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Abstract: Recently, with the rapid development of data and information, it has become necessary to
establish secure communications and appropriate security services to ensure a secure information
exchange process. Therefore, to protect the privacy and confidentiality of private data, in this research,
we use the Lorenz chaotic system to generate chaotic signals and apply them to the encryption of
the communication of the Internet of Things (IoT) terminal sensor nodes. In addition, we design a
simple proportional–integral–derivative (PID) controller and a quasi-sliding mode controller (QSMC)
to synchronize the master-slave chaotic systems for decrypting the signals. Then, we encrypt the
environmental signals measured from the IoT node at the transmitting side (master) and send them
to the receiving side (slave). After the receiving side receives the encrypted signals, it decrypts them
with the PID controller. Thus, the security of IoT information can be assured and realized.
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1. Introduction

The term Internet of Things (IoT) originated in 1999, and was proposed by Kevin
Aston of the MIT Auto-ID Center. With the current rapid development of technology,
several methods are available for information transmissions, such as Wi-Fi, Bluetooth, and
various Internet of Things communication protocols. However, with the advent of these
methods, “information security” has become a crucial and inevitable concern. If important
information is stolen by others, it is likely to cause irreparable impacts. Furthermore, there
has been considerable focus and attention paid to the security of personal information, such
as private biomedical information and home information. Thus, the secrecy of personal
information must be ensured. Therefore, designing an effective information encryption
system is an important goal that this study looks to achieve. Traditional encryption methods
can be classified into symmetric encryption (e.g., data encryption standard, DES) and
asymmetric encryption (e.g., RSA, ElGamal, and Paillier) [1–3]. The basic principle of
symmetric encryption is to use Shannon’s concept of multiple encryptions, and apply
confusion and diffusion for converting plain text into other formats and spreading every
small part of the plain text to each part of the ciphertext to encrypt the information.

Many asymmetric encryption methods have been proposed, such as RSA, ElGamal,
and Paillier encryption. These encryption methods mainly use mathematical computation
and encrypt important information to avoid its decryption. However, the above algorithms
can only be run under the integer domain. In this study, we use signals generated by
two chaotic systems to encrypt the IoT signals/information and design a proportional–
integral–derivative (PID) controller [4] and a quasi-sliding mode controller (QSMC) [5,6] to
synchronize the systems and then recover the IoT signals/information.

In 1989, Ott et al. first proposed a method for controlling chaotic systems and named
it the OGY method [7]. Subsequently, Pecora proposed the idea of synchronization control
between two independent chaotic systems [8].

A chaotic system is a nonlinear dynamic system with complicated behaviors. Lorenz
first used this system in an atmospheric simulation equation in 1963 [9]. However, it did
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not attract the attention of scientists until 1978. A chaotic system is extremely sensitive
to initial conditions [10]. Butterfly effects can be generated by slight changes in the initial
conditions, as well as by different attractors. There are various chaotic systems available,
including the Hénon map [11], dynamic system in discrete time, Rössler attractor [12,13],
and Lorenz oscillator, all of which are ternary nonlinear equations in continuous time.

Due to its complicated behaviors, the chaotic system has been employed in many
domains, including communication, biology, mathematics, physics, and chemistry, as
well as economics [14]. Thereafter, controlling/synchronizing chaotic systems and their
applications became a research focus in the literature [15].

In this study, it is assumed that the collected IoT signals/information are very impor-
tant signals, and therefore cannot be exposed to unsafe spaces. This study aims to encrypt,
decrypt, and safely transmit the IoT signal/information. We use the chaotic system in the
master-slave system, which requires a controller to synchronize the chaotic system.

2. Research Methods
2.1. Generalized Lorenz Chaotic System

The generalized Lorenz chaotic system generates ternary nonlinear equations in
continuous time [16]:

.
x1(t) = σ(x2(t)− x1(t)).

x2(t) = γx1(t)− dx2(t)− x1(t)x3(t).
x3(t) = −bx3(t) + x1(t)x2(t)

(1)

where σ > 0, b > 0, c and d are real parameters. The Chen system (2) is a Lorenz-like
system (1), with d = −c, c > 0, γ = c − a.

.
x1(t) = a(x2(t)− x1(t)).

x2(t) = (c− a)x1(t) + cx2(t)− x1(t)x3(t).
x3(t) = −bx3(t) + x1(t)x2(t)

(2)

The system (2) takes {a, b, c} = {35, 3, 28} as system parameters, and its dynamic
equation can be obtained in continuous time, as shown in (3).

In this study, we present the main results for synchronization of chaotic systems (3).
We use two chaotic systems: the transmitting side (master) with the state variables
[x1, x2, x3], and the receiving side (slave) [y1, y2, y3], but with different initial conditions of
[x1(0), x2(0), x3(0)] = [− 10, 0, 37] and [y1(0), y2(0), y3(0)] = [0, 15, 45]. Figures 1 and 2
depict the responses of the chaotic system in the master chaotic system and the slave chaotic
system in three dimensions with double-scroll attractors, respectively.

.
x1(t) = −35x1(t) + 35x2(t).

x2(t) = −7x1(t) + 28x2(t)− x1(t)x3(t).
x3(t) = −3x3(t) + x1(t)x2(t)

(3)

2.2. PID Controller Synchronizing Generalized Lorenz Chaotic Systems

Because the IoT signal/information is not continuous, in order to encrypt the IoT
signal/information later, we first discretize the system from continuous-time to discrete-
time, with a sampling time (T) of 0.005 s via MATLAB software; the discrete time system
can be obtained as follows (4), where k is the time index [17].

In the generalized Lorenz chaotic system, x1, x2, and x3 states affect each other, and
thus, we employ the PID controller in one of the states of the chaotic system for synchro-
nization. In this study, we control the first states, x1 and y1, of the systems. Figure 3 shows
the states x1 and y1 of the master and slave before the application of the PID controller.
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Then, we add controller u[k] to the equations in discrete-time at the slave for synchro-
nization, as shown in (4).

y1[k + 1] = 0.8366y1[k] + 0.1725y2[k]
−0.000431y1[k]y3[k] + u[k]

y2[k + 1] = −0.0345y1[k] + 1.1471y2[k]
−0.0053617y1[k]y3[k]

y3[k + 1] = 0.9851y3[k] + 0.0049627y1[k]y2[k]

(4)

u[k] is the synchronization controller, including the proportional and differential
controllers; shown in (5). The proportional controller (Kp) will consider the current error
to speed up the time of the transient response so that the chaotic system, slave, will turn
into a steady-state and synchronize with master as soon as possible. The integral controller
(Ki) will make use of the summation of the past error to eliminate the steady-state’s error.
Furthermore, once the proportional and integral controller over controls the system, the
overshooting will occur. Here, we are going to use the differential controller (Kd). The
differential controller will use the future error to predict the tendency of the system so that
it can decrease the rise time and avoid overshooting.

u[k] = Kpe[k] + Ki ∑k
i=1 e[i] + Kd∆e[k]

e[k] = y1[k]− x1[k]
∆e[k] = e[k]− e[k− 1]

(5)

After testing and adjusting various Kp, Ki, Kd values to synchronize two general-
ized Lorenz chaotic systems with different initial values, we choose the better Kp, Ki, Kd
parameters for the subsequent implementation. Finally, we obtain Kp = 0.0025, Ki = 0,
Kd = 0.65. To quickly synchronize the two chaotic systems, the Ki value is not used
to reduce the occurrence of overshooting. Figure 4 shows the different initial values:
[x1(0), x2(0), x3(0)] = [−10, 0, 37] and [y1(0), y2(0), y3(0)] = [0, 15, 45] create different
system responses. The blue line is the master system side and the red line is the slave
system side.
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We use the tested PID controller, such as u[k], in (6). Figure 5 shows the effect of the
PID controller in synchronizing the two Generalized Lorenz chaotic systems. It can be seen
from Figure 5 that the PID controller can quickly synchronize the chaotic system.

u[k] = 0.0025e[k] + 0.65∆e[k] (6)
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2.3. Rössler Chaotic System

In the above, we used the PID controller to synchronize the generalized Lorenz
chaotic system. However, this PID controller can only be applied to the master-slave
chaotic system in the initial state of our design [x1(0), x2(0), x3(0)] = [−10, 0, 37] and
[y1(0), y2(0), y3(0)] = [0, 15, 45]. If the master and slave chaotic systems have different
initial values, the synchronization effect of the above PID controller may not be effective;
the chaotic system may not be able to achieve synchronization. Therefore, we want to
design a chaotic system where the controller can be applied to any initial value. First, we
introduce another chaotic system: the Rössler chaotic system. Its dynamic equation can
be obtained in continuous time, as shown in (5), and the dynamic response, as shown in
Figure 6, when the initial value is [5, 6, 14].

.
x1(t) = −x2(t)− x3(t).
x2(t) = x1(t) + 0.2x2(t).

x3(t) = 0.2− 5.7x3(t) + x1(t)x3(t)
(7)
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2.4. Quasi-Sliding Mode Controller

First, we define the main system as x(t) and the slave system as y(t), so the error
system is e(t) = y(t)− x(t). Because the Rössler chaotic system has a nonlinear term in
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the third state, the controller is placed in the third state of the error system. The final error
system is shown in (8).

.
e1(t) = −e2(t)− e3(t).
e2(t) = e1(t) + 0.2e2(t).

e3(t) = −5.7e3(t) + y1(t)y3(t)− x1(t)x3(t) + u(t)
(8)

In terms of the error system, we hope that the three error states can be as small as
possible. We define here that the error system can converge to a very small value. This
means that the systems on both sides of the master and servant will reach synchronization.

Next, we need to define a sliding surface. Let the system reach the sliding surface
within a limited time, and then move along the sliding surface. In the theoretical description
of the sliding mode, the system will be constrained on the sliding surface to reduce the
order of the system and eliminate the nonlinear term. Since the nonlinear term is composed
of state 1 and state 3, the sliding surface is defined as shown in (9).

s(t) = e3(t) + λe1(t) (9)

The definition of dynamic error system means that δQ > 0 and t > tQ are entered in
the sliding mode control. The solution of any error state of the error system must satisfy∣∣s(t) ≤ δQ

∣∣ and t > tQ. Therefore, when the error system enters the sliding mode, t > tQ
and s(t) = e3(t) + λe1(t) = δQ. Because the error system needs to converge to close to zero
for the system to reach synchronization, the value of δQ is very small. With this equation
s(t), the dynamic equation of the error system can be rewritten as shown in (10).

.
e1(t) = λe1(t)− e2(t)− δQ.

e2(t) = e1(t) + 0.2e2(t).
e3(t) = δQ + λe1(t)

(10)

After the sliding surface is introduced, the error system is reduced to a second-order
system. If we ignore the small value of δ0, it can be expressed as e3(t) = λe1. Now, we just
ignore δ0 and consider the response of this second-order system. The second-order system
can be simplified as shown in (11).

.
X = AX, X =

[
e1(t)
e2(t)

]
, A =

[
λ −1
1 0.2

]
(11)

According to the control theory [18], we can know that the transfer function of the
pole is q(s) = det(sI − A) = s2 − (λ + 0.2)s + (0.2λ + 1). Then, we use Routh-Hurwitz
stability [19,20] to find the range of λ, as in (12). Finally, we find −5 < λ < −0.2.

sn an an−2 an−4
sn−1 an−1 an−3 an−5

sn−2 b1 = an−1an−2−anan−3
an−1

b2 = an−1an−4−anan−5
an−1

b3

s2 1 (0.2λ + 1)
s1 −(λ + 0.2) 0
s0 −(0.2λ + 1) 0

(12)

So far, we have proved that δ0 must be very small and the range of λ makes state
1 and state 2 of the error system stable. Now, it is necessary to prove that state 3 of the
error system can also be stable; to prove that the sliding surface should converge and find
the form of the controller. The controller form u(t) is shown in (13), and the Lyapunov
function [21,22] has been used to prove (14); that the sliding surface will converge.

u(t) = −wη(t)
s(t)

|s(t)|+ δ
(13)
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δQ = wδ
w−1

w > 1, δ > 0

η(t) = |−λe2(t)− (5.7 + λ)e3(t) + y1(t)y3(t)− x1(t)x3(t)|
v = 1

2 s2
.
v = s

.
s

∵ s = e3 + λe1 ∵
.
v = s

( .
e3 + λ

.
e1
)

.
v = η(1− w)(|s| − wδ

w−1 )

(14)

Therefore, w > 1 has been selected from the controller, which means
.
v < 0, when

|s(t)| > δQ = wδ
w−1 . This means that |s(t)| will converge to the region of |s(t)| ≤ δQ = wδ

w−1 .
Then, we conduct a simple simulation: let λ = −1.8, δ = 0.03, w = 4, and δQ = wδ

w−1 = 0.04.
The initial value [x1(0), x2(0), x3(0)] = [5, 6, 14] and [y1(0), y2(0), y3(0)] = [−4, 7, 3]. The
system response is shown in Figure 7.
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3. Information Security
3.1. Chaotic System Encryption Architecture for the Information Security

In this study, we use the PID controller to synchronize the master-slave chaotic systems,
which uses the error to adjust the controller and synchronize the system. Thus, one of the
states of the chaotic system must be simultaneously transmitted with the encrypted data.
The architecture of the secure IoT system is shown in Figure 8.
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In the transmitter side (master system), x2 is used in the encryption algorithm via the
chaotic masking method, and x1 is used for the chaos synchronization by the PID controller
design; thus, x1 is sent to the slave. When the chaotic system reaches synchronization, we
take y2 to decrypt the IoT signal. In the middle of the communication system, we use the
LoRa module.

3.2. Information Security

As can be seen from Figure 8, we use x2 of the chaotic system to encrypt the IoT signal.
The encryption method is shown in (15).

data′ = data + x2 (15)

Because the chaotic system has good pseudo-random characteristics, unpredictability
of the orbit, sensitivity to the initial state, and control parameters, etc., if a thief steals the
encrypted value, they cannot crack it. Even if the thief steals x1 of the chaotic system and
simulates the response of the transmitting side system, because the chaotic system has a
butterfly effect, it is impossible to find x1. As long as the system state is worse, the response
will be completely different. Finally, the receiving side (slave system) has synchronized the
chaotic system y2 = x2. Therefore, the receiving side can use y2 to restore the IoT signal.
The decryption method is shown in (16).

data = data′ − x2 = data′ − y2 (16)

3.3. Simulation of Information Security

Before entering the implementation, we conduct a simulation of information security
to test whether this architecture can use a chaotic system to encrypt and decrypt signals.
First, we use a random number generator to generate a random signal, as shown in Figure 9.

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 16 
 

 

In the transmitter side (master system), 𝑥  is used in the encryption algorithm via 
the chaotic masking method, and 𝑥  is used for the chaos synchronization by the PID 
controller design; thus, 𝑥  is sent to the slave. When the chaotic system reaches synchro-
nization, we take 𝑦  to decrypt the IoT signal. In the middle of the communication sys-
tem, we use the LoRa module. 

3.2. Information Security 

As can be seen from Figure 8, we use 2x  of the chaotic system to encrypt the IoT 
signal. The encryption method is shown in (15). 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 + 𝑥   (15)

Because the chaotic system has good pseudo-random characteristics, unpredictabil-
ity of the orbit, sensitivity to the initial state, and control parameters, etc., if a thief steals 
the encrypted value, they cannot crack it. Even if the thief steals 𝑥  of the chaotic system 
and simulates the response of the transmitting side system, because the chaotic system 
has a butterfly effect, it is impossible to find 𝑥 . As long as the system state is worse, the 
response will be completely different. Finally, the receiving side (slave system) has syn-
chronized the chaotic system 𝑦 = 𝑥 . Therefore, the receiving side can use 𝑦  to restore 
the IoT signal. The decryption method is shown in (16). 𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 − 𝑥 = 𝑑𝑎𝑡𝑎 − 𝑦   (16)

3.3. Simulation of Information Security 
Before entering the implementation, we conduct a simulation of information security 

to test whether this architecture can use a chaotic system to encrypt and decrypt signals. 
First, we use a random number generator to generate a random signal, as shown in Figure 
9. 

 
Figure 9. The random signal graph. Figure 9. The random signal graph.

Next, the random signal is encrypted with the state of the chaotic system, as shown in
Figure 10. The blue line is the original random signal and the black line is the encrypted
signal. As we can see from Figure 10, the original signal has been completely encrypted.
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The original random signal cannot be solved from the encrypted signal. Finally, the chaotic
system at the receiving side is used for decryption, as shown in Figure 11. As can be seen
from Figure 11, the decryption fails before 0.5 s because the chaotic systems at both sides
have not reached synchronization. After 0.5 s, the chaotic systems at both sides reach
synchronization, so the decryption is successful. Therefore, the simulation proves that this
architecture is feasible.
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3.4. QSMC Synchronized Chaotic System Encryption Architecture for the Information Security

Above, we outlined the encryption architecture using the PID controller. In the same
way, we can fit it into the form of QSMC. First, the QSMC can be simplified into a form
such as (17). Transmit um1(t) and um2(t) to the receiving end to realize the sliding mode
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controller. It is safer than the PID controller, because the value transmitted by the QSMC is
a linear combination of the master state and it is not easy to guess the state of the system,
and the PID controller has exposed one of the system states. Figure 12 shows the encryption
architecture of QSMC.

u(t) = −wη(t) s(t)
|s(t)|+δ

η(t) = |−λe2(t)− (5.7 + λ)e3(t) + y1(t)y3(t)− x1(t)x3(t)|
= |um1(t) + us1(t)|
um1(t) = λx2(t) + (5.7 + λ)x3(t)− x1(t)x3(t)
us1(t) = −λy2(t)− (5.7 + λ)y3(t)− y1(t)y3(t)
s(t) = e3(t) + λe1(t) = um2(t) + us2(t)
um2(t) = −x3(t)− λx1(t)
us2(t) = −y3(t) + λy1(t)

(17)
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4. Implement
4.1. IoT Signal/Information

In this study, we used the DHT-22 sensor as an example of IoT signal/information,
as shown in Figure 13. The DHT-22 sensor is a temperature and humidity composite
sensor with a calibrated digital signal output. It uses dedicated digital module acquisition
technology, as well as temperature and humidity sensing technology to ensure that the
product has extremely high reliability and excellent long-term stability. Therefore, the
product has the advantages of excellent quality, ultra-fast response, strong anti-interference
ability, and high-cost performance. The temperature and humidity information are the
most common signals in the IoT. We used DHT-22 with a sampling time of 0.005 s, as shown
in Figure 14.
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4.2. IoT Communication Channel

In order to allow temperature sensing data to be transmitted in the IoT. We used the SX
LoRa-1278 communication module, as shown in Figure 15. In terms of IoT communication
technology, one of the LoRa (Long Range) low-power wide-area network communication
technologies was an ultra-long-distance wireless transmission scheme based on spread
spectrum technology, adopted and promoted by Semtech. LoRa uses a high spreading
factor to obtain a higher signal gain. Compared with the general FSK, the signal-to-noise
ratio requires 8 dB, while LoRa only requires −20 dB. This provides users with a simple
system that can achieve long-distance, low power consumption, and large capacity, and
can then expand the sensor network. Therefore, using the many advantages of LoRa,
the nodes of each LoRa module were deployed in the space to collect the required data,
such as temperature, humidity, distance, etc. However, because all LoRa frequency bands
are publicly shared and free, we needed an encryption system to protect the security of
these data.
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Figure 15. SX LoRa-1278 communication module.

To ensure the correct rate of the LoRa communication module, we conducted delay
time and different distance tests to find a suitable delay time for our indoor applications.
We designed an experiment in which the transmitting side transmitted a thousand pieces of
data, and the data was generated by the temperature and humidity sensing module, testing
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the reception rate of the receiving side. Table 1 shows the experimental results. Figure 16
shows the experimental environment. From Table 1, it can be seen that the reception rate
of the LoRa module was better at close range, but it was found that the reception rate of
the LoRa module was greatly affected when the distance was increased. Therefore, the
indoor application of the LoRa module to sense, transmit, and receive various indoor data
distances is an important consideration. Finally, we chose a delay time of 200 milliseconds
at a receiving rate of 10 m, which was the transmission interval of the LoRa module.

Table 1. SX LoRa-1278 reception rate experiment results.

Distance (m) Delay Time (ms) Reception Rate

10

100 95.3%
125 96.6%
150 97.4%
175 100%
200 100%

20

100 93.3%
125 94.1%
150 96.8%
175 100%
200 100%

30

100 80%
125 91.1%
150 94.4%
175 100%
200 100%

40

100 77.2%
125 81.0%
150 88.2%
175 100%
200 100%
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4.3. Implementation of the Chaotic Encryption System in IoT Information Security

First, we used Arduino to connect the DHT-22 to detect temperature values from the
environment. The chaotic signal generated by Arduino encrypts the temperature value and
then it is transmitted to the receiving side by SX LoRa-1278. The receiving side uses the
PID controller to synchronize the chaotic system and then performs decryption. Finally,
the temperature value detected by the original DHT-22 is decrypted. The IoT information
security system architecture is shown in Figure 17. The results of integrating the LoRa and
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the chaos system in the ARDUINO interface are shown in Figure 18. As can be seen from
Figure 18, the chaotic system reached synchronization when the temperature decryption
was successful. The same was true for the encryption and decryption architecture of QSMC.
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5. Conclusions

The results obtained in this study verify the fact that the characteristics of IoT sig-
nals/information after encryption and decryption remain the same, which means that
the two chaotic systems are synchronized and generate the same states so that the IoT
information remains correct.



Micromachines 2022, 13, 1993 14 of 14

We used SX LoRa-1278 to communicate between the two chaotic systems and synchro-
nize them with the proportional–derivative controller or the quasi-sliding mode controller.
The experimental results indicate that the master chaotic system successfully transmits
the encrypted IoT signals/information to the other side by using the slave chaotic system.
Moreover, we obtained the same IoT signals/information after decryption.

Thus, we achieved our goal based on the chaotic system, with a synchronization
controller applied to the security of the IoT information.
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