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Abstract: In the present study, numerically iterative models are employed to study two processes
involved in the pulsed laser deposition of an Y3Fe5O12 target. The 1D conduction heat model is
used to evaluate the temperature of the target irradiated by a nano-second pulse laser, taking into
account the plasma shielding effect. Further, the gas dynamics model is employed to simulate the
kinetic of plasma plume expansion. The results may be important in obtaining high-quality Y3Fe5O12

thin films.
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1. Introduction

The ferrimagnetic insulator yttrium iron garnet (Y3Fe5O12), often abbreviated as YIG,
has become an attractive material in the field of quantum spintronics. Having a low Gilbert
damping value, YIG is widely used to investigate various quantum phenomena, such
as spin waves, spin pumping, the inverse spin Hall effect, and spin caloritronic [1–4]. A
high-quality YIG thin film is required to observe these quantum effects.

One of the most powerful techniques to grow complex oxide thin films, such as YIG,
is pulsed laser deposition (PLD) [5]. A recent report claimed a successful deposition of YIG
thin film on a gallium gadolinium garnet (GGG) substrate using room temperature PLD
followed by a post-annealing treatment. This YIG has a monocrystalline structure with a
very low damping parameter (α = 6× 10−5) [6]. However, the use of garnet substrates
such as GGG limits its practical application. Considerable efforts have been put forward
to grow YIG on commercially compatible chip substrates, e.g., silicon [7–9]. However, its
properties still fall behind that of YIG/GGG due to the smaller grain size and cracking of
the film [7,8].

Although the procedure of obtaining laser-ablated material is simple, involving a
focus pulsed laser with an intensity above the threshold ablating the material target, the
physics incorporated therein is overly complex. Various interdependence processes take
place such as target-heating, melting, vaporization, ionization, plasma formation, plasma
hydrodynamic expansion, shock wave generation, and so on [10–12]. In general, based on
the interactions, the processes can be divided into three major zones:

1. Interaction between the laser and the target material, which results in evaporation on
the target surface [13–18],

2. Interaction between the material gas and the laser, which produces plasma [19,20], and
3. Plasma plume expansion [21–23].
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The first two interactions happen during the laser pulse, while the latter zone occurs
when the laser irradiation has stopped.

In this study, we employed numerically iterative models to investigate two crucial
processes in the pulsed laser deposition: laser-heating of the target and plasma plume
expansion. These two processes govern the kinetic of particles deposited on the substrate.
In the calculation, we employed the thermophysical properties of the YIG target. The
results are applicable for experimentally grown YIG thin film on commercially compatible
chip substrates, e.g., silicon substrate.

2. Theoretical Formulation
2.1. Laser-Target Interaction

Figure 1 illustrates the schematic of the laser heating the target material. A single
pulse of nano-second laser was focused onto the YIG target surface. Upon receiving the
pulse, the target absorbed some portion of laser energy and reflected the rest. The absorbed
laser energy can be expressed as the following source term:

.
S = µ(1− R)I(t)e−µz, (1)

where R is the optical reflectivity of YIG and µ = 4πk/λ, is the absorption coefficient of
YIG. For simplicity, R is assumed to be independent of temperature. Here, λ = 532 nm is
the laser wavelength and k is the extinction coefficient. The temporal pulse intensity I(t) is
expressed in a Gaussian distribution:

I(t) =
Aexp

(
−4 ln(2)(t−tc)

2

w2

)
w
√

π
4ln(2)

, (2)

where w is the full-width half maximum (FWHM) of the laser pulse, A is the area and tc
is the center of the Gaussian profile. Here, we used the property of Nd:YAG Continuum
laser Surelite III, which is available in our PLD system, with a laser energy of 446 mJ, beam
diameter (d) = 9.5 mm, and w is 5 ns. The calculated maximum intensity of 1.26× 108

W/cm2 and pulse duration, tL = 15 ns is obtained.
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The heat transfer of the nano-second laser-radiated YIG before melting (tm) can be
expressed by a 1D heat conduction equation as follows [13]:

Csρs
∂T(t, z)

∂t
=

∂

∂z

(
Ks

∂T(t, z)
∂z

)
+

.
S, (3)

where Cs, ρs, Ks, are the density, specific heat, and thermal conductivity of the solid phase
YIG, respectively. As shown in Figure 1, z = 0 at the surface of the target. We note that in the
above model we assumed that the enthalpy of fusion ∆Hm = 0 and the interface laser-target
interaction was static. Those assumptions are safe considering the aforementioned laser
properties and that only a single pulse are used in this simulation. Moreover, the following
initial and boundary conditions are used:

T (t, z)t=0 = T0, (4)

−Ks
∂T(t, z)

∂z

∣∣∣∣
z=0

=

.
S
µ

, T ≤ Tm (5)

−Ks
∂T(t, z)

∂z

∣∣∣∣
z=d

= 0, T ≤ Tm (6)

where Equation (4) is the initial condition, T0 is the initial temperature, and Equations (5) and (6)
are the boundary conditions at the top (z = 0) and rear (z = d) surfaces of the YIG tar-
get, respectively.

Above the melting temperature, T > Tm, the target surface will melt and change its
physical properties to a liquid phase. Furthermore, if the laser intensity is sufficient, the
target surface will reach the boiling point and evaporation will occur. The fluence threshold
for YIG can be calculated as follows [24]:

Fth ≈
ρsCs(Tm − T0)Lth

(1− R)
, (7)

by taking the maximum of the laser penetration depth, Lth = 1 µm, we obtained the fluence
threshold (Fth) of YIG ≈ 0.54 J/cm2, which is lower than the laser fluence of our system.
Thus, we can expect that evaporation will occur during the single-pulsed laser irradiation.
The heat conduction on the target for t > tm until the end of the pulse t = tL can be
expressed as followed:

Clρl
∂T(t, z)

∂t
− ClρlVr

∂T(t, z)
∂z

=
∂

∂z

(
Ks

∂T(t, z)
∂z

)
+

.
S, (8)

where Cl , ρl , Kl , are the density, specific heat, and thermal conductivity of the liquid phase
of YIG, respectively. Above the boiling point, the recession rate of evaporated material, Vr,
can be described by the Hertz–Knudsen equation [13]:

Vr ≈
P

ρs

√
2πkBTS

m

(1− β), (9)

where TS is the surface target temperature, m is the average atom mass (here, we assumed
m = 89 by the mass of the Y atom), β is the fraction of vapor particles that return to the
surface, and kB is the Boltzmann constant. Moreover, the pressure (P) of ablated material
as a function of surface target temperature can be expressed as [13]:

P = Pbexp
{

∆Hvm
kB

(
1
Tb
− 1

T

)}
, (10)
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where ∆Hv is the enthalpy of vaporization at boiling point Tb and atmospheric pressure Pb
(1 atm.). Furthermore, the boundary conditions are expressed as:

− Kl
∂T(z, t)

∂z

∣∣∣∣
z=0

= −∆HvρlVr +

.
S
µ

, (11)

− Kl
∂T(z, t)

∂z

∣∣∣∣
z=d

= 0 (12)

Upon vaporization, the vapor material will also absorb the laser energy, causing its
temperature to increase, and ionization will occur, leading to the formation of the plasma
plume. The absorption of laser energy by the vapor material is dominated by inverse
bremsstrahlung (IB) and the photoionization mechanism (PI) [24]. The IB process involves
the absorption of laser energy by a free electron, while the PI happens when the electron is
excited directly due to laser energy absorption by neutral atoms. These two mechanisms
lead to various species incorporated within the plasma plume, such as electrons, ions,
neutrals, clusters, and particulates.

At the end of the laser pulse, plasma with a particular height H will be formed. Due
to the density and absorption of the plasma plume, now the laser energy that reaches the
surface of the target will be reduced, which is known as the plasma shielding effect [20].
Therefore, the source term can be written as followed:

.
S = µ(1− R)I(t)e−µze−(αIB+αPI)H , (13)

where αIB and αPI are the absorption coefficients of the IB and PI absorption mechanisms,
respectively. The absorption coefficient of IB is given by [25]:

αIB = 3.69× 108

(
ZIB

3N2
IB

Tv0.5ν3

){
1− e

(− hν
kbTv

)
}

, (14)

where ZIB, NIB, h, Tv, and ν are average charge, ion density, Plank constant, vapor tempera-
ture, and frequency of laser, respectively. Moreover, the absorption coefficient of IB is given
by [25]:

αPI = σPI NPI , (15)

where NPI is the neutral atom density and σPI is the cross-section between an excited
neutral atom and a photon that is involved in the photoionization process. The typical
value of σPI is in the range of 10−21 m2 [26].

2.2. Plasma Plume Expansion

After the termination of the laser pulse (t = tL), the existing plume will expand away
from the target surface due to the conversion of high thermal energy and energy stored
as excitation and ionization in the plasma to kinetic energy [10]. In nano-second laser
irradiation and with the laser properties under consideration, where the repetition rate
is 10 Hz, we can assume the plume expansion time to be far longer than its formation
time (close to pulsed duration, ∼15 ns). Thus, the plume expansion can be considered
independent of its formation.

Figure 2 displays the schematic of the plasma plume expansion after the termination
of the laser pulse, showing the change in plume dimension over time. The initial plasma
with dimensions of height: Z0 and radius: X0 and Y0 expands as a semi-ellipsoid with a
front determined by the axes X(t), Y(t) and Z(t). Here, the radius can be approximated by
the laser beam radius, X0 = Y0 = 4.75 mm. The height of the initial plume is much smaller
than the radial dimension (Z0 � X0, Y0). The height of the plume in z-direction can be
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approximated by Z0 ≈ υs × tL where υs is the sound velocity in the plume [27]. When the
plasma plume is modeled as an ideal gas, the speed velocity can be calculated as [25]:

υs =

√
γkBTP

m
, (16)

where γ is the specific heat ratio or adiabatic index, kB is the Boltzmann constant, and TP is
the initial plasma plume temperature. For a monoatomic ideal gas, γ = 5/3; however, in
laser-produced plasma, the value of γ is expected to decrease because of the high plasma
temperature and high degree of excitation, as well as the ionization of the plasma species.
The value of γ is estimated in the range of 1.2–1.3 [21,28].

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 13 
 

 

𝜐 = , (16)

where 𝛾 is the specific heat ratio or adiabatic index, 𝑘  is the Boltzmann constant, and 𝑇  is the initial plasma plume temperature. For a monoatomic ideal gas, 𝛾 = 5/3; how-
ever, in laser-produced plasma, the value of 𝛾 is expected to decrease because of the high 
plasma temperature and high degree of excitation, as well as the ionization of the plasma 
species. The value of 𝛾 is estimated in the range of 1.2–1.3 [21,28]. 

In this study, we simulate the plume expansion under vacuum conditions. The 
plasma plume is modeled as an ideal gas that undergoes adiabatic expansion. The expan-
sion of the plasma plume in Cartesian coordinate can be expressed as [27]: 𝑍 𝑑 𝑍𝑑𝑡 = 𝑋 𝑑 𝑋𝑑𝑡 =  𝑋 𝑑 𝑋𝑑𝑡 = (5𝛾 − 3) 𝐸𝑀 𝑋 𝑌 𝑍𝑋𝑌𝑍 , (17)

where 𝛾 = 𝐶 /𝐶  is the adiabatic constant, and X, Y, and Z are the dimensions of the 
plume as a function of t in the axes of x, y, and z, respectively. E is the initial energy and 
M is the mass of the plume, where the ratio can be approximated by ≈ 𝜐 =  𝛾𝑘 𝑇 𝑚. 
The model is based on Lie group transformation theory, where the solution of the gas 
dynamic equation is simplified. In this model, the density and the pressure of the plume 
are constant on the ellipsoidal surface, e.g., ( ) + ( ) + ( ) = constant. Furthermore, 
the hydrodynamic motion of all particles in the plume is governed by self-similarity, such 
that the velocity is controlled by the relative position of the edge [10,23]. Therefore, the 
velocity distribution in x, y, and z-axes can be calculated as: 𝑣 = 𝑥𝑋 𝑑𝑋(𝑡)𝑑𝑡 , 𝑣 = 𝑦𝑌 𝑑𝑌(𝑡)𝑑𝑡 , 𝑣 = 𝑧𝑍 𝑑𝑍(𝑡)𝑑𝑡  (18)

 
Figure 2. Schematic of the plasma plume expansion after termination of the laser pulse (𝑡 =  𝑡  = 0). The initial plasma plume, with dimensions of height (𝑍 ) and radius (𝑋 , 𝑌 ) at (𝑡 =  0), expands 
(X(t), Y(t), Z(t)) at t > 0) as a semi-ellipsoid perpendicular to the target surface (z-axis). The time 
when the edge of the plasma plume reached the substrate is denoted as 𝑡 . 

  

Figure 2. Schematic of the plasma plume expansion after termination of the laser pulse (t = tL = 0).
The initial plasma plume, with dimensions of height (Z0) and radius (X0, Y0) at (t = 0), expands (X(t),
Y(t), Z(t)) at t > 0) as a semi-ellipsoid perpendicular to the target surface (z-axis). The time when the
edge of the plasma plume reached the substrate is denoted as tS.

In this study, we simulate the plume expansion under vacuum conditions. The plasma
plume is modeled as an ideal gas that undergoes adiabatic expansion. The expansion of the
plasma plume in Cartesian coordinate can be expressed as [27]:

Z
d2Z
dt2 = X

d2X
dt2 = X

d2X
dt2 = (5γ− 3)

(
E
M

)(
X0Y0Z0

XYZ

)γ−1
, (17)

where γ = Cp/Cv is the adiabatic constant, and X, Y, and Z are the dimensions of the plume
as a function of t in the axes of x, y, and z, respectively. E is the initial energy and M is the
mass of the plume, where the ratio can be approximated by E

M ≈ υs
2 = γkBTP

m . The model is
based on Lie group transformation theory, where the solution of the gas dynamic equation
is simplified. In this model, the density and the pressure of the plume are constant on the

ellipsoidal surface, e.g., x2

X(t)2 +
y2

Y(t)2 +
z2

Z(t)2 = constant. Furthermore, the hydrodynamic
motion of all particles in the plume is governed by self-similarity, such that the velocity is
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controlled by the relative position of the edge [10,23]. Therefore, the velocity distribution
in x, y, and z-axes can be calculated as:

vx =
x
X

dX(t)
dt

, vy =
y
Y

dY(t)
dt

, vz =
z
Z

dZ(t)
dt

(18)

3. Numerical Implementation
3.1. Laser Parameters and Material Properties

Tables 1 and 2 summarize the laser parameters, and the physical properties of YIG
target materials.

Table 1. Laser parameters used for simulation. Referring to parameters of Nd:YAG Continuum
Surelite III model.

Parameters Symbol Value

Wavelength λ 532 nm
Laser Energy E 446 mJ

Repetition Rate - 10 Hz
Beam Diameter D 9.5 mm

Pulsed Width (FWHM) w 5 ns
Laser Fluence φ 0.63 J/cm2

Peak Intensity Imax 1.26 × 108 W/cm2

Table 2. Thermal and optical properties of Yttrium-Iron Garnet (YIG) used for simulation.

Properties Symbol Value Refs.

Solid phase thermal conductivity Ks 7.4 J/smK [29]
Liquid phase thermal

conductivity Kl 7.4 J/smK -

Solid phase density ρs 5170 kg/m3 [29]
Liquid phase density ρl 5170 kg/m3 -

Enthalpy of vaporization ∆Hv 8 × 106 J/kg -
Reflectivity R 0.13 [30]

Solid phase specific heat Cs 590 J/kgK [29]
Liquid phase specific heat Cl 590 J/kgK -

Thermal diffusivity α 2.4 × 10−6 m2/s calculated
Melting point Tm 1828 K [29]
Boiling point Tb 3611 K [31]

Absorption coefficient (@532 nm) µ 2.5 × 106 m−1 [32]

Several properties of liquid-YIG that cannot be found in references are set to be
the same values as in the solid phase. To the best of our knowledge, the enthalpy of
vaporization ∆Hv has not been determined experimentally. Therefore, we set the value to
be in the order of the corresponding oxides.

3.2. Simulation of the Temperature of the YIG Target

To simulate the effect of laser pulse radiation on the temperature of the YIG target, we
solve the 1D heat conduction partial differential equation (Equation (3)) by using the finite
different numerical (FDM) method. Two source terms are assigned to each equation, for
temperature below melting point (T ≤ Tm) and above melting point (T > Tm), expressed
in Equation (1) and Equation (13), respectively.

Two different domains are employed, where n is for time domain (t) and j is for the
depth from the surface of the target domain (z). Based on the known initial condition
at t = 0, where the initial temperature T = 300 K is independent of depth, we can use a
center approach for the z-domain; meanwhile, the forward approach is applicable for the
t-domain. The number of partitions for the time and depth domains are assigned to M and
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N, respectively. The number of partitions determines the calculation results, where M >> N
led to a convergence value.

Numerical expression for heat conduction equation below melting point (t ≤ tm):

Tn+1,j = Tn,j +
∆t

Csρs

{
Ks

∆z2

(
Tn,j+1 − 2Tn,j + Tn,j−1

)
+ (1− R)µIn exp(−µz)

}
, (19)

with boundary conditions:

Tn+1,1 = Tn+1,2 +
∆z
Ks

(1− R)In, (20)

Tn+1,N = Tn+1,N−1, (21)

and initial temperature T1,j = 300 K. Furthermore, for temperatures above the melting point
(tM < t < tL), the numerical equation can be express as:

Tn+1,j = Tn,j +
∆t
Clρl

{
Ks

∆z2

(
Tn,j+1 − 2Tn,j + Tn,j−1

)
+(ClρlVr(Tn,1)+(1− R)µIn exp(−µz) exp(−(αIBn + αPI n)H)}

(22)

Vr ≈
Pbexp

{
∆Hv(Tb)m

kB

(
1
Tb
− 1

Tn,1

)}
ρ
(

2πkBTn,1
m

) 1
2

(1− β) (23)

with boundary condition:

Tn+1,1 = Tn+1,2 +
∆z
Ks

(1− R)In exp(−µz) exp(−(αIBn + αPI n)H − ∆HvρlVr, (24)

Tn+1,N = Tn+1,N−1, (25)

and the initial temperatures for each depth are set to the melting temperature, t = tm,
T1,j = Tm,j,. The shielding effect of the plasma plume decreases the laser incident intensity
which reaches the surface target. The rate of decrease is determined by the absorption
coefficient IB (αIB) and the PI (αPI) mechanism, which can be expressed as:

αIB(n) = 3.69× 108

(
ZIB

3N2
IB

Tvn,1
0.5ν3

){
1− e

(− hν
kbTvn,1

)
}

, (26)

αPI(n) = NPIσPI,x, (27)

where for such local thermal equilibrium (LTE) of the plume, the average charge ZIB ≈ 2 [20],
υ = 5.64× 1014, and Tv is assumed to be the same with the boiling temperature Tb, while
σPI,x is set to 10−21 m2. In this calculation, the density of the ion (NIB) and the neutral atom
density (NPI) are set as a function of time, where the maximum values are reached at the
end of the laser pulse (tL), as followed:

NIB(n) = NPI(n) = (n− 1)10

(
Nmax

(M− 1)10

)
, (28)

where Nmax is set to 1021/cm3. As shown in Equation (13), the decrease in laser intensity is
also a function of plume height (H), which is expressed as:

H(n) = (n− 1)
(

Hmax

M− 1

)
, (29)

where Hmax is the maximum height of the plume. Just as for NIB and NPI , the height of the
plume is set to reach the maximum at the end of the laser pulse.
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3.3. Simulation of Plasma Plume Expansion

The geometry of plasma plume expansion after the termination of the laser pulse is
depicted in Figure 2. We calculate dimension and edge velocity for the equation plume
expansion (Equation (17)) by using the ordinary differential equation, ode45 function in
MATLAB®. The initial plume dimension X0 = Y0 is estimated by a laser beam radius
of 4.75 mm, while Z0 = Hmax is estimated from sound velocity (Equation (16)), which is
dependent of the initial plasma temperature (TP). Since the initial plume has much larger
thermal energy than the kinetic energy, the initial condition for the edge velocity can be
set as:

dX(0)
dt

=
dY(0)

dt
=

dZ(0)
dt

= 0, (30)

and the calculation is conducted for an expansion time of 10 µm with time step ∆t = 0.1 ns.
As one can see from Equation (17), the values of γ, E, and M are critical to obtaining

the correct calculation result. However, to the best of our knowledge, those values have not
been experimentally confirmed yet. Therefore, we input the estimation values for γ, E, and
M in our calculation. The ratio of E

M ≈ νs
2, which depends on the temperature of the initial

plasma. We evaluate the expansion by varying the TP. The range for the initial plasma
temperature is set to 7000 K–20,000 K, referring to the previous study of nano-second laser
ablation of a YBa2Cu3O7 target [21].

4. Result and Discussion

The theoretical models consisting of laser-target heating (Equations (3) and (8)) and
plume expansion (Equation (17)) were numerically simulated. The thermophysical proper-
ties of YIG used in the calculation are summarized in Table 2. Further, Table 3 summarizes
the parameters of the plasma plume used in the calculation:

Table 3. Plasma plume parameters used in the calculation.

γ TP (K) Z0 = Hmax (µm) E/M (J/kg)

1.2 7000 13.29 7.9× 105

1.2 15,000 19.45 1.7× 106

1.2 20,000 22.46 2.2× 106

We choose one value of γ = 1.2 and varied the plasma temperatures, resulting in the
three different values for height and the ratio of the energy and mass of the initial plasma
plume (t = tL).

Figure 3 shows the surface temperature of the YIG target during a single pulse shot,
where the left y-axis denotes the surface temperature (T), while the right y-axis denotes the
intensity of laser (I(t)). For this calculation, we employed γ = 1.2 and TP = 7000 K, resulting
a maximum height of the plume Hmax = 13.29 µm. The temperature rises because of the
absorption of the laser energy by the target and reaches the melting point (Tm = 1828 K)
at t = 3.8 ns. At this region (t = 0–3.8 ns), the calculation corresponds to the first 1D
heat conduction equation (Equation (3)). After the target surface liquidizes, the surface
temperature rises further and reaches the boiling point (Tm = 3611 K), when t = 4.8 ns. It
can be seen that the temperature of target surface increases further, surpassing the boiling
point and reaching a maximum of about T = 5250 K before decreasing exponentially. It
is interesting to see that the surface temperature is saturated even before the laser reach
its maximum intensity. This result implies that the shielding effect of the plasma plume
reduces the intensity of laser to reach the target surface. In the calculation, we included the
term for plasma absorption, which reduced the source heat term used in Equation (8) by
rate of e−(αIB+αPI)H . Furthermore, we also considered the liquid-vapor phase change by
taking into account the recession rate of evaporation material vr (Equation (9)), which also
contributed to the temperature decrease at the surface after evaporation occurred.
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Figure 3. Effect of laser irradiance on the surface temperature of the YIG target. The left y-axis
denotes the surface temperature (T), while the right y-axis denotes the intensity of laser, I(t). T was
calculated by numerically solving 1D heat conduction equations as expressed in the Equation (3)
for temperatures under the melting point (T ≤ Tm) and Equation (8) for T above the melting point
(T > Tm). γ = 1.2 and TP = 7000 K, resulting in maximum height of plume Hmax = 13.29 µm, are
used in the calculation. The numbers of partitions are M = 12,000 and N = 300.

The models with the plasma shielding effect in nano-second laser solid target ablation
had been previously developed [20,26]. Zhang et al. [20] evaluate the accuracy of the
model with the ablation depth in the target experimentally and compare their model to
the model with no plasma shielding effect of Singh et al. [21]. The model with the plasma
shielding effect gives better accuracy (~3% error) compared to that of Singh et al. (~10%
error) [12,20,21]. Therefore, in the above YIG target temperature model, we incorporated
the plasma shielding effect, based on IB and the PI mechanism for moderate laser fluence.
However, the accuracy of our calculation still needs confirmation from the experiment,
which yet remains for further study.

The distribution of temperature inside the YIG target during the laser pulse duration
is shown in Figure 4. Temperature distribution inside the target material during laser pulse
irradiation (t ≤ 15 ns) is calculated for a maximum depth z = 10 µm. The range for depth, z,
is set to 10 µm. The curve inside the graph represents the isothermal boundary line. As
expected, the maximum temperature is found at the surface of the target. The melting
depth reached ∼1 µm from the surface, as shown by the isothermal line for T > 1828 K.
Even though the surface temperature drops significantly after t = 7 ns, a significant region
remains molten for the rest of the laser pulse. Furthermore, the evaporation window, when
the temperature target surpassed the melting point, is obtained as deep as ∼0.4 µm in the
4.8–8 ns radiation period, at which the laser radiation reaches the maximum (t = 7.7 ns).
This result implies that the supply of evaporated material available to form a plasma is
limited to that period. Finally, during laser radiation, the conduction of heat can reach a
depth of approximately 7 µm, indicated by the isothermal line of 310 K.
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Figure 4. Temperature distribution inside the YIG target during laser pulse irradiation (t ≤ 15 ns)
calculated for maximum depth z = 10 µm. Numerical parameters used as the same as the result
shown in Figure 3.

The calculation of the plume expansion (represented by Equation (17)) for three
different initial plume temperatures, TP = 20,000, 15,000, and 7000 K, is shown in Figure 5.
Different initial temperatures of the plasma plume resulted in different initial plume heights
(Z0), as summarized in Table 1, where a higher plasma temperature led to a higher initial
plume height. The edge velocity in the z-direction, or the so-called center of mass velocity
(Vz), is shown in Figure 5a. It can be seen that the edge velocity increases rapidly at an early
stage of expansion (t = 7 ns) before reaching an asymptotic value. The highest velocity is
obtained when TP = 20,000 K, with a maximum of approximately 7× 105 cm/s. Further,
Figure 5b shows the evolution of the plume height. Similar dependency on the temperature
of the plasma is also observed, where at the end of calculation time of 10 µm, a maximum
plume height of 7 cm is obtained for TP = 20,000 K.
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Figure 5. Plume expansion after the termination of laser for initial plasma plume temperature,
TP = 20,000, 15,000 and 7000 K. (a) Edge velocity or center mass velocity, Vz and (b) The height of
plume edge in the z-direction, Z(t).
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Figure 6 shows the velocity distributions inside the plume for each plasma temperature
when the plume height is 4 cm. The red dashed line denotes the plume dimensions. The
velocity shown here is the resultant velocity VR = sqrt

(
Vx

2 + Vy
2 + Vz

2). Self-similar gas
dynamics is used to calculate the velocity distribution from the edge velocity, as express
in Equation (18). It can be seen that, at a height of 4 cm, the radius of plume only reached
approximately 1 cm, which implies that the edge velocity in the x, y-direction is much
smaller than that of z-direction. In fact, for TP = 20,000 K, the ratio Vx/Vz is 0.2 when the
plume height is 4 cm. This edge velocity difference in the radial and perpendicular direction
leads to a semi-ellipsoid shape of expansion of the plume, elongated perpendicularly to
the sample surface. Furthermore, the dependence of the plasma temperature clearly
shows where a higher plasma temperature led to a higher velocity distribution inside the
plume, where for TP = 20,000, 15,000, and 7000 K, the maximum resultant velocities, VR, of
approximately 7, 6.1, and 4.2 × 105 cm/s are achieved, respectively.
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It was previously demonstrated experimentally, in SrTiO3 grown by PLD on a Si sub-
strate, that a high energy of plasma can induce visible burning and destroy the crystallinity
of the substrate [33]. Even though, after post-annealing, the Si substrate crystallinity
showed improvement, the existence of secondary phases was observed on the grown
SrTiO3 film. In the study considered here, the plasma plume expansion in vacuum was
simulated, as shown in Figure 6, wherein the velocity of the ablated particles was calculated.
However, the kinetic energy will be dependent on the ablated species and its respective
density, which should be evaluated further by direct measurement, for instance, by using
laser-induced breakdown spectroscopy (LIBS) [11].

5. Summary

In summary, we have studied the effect of nano-laser radiation on the temperature
of the YIG target. Within the laser parameters under consideration, a single pulse of laser
increases the YIG target’s temperature to above the boiling temperature and generates a
plasma. Furthermore, the expansion of the plasma plume in vacuum was also simulated. It
shows that the kinetic of the expanding plasma plume strongly depends on the temperature
of the initial plasma plume. These results can be used as an input to set the growth
parameters of pulsed laser deposition of YIG thin films, such as the laser fluence and the
substrate-target distances.
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