas. As the gas mass
in the neck is exposed to an outside pressure, it compresses the gas in the confined volume
that reacts in an elastic manner, acting as a spring. Early analysis of HRs was based on
assuming the air mass in the neck as a “slug” (i.e., solid object). Thus, the neck mass and the
enclosed volume spring were modelled as a typical mass-spring system having a natural
frequency [8]. The HR acts on eliminating any “outside” sound wave with a frequency
that is equal to its natural frequency. Hence, the HR can act as a typical selective device for
rejecting an undesired acoustic signal.

Researchers have been investigating HRs with enclosed volumes and necks having
a wide variety of geometries, considering a purely linear elastic behavior of the confined
air in the enclosed volumes. Relevant to the research reported in our paper is the work
presented in [9–13] considering a dual HR which consisted of two HR connected in series,
the invention of Hawwa [14] who put forward an adaptive dual HR, the works of Beck
et al. [15] on dual resonance acoustic liners, and the analyses offered in [16] and [17] on
periodic arrays comprised of dual Helmholtz resonators. The importance of introducing
dual HRs stems from their capabilities of controlling hybrid noise at low frequencies, below
1000 Hz.

When researchers started to consider the associated sound field–fluid flow problem
within the Helmholtz resonator, they started to pay attention to the damping due to friction
resistance, jet effect, and the nonlinear nature of air stiffness. Based on hints made in
references [18] and [19] and experimental findings reported in reference [20], Zinn [21]
presented a resonator’s flow field with external pressure oscillations, focusing on the effect
of nonlinear resistance. Sirignano [22] considered the nonlinear damping of pressure
oscillations in a HR determining the admittance, resistance, and reactance. Hersh and
Walker [23,24] calculated the acoustic impedance of Helmholtz resonators using a semi-
empirical model in the form of a non-linear governing equation. Innes and Crighton [25]
presented a matched asymptotic expansion solution of the model proposed in [23,24].
Boullosa and Orduña-Bustamante [26] used the thermodynamic process occurring in the
air inside the enclosed volume of the HR to study its elastic nonlinear behavior and
made measurements that quantitatively confirmed the predictions from their model. The
performance of dual HRs connected in series was presented in [9]. Lumped approach was
applied for the resonance frequencies and transmission loss of the 2DOF configuration.

Hersh et al. [27] used physically inspired modelling assumptions to find nonlinear
corrections of the impedance gotten in earlier studies. Yu et al. [28] obtained the nonlinear
amplitude-frequency response of an acoustic Helmholtz resonator, giving an explanation of
the downward shift of resonance frequency. Singh and Rienstra [29] considered nonlinear
effects in HRs that stem from hydrodynamic sources, including vortex shedding at the
outflow from the opening. Achilleos et al. [30] used a transmission-line approach to realize a
nonlinear dynamic model, which led to obtaining acoustic soliton solutions for the pressure
in a waveguide connected to HRs. Softening and hardening behaviors for a high-amplitude
nonlinear HR involving nonlinear restoring and damping forces is reported in [31–33]. A
compliant wall was introduced around the acoustic cavity in [32]. The dynamics response
of the HR and the effectiveness of the wall in terms of sound observation were investigated.
Vargas et al. [31] have considered HRs with non-linear restoring. The results obtained
exhibit non-linear hardening and softening behaviors.

To the best of authors’ knowledge, nonlinear analysis and/or design of dual Helmholtz
resonators has not yet been considered. Accounting for nonlinearities of both stiffness
and damping could lead to improved accuracy of the resonator’s response. The aim of
this paper is to investigate nonlinear characteristics of a dual Helmholtz resonator (HR),
with a neck-cavity–neck-cavity configuration, attached to an acoustic waveguide having
harmonically oscillating pressure. The equations of motion describing the resonator are
solved numerically to obtain bifurcation plots, phase portrait diagrams, and frequency
response curves. These results would help in determining (i) the frequency domain(s)
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over which the resonator’s response is deterministic/chaotic, (ii) the displacement-velocity
relationship for identifying trajectories followed by the resonator as a dynamical system,
(iii) and categorizing any hardening/softening performances. These characterizations can
be utilized for designing acoustic filters that can be utilized for harvesting energy that can
feed miniaturized accelerometers.

2. Mathematical Formulation

Shown in Figure 1a is a dual Helmholtz resonator, consisting of two necks and two
cavities, and mounted at the side of an acoustic waveguide. The dual HR is idealized in
Figure 1b as a two-degree-of-freedom lumped-parameter system that can mathematically
be described by the following governing equations

m1
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Figure 1. (a) The dual nonlinear HR, and (b) its equivalent lumped-parameter system. 

Following [28] and [31], the air inside each cavity (volume) is assumed to behave 
nonlinearly according to the following relationship: ∆𝑝௝ =  −𝜌଴𝐿௘௝𝜔଴௝ଶ ቆ𝑥௖௝ − (𝛾 + 1)𝐴௖௝2𝑉௝ 𝑥௖௝ଶ + (𝛾 + 1)(𝛾 + 2)𝐴௖௝ଶ6𝑉௝ଶ 𝑥௖௝ଷ ቇ (3)

where the subscript j (j = 1, 2) indicates the jth resonator, ∆𝑝௝ is the pressure change inside 
the cavity, 𝜌଴ is the air density, 𝐿௘௝ is the effective length of the neck (𝐿௘௝ = 𝐿௖௝ + ଵ଺ோ೎ೕଷగ ), 
where 𝐿௖௝ is the neck length and 𝑅௖௝ is the radius of the cylindrical neck, 𝜔଴௝ is the res-
onator’s natural frequency, 𝑥௖௝  is the displacement of the air on the neck of the first 
HHR, 𝛾 is specific heat ratio, 𝐴௖௝ is the cross-sectional area of the neck, and 𝑉௝ is the vol-
ume of the cavity. The linear damping and nonlinear damping due to the jet phenomenon 
[30] can be written as 

c1 + Fdamping + Felasticity = −Fduct (1)

m2
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where the subscript j (j = 1, 2) indicates the jth resonator, ∆𝑝௝ is the pressure change inside 
the cavity, 𝜌଴ is the air density, 𝐿௘௝ is the effective length of the neck (𝐿௘௝ = 𝐿௖௝ + ଵ଺ோ೎ೕଷగ ), 
where 𝐿௖௝ is the neck length and 𝑅௖௝ is the radius of the cylindrical neck, 𝜔଴௝ is the res-
onator’s natural frequency, 𝑥௖௝  is the displacement of the air on the neck of the first 
HHR, 𝛾 is specific heat ratio, 𝐴௖௝ is the cross-sectional area of the neck, and 𝑉௝ is the vol-
ume of the cavity. The linear damping and nonlinear damping due to the jet phenomenon 
[30] can be written as 

c2 − Fdamping − Felasticity = 0 (2)

where m1,2 is the mass of air inside the first and second neck, respectively, xc1,2 is the
displacement of the air of the neck of the first and second HRs, respectively, and the double
dots indicate differentiation with respect to time. The forces, Fdamping and Felasticity are both
nonlinear functions of velocities and displacements, respectively, systems with nonlinear
terms of stiffness and damping. Fduct is the force applied to the dual HR as a result to
pressure fluctuations in the acoustic waveguide.
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Following [28] and [31], the air inside each cavity (volume) is assumed to behave
nonlinearly according to the following relationship:

∆pj = −ρ0Lejω0j
2

(
xcj −

(γ + 1)Acj

2Vj
x2

cj +
(γ + 1)(γ + 2)A2

cj

6V2
j

x3
cj

)
(3)

where the subscript j (j = 1, 2) indicates the jth resonator, ∆pj is the pressure change inside the

cavity, ρ0 is the air density, Lej is the effective length of the neck (Lej = Lcj +
16Rcj

3π ), where Lcj
is the neck length and Rcj is the radius of the cylindrical neck, ω0j is the resonator’s natural
frequency, xcj is the displacement of the air on the neck of the first HHR, γ is specific heat
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ratio, Acj is the cross-sectional area of the neck, and Vj is the volume of the cavity. The
linear damping and nonlinear damping due to the jet phenomenon [30] can be written as

Dj =
2mj Acj

2ρ0Lej
R(Zin + Zvis)

(dxcj

dt

)
+

ζmj

2Lej

(dxcj

dt

)(dxcj

dt

)
(4)

where Dj is the damping inside the neck, mj is the equivalent mass of air inside the neck,
Zin is the acoustic impedance, Zvis is the frictional acoustic impedance, ζ is the coefficient
of the total hydraulic resistance.

In the sequel, the effectiveness of the dual HR is assessed by studying the dynamic
behavior of its equivalent spring-damper-mass system. Thus, the governing equation of
motion for each HR is derived using Newton’s second law of motion. Therefore, the rate of
change of the linear momentum equation for the two masses of air inside the necks are

m1
d2xc1
dt2 + 2 m1 Ac1

2ρ0Le1
R(Zin + Zvis)

(
dxc1
dt −

dxc2
dt

)
+ ζm1

2Le1

(
dxc1
dt

dxc1
dt −

dxc2
dt

dxc2
dt

)
+

ρ0c2
0 Ac1
V1

(
Ac1xc1 − Ac2xc2 − (γ+1)

2V1

(
A2

c1x2
c1 − A2

c2x2
c2
)

+ (γ+1)(γ+2)
6V2

1

(
A3

c1x3
c1 − A3

c2x3
c2
))

= −p Ac1

(5)

m2
d2xc2
dt2 + 2m1 Ac1

2ρ0Le1
R(Zin + Zvis)

(
dxc2
dt −

dxc1
dt

)
+ ζm1

2Le1

(
dxc2
dt

dxc2
dt −

dxc1
dt

dxc1
dt

)
+

ρ0c2
0 Ac2
V1

(
Ac2xc2 − Ac1xc1 − (γ+1)

2V1

(
A2

c2x2
c2 − A2

c1x2
c1
)

+ (γ+1)(γ+2)
6V2

1

(
A3

c2x3
c2 − A3

c1x3
c1
))

+ 2m2 Ac2
2ρ0Le2

R(Zin + Zvis)
(

dxc2
dt

)
+ ζm2

2Le2

(
dxc2
dt

)(
dxc2
dt

)
+

ρ0c2
0 A2

c2
V2

(
xc2 − (γ+1)Ac2

2V2
x2

c2 +
(γ+1)(γ+2)A2

c2
6V2

2
x3

c2

)
= 0

(6)

Note that the dual HR is forced into oscillatory motion by the pressure fluctuation,
p, in the acoustic waveguide. In order to facilitate the dynamic analysis, let us introduce
the dimensionless variables: t* = ω01t, x1= xc1 Ac1

V1
, x2= xc2 Ac2

V2
as dimensionless time, dis-

placement of the first mass, the displacement of the second mass, respectively. In order to
facilitate the analysis, let us define the following parameters:

(i) The ratio of the masses of air inside the two necks: r1 = m1
m2

.
(ii) The ratio of the natural frequencies of the first and second HR: r2 = ω02

ω01
where

ω01 =

√
c2

0 Ac1
Le1V1

, ω02 =

√
c2

0 Ac2
Le2V2

and c0 is the speed of sound.

(iii) The ratio of the forcing frequency of pressure fluctuation and the natural frequency
of the first HR: Ω = ω

ω01
.

(iv) The stiffness coefficients: k1 = −α = − (γ+1)
2 and k2 = β = (γ+1)(γ+2)

6 .
(v) The damping coefficients: c1 = δ1

ω01
= 2Ac1

2ρ0Le1ω01
R(Zin + Zvis),

c2 = δ2
ω01

= 2Ac2
2ρ0Le2ω01

R(Zin + Zvis), c3 = ζV1
2Le1 Ac1

, c4 = ζV2
2Le2 Ac2

.

(vi) The non-dimensional pressure amplitude: P = −pAc1
ρ0Le1ω2

01V1
.

Then, the following normalized governing equations of motion are obtained:

d2x1
dt∗2 + c1

(
dx1
dt∗ −

Ac1V2
Ac2V1

dx2
dt∗

)
+ c3

(
dx1
dt∗

∣∣∣ dx1
dt∗

∣∣∣− A2
c1V2

2
A2

c2V2
1

dx2
dt∗

∣∣∣ dx2
dt∗

∣∣∣)
+
(

x1 − V2
V1

x2

)
+ k1

(
x2

1 −
V2

2
V2

1
x2

2

)
+ k2

(
x3

1 −
V3

2
V3

1
x3

2

)
= Pcos(Ωt∗)

(7)
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d2x2
dt∗2 + r1c1

(
dx2
dt∗ −

Ac2V1
Ac1V2

dx1
dt∗

)
+r1c3

Ac1
V1

(
V2
Ac2

dx2
dt∗

∣∣∣ dx2
dt∗

∣∣∣− Ac2V2
1

A2
c1V2

dx1
dt∗

∣∣∣ dx1
dt∗

∣∣∣)
+

L′c1
L′c2 Ac1

(
Ac2x2 − Ac2V1

V2
x1

)
− L′c1k1

L′c2 Ac1V1

(
V2 Ac2x2

2 −
Ac2V2

1
V2

x2
1

)
+

L′c1k2
L′c2 Ac1V2

1

(
Ac2V2

2 x3
2 −

Ac2V3
1

V2
x3

1

)
+ c2

dx2
dt∗ + c4

dx2
dt∗

∣∣∣ dx2
dt∗

∣∣∣+ r2
2x2

−k1r2
2x2

2 + k2r2
2x3

2 = 0

(8)

Equations (7) and (8) represent two coupled inhomogeneous differential equations,
involving quadratic and cubic nonlinearities. It is worth noting that the linear version of
Equations (7) and (8) represents the case of a linear dual HR, which was considered by
Xu et al. [9] with eliminating the damping term. Equation (7) represents the case of a single
nonlinear HR, which was considered by Vargas et al. [31]. For building confidence in the
developed model, the works in [9] and [31] are in fact obtained as special cases of the model
considered in this paper.

3. Results and Discussions

A numerical solution of the coupled Equations (7) and (8) is sought using the MAT-
LAB code ode45, which is based on an explicit Runge–Kutta method. With zero initial
deflection and velocity, the equations are integrated over the period of dimensionless time
t* = [0–20,000] to obtain a steady-state response. The physical parameters of the fluid
contained in the dual HR that are used in calculations are listed in Table 1.

Table 1. Physical Parameters of the dual nonlinear HR.

Parameter Value

Linear Damping Coefficient (δj) 8.67 s−1

Speed of Sound (c0) 340.0 m/s
Density of Air (ρ0) 1.2 kg/m3

Specific Heat Ratio (γ) 1.4
Coefficient of Hydraulic Resistance (ζ) 2.1 × 10−4

Two representative cases of dual nonlinear HRs, connected to an acoustic waveguide,
are considered: (i) The first dual HR is constructed of two identical single HRs. (ii) The
second dual HR is constructed of two single HRs that have a different volume than that of
the other HR, as clarified in Table 2.

Table 2. The construction of the small-size dual nonlinear HR.

Case I (Identical HRs) Case II (Different HRs)
Parameter 1st HR 2nd HR 1st HR 2nd HR

Radius of the Neck (Rcj) 0.1 mm 0.1 mm 0.1 mm 0.1 mm
Length of the Neck (Lcj) 0.2 mm 0.2 mm 0.2 mm 0.2 mm

Mass of air in the neck (mj) 398.6 × 10−9 kg 398.6 × 10−9 kg 398.6 × 10−9 kg 398.6 × 10−9 kg
Radius of the Cavity (RVj) 0.8 mm 0.8 mm 0.4 mm 0.8 mm
Length of the Cavity (LVj) 0.6 mm 0.6 mm 0.3 mm 0.6 mm
Volume of the Cavity

(
Vj
)

1.206 mm3 1.206 mm3 0.150 mm3 1.206 mm3

The dual HR is constructed on an acoustic waveguide for the purpose of noise control
and the possibility of small energy generation. The pressure fluctuations in the acoustic
waveguide are considered to vary such that the pressure amplitude (P) corresponding to a
sound pressure level within (90~170) dB.

In order to evaluate the nonlinear dual HR performance, let us first consider the bifurcation
diagram with the sound pressure level in the acoustic waveguide as a bifurcation parameter.
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3.1. Bifurcation Diagram

The importance of bifurcation diagram stems from the fact that they help to determine
if the nonlinear system behaves in a deterministic or a chaotic manner. The bifurcation
diagram is obtained by calculating x1 and x2 while varying the amplitude of the forc-
ing pressure (P) inside the acoustic waveguide and keeping the nondimensional forcing
frequency, Ω, at 1.01, as shown in Figures 2 and 3.
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Figure 2 shows that the periodic oscillatory behaviors of x1 and x2 of Case I over the
range of sound pressure level of (90–140) dB. A nonlinear jump phenomenon followed by
the chaotic response is observed to take place at 163 dB, which is beyond most practical
engineering applications. A similar oscillatory behavior is also observed in Figure 3 of
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Case II, where a nonlinear jump phenomenon followed by a chaotic response is observed
to take place a little earlier, at 159 dB.

To study the periodic response of the dual nonlinear HR, two types of results are
obtained; the phase portrait and frequency response.

3.2. Frequency Response Curves

Let us now monitor the variation of x1 and x2 with changing the excitation frequency,
Ω, from 0.4 to 1.8, while keeping the sound pressure level at 150 dB. Performing a frequency
sweep and solving Equations (5) and (6) representing Case I several times, one gets response
curves shown in Figure 4 which exhibit two resonances at the frequency ratios of Ω = 0.60
and Ω = 1.62. The nonlinear effect of the dual HR is manifested by a softening behavior at
the first resonant frequency, with amplitudes of x1 ≈ 0.18 and x2 ≈ 0.125 At the second
resonant frequency, however, a predominantly linear behavior is noted, with amplitudes of
x1 ≈ 0.054 and x2 ≈ 0.025. In order to have a clear visualization of the detected softening
effect, the frequency response for the linear problem for Case I is obtained after removing
nonlinear terms from the model, and compared to that of the non-linear model. Zoomed-in
pictures are demonstrated in Figure 5 for the frequency response around the two resonant
frequencies. While the linear curves have straight-up peaks, the nonlinear response around
the first resonant frequency bends towards the left indicating softening effect. However,
the nonlinear response around the second resonant frequency is very much behaving like
the linear response.
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The frequency response curves are also obtained for Case II by changing the excitation
frequency, Ω, from 0.4 to 1.8, while keeping the sound pressure level of 150 dB. Figure 6
shows two resonant frequencies occurring at the frequency ratios of Ω = 0.45 and Ω = 1.54.
It is observed that a slight softening behavior exists at the first resonant frequency, with
amplitudes of x1 ≈ 0.102 and x2 ≈ 0.041. The second resonant frequency is slightly
nonlinear with amplitudes of x1 ≈ 0.033 and x2 ≈ 0.021. Zoomed-in pictures comparing
linear and nonlinear resonant frequency responses are shown in Figure 7. The nonlinear
response around the first resonant frequency bends towards the left indicating softening
effect. The nonlinear response around the second resonant frequency does not lean towards
the left or right direction, thus, demonstrating a response that is pretty much linear.
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3.3. Phase Portrait

Phase portrait is an interesting geometric demonstration of the trajectories followed
by a dynamical system and a valuable tool for identifying stability regions.

On a phase plane showing the displacement-velocity relationship for Case I with
zero displacements and zero velocities initial conditions, Figure 8a shows a slightly off
periodic motion (which is represented by a circular-shaped response) under the excitation
Fduct = P cos(0.65t∗), where P is considered equivalent to a sound pressure level of 150 dB.
Figure 8b also shows a neutrally stable phase plane portrait with a similar quasiperiodic
motion under the excitation Fduct = P cos(1.65t∗).
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Similarly, the phase plane obtained for Case II with zero displacement and zero
velocity initial conditions is obtained. Figure 9a shows a clearly off-periodic motion with
an equilibrium point slightly shifted to the right under the excitation Fduct = P cos(0.47t∗),
where P is considered equivalent to a sound pressure level of 150 dB. Figure 9b shows a
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neutrally stable phase plane portrait with off-periodic motion and an equilibrium point
noticeably shifted to the right under the excitation Fduct = P cos(1.57t∗).
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It would also be interesting to consider phase portraits at higher sound pressure levels
to examine the chaotic behavior of the nonlinear dual HR with zero displacements and
zero velocities initial conditions. Figure 10a,b show the chaotic behaviors of Case I dual
resonator at sound pressure levels of 165 dB and 170 dB, respectively. Figure 11a,b show
the chaotic behaviors of the Case II dual resonator at sound pressure levels of 165 dB and
170 dB, respectively. The irregular and unpredictable nature is clear in all of these figures.
In none of these figures, any individual HR of nonlinear dual HR repeats its past history.
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4. Conclusions

An analysis was made to examine the nonlinear characteristics of a dual Helmholtz
resonator attached to an acoustic waveguide with a harmonically oscillating pressure. The
mathematical model describing the resonator comprised two coupled inhomogeneous
differential equations involving quadratic and cubic nonlinearities. The numerical solution
indicated that the response of the dual HR was non-chaotic over the majority of the
practical forcing frequency spectrum inside an acoustic waveguide. The response, however,
involved a nonlinear jump phenomenon followed by a chaotic response at an oscillating
acoustic pressure with an amplitude of 158 dB. Frequency response curves showed a
softening behavior at the first resonant frequency and a chiefly linear behavior at the
second resonant frequency. Phase portrait diagrams in the displacement-velocity plane
showed quasiperiodic motion characteristics. The aim of the study was to direct the
attention towards considering nonlinear effects when analyzing and designing Helmholtz
resonators, which could be ideal energy harvesters for low-power applications, such as
miniaturized accelerometers.
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