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Abstract: The performance and wear life of linear ultrasonic motors are directly determined by
the stator–mover frictional contact behaviors. A complete contact model is important to clearly
understand the stator–mover contact mechanism and accurately estimate the motor performance.
In this paper, a multi-point frictional contact model considering the roughness of contact interfaces
is presented based on a finite model of the stator and an analytical model of the mover. The
static/dynamic contact behaviors and output performance of the motor can be simulated efficiently.
A quantitative measuring methodology for the dynamic contact forces between the stator and mover
is developed. The effectiveness of the contact model for simulating the stator–mover contact forces
is first evaluated by experiment. Based on the developed model, several dynamic characteristics of
a linear ultrasonic motor are discussed: (a) the static force transferred between contact interfaces
under pre-pressure; (b) the transient forces and energy exchange between contact interfaces; (c) the
steady-state output performance of motor under different electric excitation parameters; (d) the effects
of micro-topography parameters on the output performance of the motor and the force transmission
of the contact interface.

Keywords: ultrasonic motor; contact analysis; measurement; simulation; rough surface

1. Introduction

A linear ultrasonic motor (LUM), which can convert the ultrasonic-frequency oscilla-
tion of a special piezoelectric actuator into macroscopic linear motion directly by means of
frictional contact, has many advantages, such as fast step/settle, unlimited travel ranges,
self-locking at rest, and satisfying the compatibility of the magnetic field and vacuum. These
advantages are a perfect match for many demands in precision motion control applications
including precision stages [1], aerospace [2], medical devices [3–5], and semiconductor
manufacturing [6]. It is obvious that the frictional contact behaviors between the stator
and mover in an LUM not only determines the operational performance but also the wear
properties and lifetime. Therefore, many researchers tried to understand the frictional
contact mechanism. However, this subject is still a current challenge in both theoretical and
experimental studies.

In theories, many kinds of frictional contact models for LUM have been proposed
to describe the interaction of the interface between the stator and mover. Tsai et al. [7]
presented a single point contact model for a so-called L1B2 ultrasonic motor, in which
the normal contact force was equivalent to a linear elastic spring force and the tangential
contact force was expressed by Coulomb model. The dynamic force transmission at contact
interfaces and some output characteristics of the motor were simulated when the stator
was excited by square wave voltage. Based on this model and considering the stick–slip-
separation dynamic behavior of the contact interface, Li et al. [8] developed a switch model
for the same motor exited by sine-wave voltage. Considering that the vibration amplitude
of the stator and the roughness of the contact surface were in the same order of magnitude,
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Lv et al. [9] refined the normal contact model by taking the rough surface into account and
obtained a more accurate estimation for the output performance. Deng et al. [10] proposed
a parametric model for the speed control of a motor, in which some unknown physics
parameters due to lack of prior accurate knowledge were considered and identified by
experiment. However, the above frictional contact models were coupled with an analytical
stator model for the simulation of contact mechanism and motor performance, which
could cause invalidation or lead to inaccurate results when they are directly used for
irregular-structured LUMs. Scholars have to make some assumptions and simplifications
for investigating the frictional contact behavior in LUMs with complex structure stators.
Shi et al. [11] presented a widely applied contact modeling method for standing wave
linear ultrasonic motors with the assumption that the contact process does not affect the
vibration characteristics of the stator. With a similar assumption, a modified Coulomb
friction model was developed in [12,13], and the dynamic contact, friction drive, and wear
mechanisms in an LUM with a V-shape stator was outlined. All the existing analytical
models treated the stator–mover contact interface as point-to-point contact, which may not
enable us to understand the frictional contact properties between the stator and mover in
detail because the size of the contact interface is much larger than the vibration amplitude
of the stator. In [14], a multi-point contact model was developed based on the finite element
method (FEM); however, the effect of surface roughness on the frictional contact behavior
was neglected. Although the FEM could model a randomly rough surface at the contact
surface of the stator, this would result in a multi-scale stator model which would need
a tremendous amount of calculation. Some other relevant studies that concentrate on
the frictional contact of the linear ultrasonic motor can be found in [15–19]. Because of
those, it is interesting to develop a detailed multi-point contact model considering the
surface roughness of the stator–mover interface, which would be useful for investigating
the contact mechanism in more detail and for accurately predicting the output performance
of the motor.

In previous studies, the accuracy of a proposed stator–mover contact model was
generally validated by comparing the output performance of the motor between simulation
and experiment results. Within the knowledge of the author, the load information at the
stator–mover contact interface has never been analyzed quantitatively by experiment, and
only a few relevant studies are devoted to the qualitative measurement of the frictional
contact forces at contact interfaces. In [20,21], an electric contact method is adopted for
measuring the stator–mover contact state. A resistor, DC power, stator, and a conducting
mover were connected in series, and then the contact and separation periods can be
discriminated by measuring the voltage across the resistor. The influences of the exciting
voltage amplitude and the pre-load pressing stator against the mover on the contact time
in one running cycle of the stator were investigated. However, the information obtained
from the electric contact method is not enough to analyze the interfacial contact forces
quantitatively. In fact, two of the major obstacles to studying motor wear and developing a
control strategy are the inability to quantitatively measure the interfacial contact forces and
the lack of an accurate contact model verified by experiment. Therefore, an experimental
method for measuring the normal contact force and frictional force at the contact interfaces
of LUMs is necessary. Additionally, the reasonability and reliability of the theoretical
contact model can also be verified.

To address these issues, a multi-point contact model considering interfacial micro-
topography parameters is presented based on the finite element model of the stator and
the analytical model of the mover, which could be used to simulate the frictional contact
behaviors and the output performance of LUMs. The static and dynamic contact algorithms
were designed and implemented in a Matlab environment based on the Newton–Raphason
method and Runge–Kutta method, respectively. The static and dynamic responses of the
stator, mover, and contact forces can be output. Furthermore, a quantitative measuring
methodology of the dynamic contact forces between the stator and mover was proposed
for validating the effectiveness of simulation results. By comparing the simulated and
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experimental results, the proposed model is reliable and effective in investigating the
interfacial contact mechanism and predicting the output performance of the motor.

This paper is organized as follows. In Section 2, the configuration and operating
principle of an LUM are presented briefly. In Section 3, the numerical model for simulating
the contact behaviors of linear ultrasonic motors is developed, in which the finite element
model of the stator, analytical mover model, and the multi-point frictional contact model
considering interfacial roughness are included. The solution algorithms for static and
dynamic models are designed. Subsequently, the measurement principle and system for
stator–mover contact forces are presented in Section 4. The model validation and some
significant phenomena are simulated and discussed in Section 5. Finally, the conclusions
are drawn in Section 6.

2. The LUM Prototype and Operating Principle

The configuration of the studied LUM is shown in Figure 1. The prototype motor
consists of a V-shaped piezoelectric stator with a contact tip, a frame fixture clamping
stator, a pre-pressing assemble including a preload spring and a preload bolt, a mover
with a wear-resistant friction bar, and a base. Note that the external load may be applied
to the mover. Four PZT-5H piezoelectric ceramics polarized in the thickness direction are
symmetrically arranged onto the stator surface and electrically excited to induce particular
resonant modes of the stator. When the surface electrodes on top (CH1/CH2) are applied
sinusoidal signals with a specific frequency close to the resonant frequency and a phase
difference, the symmetric and asymmetric modes ( f1 = 53,191 Hz and f2 = 53,261 Hz,
respectively) of the stator are simultaneously excited and the contact tip will generate a
microscopic elliptic motion, as shown in Figure 2. Since the stator is preloaded against the
mover, the mover will be driven to generate a macroscopic linear motion by the contact tip
through frictional contact behaviors. The frictional contact process between the contact tip
and mover directly determines the dynamic properties of the mover as well as the lifetime
and reliability of the motor.

Figure 1. Structure of the LUM prototype.
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Symmetric mode

Asymmetric mode

Microscopic elliptic motion

Macroscopic linear motion

Figure 2. The operating principle description with the finite element model.

3. Numerical Modeling and Algorithm

In this section, the numerical model for simulating the stator–mover contact behavior
and the output performance of LUM is developed, where the stator is modeled based
on the finite element method, the mover is simplified as a single-degree-freedom sys-
tem, and the stator–mover contact interface is modeled considering the interfacial rough-
ness and the multi-point contact effect. The solution algorithms for the static and dy-
namic models are designed based on the Newton–Raphason method and the Runge–Kutta
method, respectively.

3.1. Stator and Mover Model

In order to build a multi-point contact model incorporating micro-topography pa-
rameters of the contact surface, a 3D stator including PZT and metal substrate is modeled
by the finite method, as shown in Figure 3. Here, 25,735 nodes and 20,262 isoparametric
cubic elements with 8 nodes are used, and the mesh size of 0.5 mm is taken for the contact
interface. For static coupled-field analysis [22,23], the discretized equation of the stator can
be expressed as [

Kuu KuV
KVu KVV

][
u
V

]
=

[
F
Q

]
, (1)

where Kuu, KuV , and KVV are the structure, coupling, conductivity stiffness matrix. The
vectors u and V are the nodal displacement and electric potential, respectively. Q is the
equivalent nodal electric charge, and it is usually set to zero because the electric excitation
is applied through voltage. It is noted that the vector F is the equivalent force derived
from the sum of all extended nodal forces including pre-pressure Fpre, normal contact force
FN , and tangential friction force FT . The coupled finite element matrix equation for the
dynamic analysis of the stator is given by

[
Muu 0

0 0

][
ü
V̈

]
+ C

[
u̇
V̇

]
+

[
Kuu KuV
KVu KVV

][
u
V

]
=

[
F∗ + F

Q

]
, (2)

where C is the Rayleigh damping matrix, and the vector F∗ is generated from the electric
excitation boundaries. The state of mover motion at any position is assumed to be the same
and only moves along the guideway, so a single-degree-freedom system could be used to
represent the mover, and the dynamic equation of the mover is easily obtained

müm + cu̇m = FTm + Ff − Fload, (3)

where um, m, and c are the displacement, mass, and damping coefficient of the mover. Note
that the damping coefficient of the mover only affects the maximum speed of the mover
and the time reaching the speed steady-state, so it was determined by trial calculation and
comparison with an experiment in one working condition. FTm , Ff , and Fload are the driving
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force of all nodes at the contact tip, the friction force between the mover and guideway, and
the external load applied to the mover.

Figure 3. The 3D finite element mesh of the stator.

By solving those coupling models, the frictional contact behavior and response char-
acteristics in the LUM can be analyzed in detail. The key point for accurate simulation is
to build a complete contact model. In addition, the strong nonlinearity of the frictional
contact behavior leads to the solution of dynamic equations being significantly difficult and
computationally time-consuming. An appropriate frictional contact model and solution
algorithms are crucial for obtaining accurate solution results, which will be presented in
the following sections.

3.2. Normal Contact Model Considering Rough Surface

The real stator–mover contact surfaces are composed of a series of rough peaks with
random radii and heights. In the analysis of the normal contact problem, the shape of
rough peaks is usually considered as a curved surface with the same radius of curvature
R, and the interactions between roughness peaks are neglected. The height distribution
of the roughness peaks is assumed to obey standard Gaussian distribution determined by
the root mean square roughness. The contact problem between the contact tip surface and
mover surface is equivalent to the contact between a rigid smooth surface and an elastic
rough surface [24], as is shown in Appendix A.

Considering one asperity with the height h′ and the penetration depth δ′, the normal
contact force can be obtained based on the Hertz contact theory [25] and is expressed as

F′ =
4
3

E∗R1/2δ′3/2, (4)

By taking a derivative of Equation (4) with respect to the penetration depth δ′, the
variation of the normal contact stiffness with δ′ for an asperity is obtained as follows:

k′ = 2E∗
√

Rδ′, (5)

If each asperity is regarded as a nonlinear spring, all of the asperities can be considered
as parallel springs with random height, i.e., the normal contact stiffness of the rough surface
is equal to the sum of stiffness of all asperities involved in contact. When the penetration
depth of the rigid smooth surface is δ, the total normal contact stiffness can be obtained by
integrating over all of the asperities with heights from h = hmax − δ to hmax:

k =
∫ hmax

h
Aηk′ψ(h′)d(h′), (6)

where A is the area of the contact tip surface. η is the areal asperity density determined by
experiment [26]. Because the probability that the height of asperity lies in the range −3σ
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and 3σ is about 99.7%, the maximum peak height is selected as 3σ. Substituting Equation (5)
into Equation (6), the total normal contact stiffness is given by:

k(δ) = 2AηE∗
√

R
2πσ2

∫ 3σ

3σ−δ

√
h′ − 3σ + δe−

h′2
2σ2 d(h′). (7)

By integrating Equation (7) and utilizing the numerical method in MATLAB, the
total normal contact stiffness will be a function of the penetration depth of the rigid
smooth surface.

The developments that follow here are to apply the normal contact model to the stator
and mover models. For the discretized stator, the total normal contact force is assigned to
each node on the contact tip so the normal contact stiffness for node i is calculated by

ki(δ) =
k(δ)

n
, (8)

where n is the total number of nodes on the contact tip. Then the normal contact force of
this node with the penetration depth of δi is

FNi (δi) = −
∫ δi

0
ki(δ)dδ. (9)

The penetration depth of δi is contributed by the pre-pressure and the electric excitation
in the stator so that it is separated into two parts: the static penetration depth ũi and the
dynamic penetration depth ui at this contact node, which is written as

δi =

{
ũi + ui ũi + ui > 0

0 ũi + ui ≤ 0
(10)

Here, δi = 0 denotes the separation of this contact pair. All of the nodal normal contact
forces are calculated and assembled into the global normal contact force vector FN of stator
model. The normal contact force in the mover model is the counterforce of the resultant
force of all nodal normal contact forces, which is expressed as

FNm = −
n

∑
i

FNi . (11)

3.3. Regularization Friction Model

In order to consider the stick condition in the stator–mover dynamic contact, a reg-
ularization friction model is developed to replace the discontinuous Coulomb friction
laws which make the numerical procedures difficult due to the discontinuous jump of the
relative tangential velocity in contact interface [27]. The frictional force of node i at the
contact tip surface is expressed by the following continuous form:

FTi
= µFNi

erf(3.6
vi
ṽ
). (12)

where µ is the friction coefficient of stator–mover contact pair, and erf denotes the Gauss
error function. vi = u̇i − u̇m is the relative velocity between the mover and this node, and ṽ
is a stick–slip characteristic velocity differentiating between static and kinetic friction. In
this form, the sticking behavior of the contact interface is treated as sliding at a velocity less
than ṽ so that the frictional force in both the stick and sliding phases is expressed by the
relation in Equation (11). Figure 4 shows the level of approximation between the Coulomb
friction model and the regularization friction model with different stick–slip characteristic
velocities of ṽ = 0.1 m/s, ṽ = 0.05 m/s, and ṽ = 10−3 m/s. It can be seen that this model
could agree well with the actual properties of the frictional force as long as the stick–slip
characteristic velocity is small enough.
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Coulomb Friction model

Figure 4. Approximation of actual friction force by a Regularization friction model.

Similar to the normal contact model, this friction model is used for the stator and
mover models. The global frictional force vector FT in the stator model and the driving
force FTm in the mover model can be obtained by all of the nodal frictional forces at contact
tip surface. With this frictional contact model, the microscopic characteristics between
the contact tip of the stator and the friction bar of the mover are taken into account. The
whole model of the motor is obtained by combining the stator model, mover model, normal
contact model, and friction model. The solution algorithm for the static/dynamic model
will be presented in the following section.

3.4. Static Contact Algorithm

For the application of pre-pressure in LUM, the interfacial behavior between the
contact tip and mover is considered static contact. Based on the static stator model and the
normal contact model formulated in Equation (1), the stator model considering the static
contact behavior can be rewritten as:

G(a) = Ka− Fpre − FN(a) = 0 (13)

where a = [u V]T is the unknown degree of freedom (DOF) values to be solved, and K
is the global stiffness matrix of the coupling field. Equation (13) is a nonlinear equation
because the normal contact forces vector FN(a) is a function of the unknown normal
displacement on the contact tip. The general Newto-Raphason algorithm [28,29] is used to
solve this nonlinear equation. The iteration format is constructed as

an+1 = an −
(

∂G
∂a

∣∣∣∣
a=an

)−1

G(an) (14)

where the superscript n is the number of iterations. ∂G
∂a is the system Jacobian matrix and

given by
∂G
∂a

= K− k(a) (15)

where k(a) = ∂FN
∂a is called the contact stiffness matrix, and it is assembled from the contact

stiffness of all nodes involved in contact which can be calculated in Equations (7) and (8).
The contact stiffness of one node is placed at the corresponding y-DOF position.

According to the normal contact model established in Section 3.2, Equation (13) is
continuous and derivable when the nodal displacement on the surface of the contact tip is
greater than or equal to 0. That is, this iterative algorithm converges when the initial nodal
displacement on the contact surface is set to greater than or equal to zero. Therefore, the
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initial DOF values a0 = 0 are used for the iterative format in Equation (14). The convergence
condition is determined by the following equation:

∆ =
∥∥an+1 − an∥∥

2 < ε, (16)

where ε is the convergence tolerance. According to the above iteration format, an algorithm
process for analyzing the stator–mover static contact behavior is designed, and the main
steps are shown in Figure 5.

Start

Initialize modeling parameters: K,Fpre, R, σ, η
Initial conditions: a0 = 0, n = 0

Assemble the normal contact stiffness and force matrices:
k (an) and FN (an)

Calculate G (an) and ∂G
∂a

∣∣n
a

Update the unknown DOF values: an+1

Check convergence:
∆ ≤ ǫ ?

n = n+ 1

Output of results:
ũi and FNi

Stop

yes

no

Figure 5. Flowchart of the static contact algorithm.

The static contact algorithm begins with the 3D stator model and the micro-topography
parameters of the contact surface. The initial DOF values are considered to be zeros. When
a pre-pressure is applied to the stator, the static penetration depth and contact forces can
be calculated. The results of the calculation are not only a precondition of the dynamic
contact algorithm, but can be used to simulate the actual pre-pressure obtained at the
contact interface.

3.5. Dynamic Contact Algorithm

The dynamic contact problem of the LUM couples the dynamic stator model, the
dynamic mover model, and the normal and tangential contact model, so its solution is
complex and computationally time-consuming. The normalization of mode shapes is
utilized to simplify the semi-discrete equation of stator motion given in Equation (2), where
the mode shapes of the stator are assumed to be unaffected by the stator–mover contact
behavior. Based on the frictional contact models presented in the preceding section the
dynamic stator model is rewritten as

Mä(t) + Cȧ(t) + Ka(t) = F∗(t) + Fpre + FN(ã, a(t)) + FT(ã, a(t), ȧ(t), u̇m(t)), (17)

where ã donates the static DOF values of the stator under pre-pressure, which is calculated
utilizing the static contact algorithm.

Define a modal generalized displacements q(t) such that

a(t) = Φq(t), (18)
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where Φ is the stator modal shape normalized to the mass matrix M. Then, Equation (20)
can be transformed into modal space as

q̈(t) +
(

αI + βΛ2
)

q̇(t) + Λ2q(t) = ΦT[F∗(t) + Fpre + FN(ã, a(t)) + FT(ã, a(t), ȧ(t), u̇m(t))
]
, (19)

where α and β are Rayleigh damping constants calculated from modal damping ratios ξi,
and ξi is the ratio damping for the i th mode shape. Λ2 is a diagonal matrix containing
the square of natural circular frequency ω2

i on the diagonal [30]. Because the stator of an
LUM usually drives the mover at particular modes of vibration and the non-operating
natural frequencies are designed to be far away from the operating frequencies, only two
modes of vibration, the symmetric mode ϕ1 and the asymmetric mode ϕ2, are consid-
ered (i.e., Φ = [ϕ1 ϕ2]) for the calculation in model space. Then the high-dimensional
nonlinear system is reduced to a two-dimensional system which can be solved efficiently.
The dynamic frictional contact process and the output performance of the mover can be
simulated by solving the mover model in Equation (3) and the stator model in Equation (19)
simultaneously. To ensure the calculation precision, the explicit ODE45 solver based on
the Runge–Kutta integration scheme is used to simulate this problem in MATLAB [31].
Figure 6 shows the main steps of the algorithm for analyzing the dynamic stator–mover
frictional contact.

Start

Modal analysis of stator for obtaining: Λ2 and Φ
Static contact analysis for obtaining: ã

Initial conditions of mode space:
t = 0, δt = 10−12,q(t) = q̇(t) = 0, um(t) = u̇m(t) = 0

Calculate the actual DOF values: a(t), ȧ(t)

Calculate the frictional forces: FN (t), ḞT (t)
Get equivalent electric excitation force F∗(t)

Assemble the explicit iteration scheme for Eq. (3) and Eq. (22)
Update the generalized DOF values: q(t+ δt), q̇(t+ δt)

Check time integration: t < tend ?

Output of nonlinear dynamic responses of stator and mover,
and dynamic fricitonal contact process between stator and mover

t = t+ δt

Stop

yes

no

Figure 6. Flowchart of the dynamic contact algorithm.

It should be noted that the state of the stator after applying pre-pressure is set to
the initial condition and the pre-pressure is assumed to be a constant value. The input
variables are the electric excitation signal applied to PZT, pre-pressure force, statistical
micro-topography parameters of contact interfaces, and external load applied to the mover.
The dynamic response of the stator and mover, including displacements, velocities, and
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the frictional contact forces of all nodes at the contact tip surface, can be obtained based on
the model.

4. Measurement System of Stator–Mover Frictional Contact Forces

In this section, the method to simultaneously and quantitatively measure the dynamic
normal and tangential contact forces between the stator and mover in LUM is presented,
which is important for verifying the simulation results and modifying some input param-
eters in contact algorithms appropriately. A piezoelectric bimorph sensor was designed
based on the longitudinal and shear direct piezoelectric effects [32], and it was patched to
the surface of the friction bar for measuring the dynamic normal and tangential contact
forces at high frequency. The feasibility of this measurement method is validated by finite
element simulation [33]. The relationship between the output voltages of the piezoelectric
sensor and the frictional contact forces is calibrated experiment. Then the dynamic frictional
contact forces can be obtained by measuring the voltages of the sensor. The measurement
principle and system will be described in detail.

4.1. Measurement Principle

According to the theory of piezoelectricity [34–36], when the external electric field
is zero, the constitutive relations for a piezoelectric element shown in Figure 7 can be
expressed as:




D1
D2
D3


 =




0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d31 d33 0 0 0







T11
T22
T33
T23
T31
T12




, (20)

where D1, D2, D3 represent the electric displacement in directions x, y, z. T11, T22, T33 repre-
sent the normal stress applied along directions x, y, z, which is called transverse or longitu-
dinal direct piezoelectric effect. T23, T31, T12 represent the shear stress in planes yz, zx, xy,
which is called shear direct piezoelectric effect. Note that all of the normal stresses only
contribute to the electric displacement in direction z, and the shear stress in yz and zx
planes only contribute to the electric displacement in y and x directions, respectively. For
an operating LUM, the stator–mover contact behavior will generate normal contact force
and tangential shear force. Moreover, the electric displacement is strictly proportional to
the generated potential differences (V1, V2, V3) in the corresponding two opposing faces of
the piezoelectric element, and independent of the piezoelectric element size and shape [34].
The potential difference between two electrodes on the piezoelectric element surface is
easily measured. Just know the relationship between the measurement potential difference
and the applied force, which would be given by simulation and experiment in a later
section, then the corresponding force under different operational modes of piezoelectric
can be measured.

Based on the above analysis and principle, the frictional contact forces applied by the
stator to the mover can be measured by patching two piezoelectric elements to the friction
bar. The longitudinal direct piezoelectric effect is designed to get the normal contact force
by measuring the potential differences in the y direction, and the shear direct piezoelectric
effect is designed to get the tangential contact force. Figure 8 shows the schematic of the
designed piezoelectric sensor for measuring the frictional contact forces simultaneously.
Two PZT-5H piezoelectric ceramics with the same thickness of 0.5 mm and the same poling
directions are bonded up and down by epoxy. The piezoelectric element used to measure
the potential difference V3 generated by the normal contact force is located bottom to avoid
contacting the contact tip of the stator directly because its two faces in z direction need
to be coated with thin electrode layer. The piezoelectric element located on top is used to
measure the potential difference V2 generated by the tangential contact force, and its two
opposing faces in y direction are coated with an electrode layer so it can directly contact
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the stator. This arrangement of piezoelectric elements is to guarantee the measurement
accuracy of tangential contact force and the transmission loss of normal contact force is
neglected. Therefore, the thickness of epoxy between two piezoelectrics should be thin
enough to satisfy the insulation between two piezoelectric elements.

x

y

z

Poling direction

Figure 7. Schematic of a piezoelectric element.

2V

y

z

x

3V

Contact tip surface

Normal contact force

Tangential contact force

Bottom PZT

Top PZT

Adhesive layer

Figure 8. Schematic of the piezoelectric sensor used to measure frictional contact forces.

4.2. Feasibility Analysis

For validating the feasibility of the measurement method, finite element simulations
are performed first to simulate the electric potential distribution of the piezoelectric bimorph
sensor under static normal and tangential forces. Figure 9 shows the 3D finite element
mesh of this piezoelectric sensor. The thickness of the epoxy adhesive layer is set at 0.1 mm.
The material parameters of PZT-5H and DP460 epoxy in [37] are employed. A total of
17,901 nodes and 15,384 isoparametric cubic elements with 8 nodes are used for the whole
model, and the maximum mesh size of 0.5 mm is taken. The fixed displacement constraint
is applied to the bottom of the piezoelectric sensor. The grounding electrode is set for
the left surface of the top piezoelectric element and for the bottom surface of the bottom
piezoelectric element. Then the electric potential on the right surface of the top piezoelectric
element V2 and on the top surface of the bottom piezoelectric element V3 will be the output
voltages. The frictional contact forces are applied in the form of surface force, and the
size of the contact tip surface is set as 3× 2 mm2 which is the same as the actual area of
the contact tip surface. In this case, the finite element equations in matrix form can be
written as

Ks




us
V2
V3


 = Fp, (21)

where Ks is the stiffness matrix of finite element sensor model, and us is the vector of
unknown DOF values except the measuring electric potential V2 and V3. Fp is the equivalent
nodal force vector of potential loading including normal and tangential contact forces.
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Figure 9. Finite element mesh of the piezoelectric bimorph sensor.

When a normal loading of 1 N is applied to the sensor, the distribution of electric
potential in the bottom and top piezoelectric element is plotted in Figure 10a. The simulation
results are basically inconsistent with the theoretical analysis. The bottom PZT generates
an electric potential difference between the two opposing faces in direction z. The top PZT
also exists electric potential variation but only near the loading area, which does not affect
the electric potential difference between the two opposing faces in direction x. When a
tangential loading of 1 N is applied to the sensor, the distribution of electric potential for
two piezoelectric elements is plotted in Figure 10b. The top PZT generates an obvious
electric potential difference between the two opposing faces in direction x, and there is an
electric potential concentration near the loading area. Although the bottom PZT generates
electric potential change near the loading area, the electric potential between its up and
down surfaces remains the same, i.e., the tangential loading does not affect the output
voltage of the bottom PZT. It can be seen that as long as the loading position avoids the
edge of the sensor, the output voltage of the bottom PZT only relates to the normal loading
acting on the sensor surface and the output voltage of the top PZT only relates to the
tangential loading.

Normal loading
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0.48

−0.023
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(a)
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x

y

x
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−0.85
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−0.025

0.025

(b)

Figure 10. Electric potential distribution of sensor under: (a) unit normal force; (b) unit tangen-
tial force.
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Furthermore, the sensor output voltages (V3 and V2) are simulated when different
static normal and tangential forces are, respectively, applied to the central position of the
sensor. Figure 11 shows the variation of output voltage V2 as the value of tangential loading
FT increases from 0 N to 60 N, and the variation of output voltage V3 with the normal
loading FN . It can be seen that the tangential and normal loading applied to the sensor are
proportional to the output voltages of the top and bottom PZT, respectively. Based on the
simulation results, the tangential and normal loading acting on the sensor can be expressed
linearly as a function of the two output voltages of the sensor, which are FT = 0.21V2 and
FN = 43.5V3. Considering the roughness of contact interfaces, the actual contact area is
less than the nominal area of the contact tip which may affect the output voltages of the
sensor. Different sizes of loading areas were also used to simulate the relationship. The
identical numerical relationships between loadings and voltages were obtained, which will
not repeat here, i.e., the measured voltage only depends on the values of frictional contact
forces. To sum up, the accurate measurement of the tangential and normal contact forces
acting on the sensor is feasible by monitoring the two output voltages of the sensor, as long
as the contact tip is away from the two ends of the sensor.

0 20 40 60
0

100

200

300

0

0.4

0.8

1.2

1.6

Tangential loading

Normal loading

Figure 11. The force–voltage relationship for the designed sensor.

4.3. Experimental Calibration

Based on the static simulation analysis of the sensor model, both the tangential and
normal forces applied to the sensor are considered to be proportional to its output voltages
V2 and V3, and the output voltages only dependent on the loading value and not the
loading area. Combined with practical analysis, the sensor prototype was produced
and a calibration experiment platform was built to calibrate the relationships between
the potential loading applied to the sensor and the output voltages. Figure 12a shows
the experimental schematic diagram for calibrating the relationship between the normal
loading applied to the sensor surface and output voltage V3. After bonding the sensor to
the contact surface of the mover, a mass of 50 g is hung on the sensor by a flexible cable
and a connector bonded to the sensor surface. By dropping the suspended mass vertically
to generate normal disturbance to the sensor, the bottom PZT of the sensor would output
a voltage signal and the first waveform is recorded by an oscilloscope. When the falling
height h of the mass is 10 cm, the first output voltage waveform of the bottom PZT is
approximately a half sinewave, as shown in Figure 12b. According to the momentum
principle, the momentum change of mass from t0 to t1 is equal to the impulse of the pulling
force from the cable during this time, which can be expressed mathematically as

p1 − p2 =
∫ t1

t0

Fndt, (22)
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where p1 = ms
√

2gh is the momentum of suspended mass at t0. The momentum p2 at t1 is
zero because the pulling force of the cable reaches a maximum value and the velocity of
the mass is zeros. g = 10 m/s2 is the gravitational acceleration, and ms is the mass of the
suspended mass. If the relationship between normal loading Fn and output voltage V3 is
assumed as Fn = cnV3, then the coefficient cn can be obtained by

cn =
ms
√

2gh
An

, (23)

where An =
∫ t2

t1
V3dt is the shaded areas between voltage signal and time axis from t1 to t2.

50g

N
F

(a) (b)

Figure 12. Normal calibration of the sensor: (a) schematic diagram of experimental scheme; (b) first
output voltage waveform of the bottom PZT.

Similarly, Figure 13a shows the experimental schematic diagram for calibrating the
relationship between the tangential loading applied to the sensor surface and output
voltage V2. When the suspended mass is dropped vertically, a tangential disturbance
would be applied to the sensor. Figure 13b shows the first output voltage waveform of the
bottom PZT when the falling height h of the mass is 10 cm. It is noted that only half of
the force of the cable is transferred to the sensor surface, i.e., the output voltage V2 is only
half of the force on the cable. If the relationship between tangential loading Ft and output
voltage V2 is assumed as Ft = ctV2, the coefficient ct can be calculated by

ct =
ms
√

2gh
2At

. (24)

50g

2
T
F

(a) (b)

Figure 13. Tangential calibration of the sensor: (a) schematic diagram of experimental scheme; (b) first
output voltage waveform of the top PZT.
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In order to ensure the accuracy of the experiment, five sets of falling heights h = 10,
15, 20, 25, and 30 cm were chosen for identifying the two coefficients cn and ct, as listed in
Table 1. It can be seen that the two coefficients obtained by the experiment coincided with
the simulation result better for higher falling heights, which may be due to the reduced
proportion of the output voltage signal caused by environmental interference. So the two
conversion factors (cn = 43.5 and ct = 0.21) are used to convert the output voltage of the
sensor into the normal and tangential forces applied to the sensor.

Table 1. Calibration coefficients of the sensor by experiment.

h (cm) 5 10 15 20 30

cn (N/V) 44.34 44.02 43.81 43.61 43.24
ct (N/V) 0.201 0.205 0.208 0.212 0.209

4.4. Measurement System

Figure 14 shows the measurement system for measuring the dynamic frictional contact
between the stator and mover. A wave generator (AFG 3022B, Tektronix, Inc., Beaverton,
OR, USA) is used to generate two electronic signals with special amplitude, frequency, and
phase difference, which is output to an amplifier (HFVA-42, Nanjing Funeng Technology
Corp., Nanjing, China). Then the two amplified electronic signals are applied to the stator
of the LUM. Dynamic friction contact will happen between the sensor bonded to the mover
and the contact tip. With the action of normal and tangential contact forces, the top and
bottom PZT of the sensor would output corresponding voltages which are measured by a
digital oscilloscope (TDS 2014C, Tektronix, Inc., USA) with storage capability. The normal
and tangential contact forces can be calculated through the simulated calibration of the
sensor by the finite element method.

Waveform Generator

Oscilloscope

Amplifier

Stator

Mover

Sensor

Figure 14. Measurement system for the stator–mover dynamic contact.

5. Experimental Validation and Numerical Simulation

Based on the developed numerical model and measurement system for the stator–
mover contact issue in LUM, some static and dynamic contact behaviors between the stator
and mover, and some output performances of the motor are simulated, measured, and
discussed. The material parameters of Al2O3 ceramic and manganese steel are employed for
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the friction bar and substrate of the stator, respectively. The parameters used in numerical
simulations are listed in Table 2 unless stated otherwise.

Table 2. Summary of model parameters.

Parameter Description Value Units

Elastic constant for contact
tip surface E1 2.27× 1011 Pa

Elastic constant for mover surface E2 4× 1011 Pa
Poisson’s ratio for contact
tip surface ν1 0.28 -

Poisson’s ratio for mover surface ν2 0.41 -
Roughness of mover surface σ1 2.7× 10−6 m
Roughness of contact tip surface σ2 5.4× 10−6 m
Curvature radius of asperity R 1.6 × 10−6 m
Areal density of asperity η 1.1× 108 m−2

Stator–mover friction coefficient µ 0.4 -
Stick–slip characteristic velocity ṽ 1× 10−6 m/s
Convergence tolerance ε 1× 10−6 -
Time step of dynamic algorithm δt 1× 10−7 s
Mass of mover m 0.2 kg
Modal damping ratio ξ 5.5× 10−3

Damping coefficient of mover c 1 N/(m/s)
Stiffness of preload spring - 8 N/mm
Work frequency - 53 kHz

5.1. Static Stator–Mover Contact

It is well-known that pre-pressure is an important factor affecting the output per-
formance of the motor. Because the state-mover contact state is an initial condition for
motor operation and the initial contact force between the stator and mover would affect
the driving force of the contact tip to the mover. In addition, the stator–mover contact state
under pre-pressure is also the foundation for conducting the dynamic contact algorithm
because the pre-pressure in the dynamic model is characterized by the static penetration
depth ũi. Therefore, investigation of the static stator–mover contact behavior of LUM under
pre-pressure is necessary.

Firstly, the convergence of the static contact algorithm is investigated for different pre-
pressures. Figure 15 shows the displacement monitor chart of the center node at the contact
tip surface as the iterative number increases, where the pre-pressures Fpre = 10, 20, 30, 40 N
are chosen. It can be seen that the monitored nodal displacement converges at an exponen-
tial rate and the results meet the required accuracy in ten iterations.

Subsequently, the actual static contact forces for different pre-pressure were measured
by a static dynamometer (LC1015, Lance Technology Inc., Copley, OH, USA), as shown in
Figure 16. The static contact forces (Fs) as the pre-pressure from 0 to 40 N were measured
and calculated. Figure 17 shows the variation of the static contact force with the pre-
pressure, as well as the transmissibility of pre-pressure (Tf ) defined by the ratio of contact
force to pre-pressure. As the pre-pressure increases, both experimental and simulation
results show that the transmissibility of pre-pressure increases rapidly and reaches a stable
value of about 74%. The roughness at contact interfacial is thought as the most possible
reason for this phenomenon because only a small part of asperities come into contact
when the pre-pressure is relatively small and then the structure of the stator would bear
more load from the pre-load spring. This means that the roughness of contact surfaces
cannot be ignored for accurate simulation, especially when the pre-pressure is small. The
static displacements for all of those nodes at the contact tip surface also were output and
used as the static penetration depth ũi in the dynamic contact algorithm. Figure 18 shows
the variation of a nodal displacement with the pre-pressure, which illustrates a nonlinear
relationship when considering the interfacial roughness.
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Figure 15. Nodal displacement monitor in an iterative process.

Figure 16. Experimental setup for measuring static contact force.
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Figure 17. Experimental and simulation results for static contact force.
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Figure 18. Variation of a nodal displacement with pre-pressure.

5.2. Dynamic Stator–Mover Contact
5.2.1. Validation of the Dynamic Contact Algorithm

The proposed quantitative measurement method in Section 4 for the dynamic frictional
contact forces between stator and mover is used to check the quality of the frictional contact
model and the dynamic contact algorithm presented in Section 3. In order to minimize
the experiment errors, the mover was fixed to guarantee that the stator–mover contact
condition remains unchanged as possible, and the interfacial wear was ignored. In this
case, the corresponding simulation was conducted by setting the mover velocity as zero in
the dynamic contact algorithm. The time evolutions of normal and tangential contact forces
were compared between experimental and numerical results in the stable phase when the
LUM was operating under different pre-pressures and exciting voltages.

With the exciting voltage of 50 V and frequency of 53 kHz, transient numerical simula-
tions of the LUM with fixed mover were conducted from 0 to 3 ms when Fpre = 0, 1, 10, 20 N
were chosen. By numerical integration of Equation (19), the transient vibration of the stator
in modal space was obtained. Then the transient nodal displacements of the contact tip
were calculated by Equation (18), and the normal contact force of each node is given by the
developed normal contact model. The nodal trajectory of the central node of the contact
tip surface in plane xy is extracted and shown in Figure 19, as well as the comparison
of measured and simulated frictional contact forces, including normal contact force (Fn)
and tangential frictional force (Ft), during 80 µs of the steady-state phase, was carried
out. Ux and Uy denote the displacement of this node in the x direction and y direction,
respectively. The normal and tangential contact forces evolve periodically with time in both
experimental and simulated results, and the response frequency of the dynamic frictional
contact forces is the same as the frequency of the electric excitation. The measured normal
and tangential contact frictional forces match the results of numerical simulation well for
low pre-pressures (e.g., Fpre = 0, 1 N). The intermittent contact behavior between the stator
and mover can be characterized obviously in both experimental and simulated results,
where the frictional contact forces vanished when the stator separated from the mover. For
the relatively high pre-pressures (e.g., Fpre = 10, 20 N), the assumed penetration depth in
simulations would also be larger as is shown by the nodal transient trajectory for different
pre-pressure, which may lead to greater simulation error of the tangential contact force. It
also can be seen that a discontinuous tangential contact force occurs in simulation results
with a relatively high pre-pressure, which generally exists in the contact model describing
the stator–mover contact of LUM [7,8,11]. This is because of the discrete time in simulations
which results in a discontinuous tangential velocity that relates to the tangential contact
force by the regularization friction model. Despite some values of frictional contact forces
being missing, it is clear that the changing trend and the amplitude of simulated contact
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forces also agree with the experimental results, i.e., the dynamic frictional contact model is
still effective for investigating the dynamic frictional contact mechanism between stator
and mover when the pre-pressure is high.

Figure 19. Transient nodal trajectory at the center of the contact tip and the comparison of frictional
contact forces between experiments and simulations for different pre-pressures: (a) 0 N, (b) 1 N,
(c) 10 N, and (d) 20 N.

With the fixed pre-pressure of 5 N, transient simulations of the LUM with the fixed
mover were conducted when the exciting voltages of 50, 100, and 150 V were chosen. The
simulated transient trajectory of the node located at the center of the contact tip surface is
given, and the corresponding stable frictional contact forces between stator and mover were
measured by experiment and compared with simulated results, as shown in Figure 20. From
the nodal transient trajectory, the amplitude of the stator vibration in x and y directions
increases with the increasing of exciting voltage, and there is a separate phase between the
stator and mover when the exciting voltage is 150 V. From the experimental and simulated
contact forces in the stable state, the separation between stator and mover could also be
characterized by the vanishing of the normal contact force. In the experimental result,
the negative tangential contact force also remains when the normal contact force is zero
(i.e., during separate phase), which may be caused by the transverse shear effect of the
two rough contact interfaces. Specific reasons await our further study. From all these
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comparisons between simulation and experimental results, the presented dynamic contact
algorithm is effective for analyzing the stator–mover contact mechanism and the presented
measurement system can be used to measure the dynamic contact forces between the stator
and mover in LUM quantitatively.

Figure 20. Transient nodal trajectory at the center of the contact tip, and the comparison of frictional
contact forces between experiments and simulations for different exciting voltages: (a) 50 V, (b) 100 V,
and (c) 150 V.

5.2.2. Transient Analysis of the Force Transmission at Contact Interfaces

In order to clearly understand the frictional driving mechanism of LUM, a complete
operational process, from startup to steady state and powered off at 200 ms, is simulated.
The exciting voltage and pre-pressure are 100 V and 5 N, respectively. Considering that
the mesh quality of the contact surface may affect the simulation results of the frictional
contact forces, a stator model with a mesh size of 0.25 mm for the contact surface is also
used. By simultaneously solving the stator model in Equation (19) and the mover model
in Equation (3), the stator vibration and mover motion were output. Then the normal
contact force was calculated by the nodal displacements on the contact tip surface in the
normal contact model, and the tangential friction force was calculated by the nodal relative
velocity between the nodes on the contact tip surface and mover. Figure 21 shows the
time evolution of the mover velocity obtained by experiment and simulation. The good
agreement between experiment and simulation further verifies the effectiveness of the
developed frictional contact model. The velocity fluctuation in experiment results may be
because the mover is not an absolutely ideal single-degree-freedom system or the mover
contact interface is position-dependent due to insufficient manufacture accuracy. With
the motion of the mover, the variation of driving conditions would lead to the change of
frictional contact forces, then the velocity of the mover would be changed. That is also
why the mover is fixed in the experimental validation of the dynamic contact algorithm.
Additionally, the model with the finer mesh for the contact surface takes three times as
long to complete the simulation; however, the maximum velocity error simulated by the
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two models with different mesh sizes for the contact surface is lower than 0.7%, which
means that the mesh size of 0.5 mm for contact surface has been able to meet the simulation
accuracy and take up less computational cost. According to the dynamic variation process
of the mover velocity, the whole process is divided into the ON transient stage, steady-state
stage, and OFF transient stage. It can be seen that the velocity of the mover achieves stability
at about 80 ms after start-up, and fast decays to zeros in about 20 ms after power-off due to
friction self-locking.
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Figure 21. Comparison between simulation and experiment results of the mover transient velocity.

In this case, the time-dependent normal and tangential forces transferred to the mover
are calculated, as shown in Figure 22. Different from the variation of mover velocity, the
frictional contact force transferred between the stator and mover is stable for only several
milliseconds after start-up, which indicates that the stator vibration reaches a steady state.
The slight change of tangential contact force is due to the increase of mover velocity and the
periodic driving mechanism. Under the stable driving of the contact tip, the mover velocity
continues to increase until a dynamic balance of the whole system is obtained. After
power-off, the normal force drops to the static normal contact force under the application
of pre-pressure in 4 ms. The tangential force first stabilizes at a negative value, which is
called the braking state, and then vanishes at the time when the mover velocity is zero.
This indicates that the stator first stops vibration and acts as a brake through the friction
forces until the velocity of the mover drops to zero, which is also the self-locking principle
of the LUM.
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Figure 22. Transient forces transmission of contact interfaces: (a) normal contact force; (b) tangential
contact force.
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Although the stator–mover frictional contact behavior is strongly nonlinear, the inter-
facial contact forces and the driving trajectory of the contact tip still change periodically
in the simulation results. Figure 23 shows the interfacial contact forces of one full driving
cycle (from t1 to t3) during steady-state velocity and the corresponding elliptical trajectory
of the central node at the contact tip is given to analyze the driving mechanism. It can
be seen that the tangential contact force (i.e., the driving force of the mover) is positive
from t1 to t2; however, it is negative from t2 to t3. This is because the motion of the contact
tip is a back-and-forth movement, however, the mover is always moving in one direction.
When the relative velocity between the contact tip and the mover is greater than zero, the
contact tip would do positive work for the mover. Otherwise, the contact tip would do
negative work for the mover. It should be noted that there is a time period from t2 to t3
where both the normal and tangential forces are almost zero. In this time period, only a few
asperities are involved in contact and the mover keeps moving forward mainly by inertia.
If the pre-pressure is decreased or the excitation voltage is increased, the contact tip would
separate the mover during this time period.

Fn Ft

(a) (b)

Figure 23. Steady-state driving mechanism of LUM: (a) contact forces; (b) driving trajectory.

To investigate the force transmission of different positions at the contact tip surface,
five nodes along x direction are selected for the analysis of nodal load transmission, as is
shown in Figure 24. Because the operation of this motor is based on the vibration in xy
plane, only the nodal forces transferred in x and y directions are analyzed and the contact
state of nodes in z direction is considered identical. Figure 25 shows the nodal trajectories
and carried forces of the first three cycles during the ON transient state, one cycle during the
steady state, and the first three cycles during the OFF transient state. It can be seen that the
simulated trajectories of the five nodes are different during all three states. During the ON
transient state, the difference of contact forces is not obvious for these nodes and both the
normal and tangential contact forces demonstrate the characteristic periodically increasing
behavior. It is interesting that the proportion of positive and negative tangential force in
time is almost equal during one cycle. However, when the value of the positive amplitude
is greater than the value of the negative amplitude, the difference in work between positive
and negative tangential forces drives the mover to accelerate. During the steady state and
OFF transient state, the carried forces at different nodes show hysteresis in time, as well
as their amplitudes, are different. According to the partially enlarged view of the dashed
area in Figure 25b, as shown in Figure 26, the carried peak forces of these nodes along x
direction decrease from node 5 to node 1, and the tangential and normal forces of node 5
first reach the peak value due the clockwise motion of contact tip. Node 5 has 12 percent
more force transmission than node 1. Obviously, the wear of different positions at the
contact tip surface would be different. Obtaining the multi-point force transmission at the
contact interfaces would be useful for analyzing the interfacial wear of the LUM. When the
electric excitation is powered off, the interfacial transferred forces will decay periodically
and the attenuation rate is about 5.5%.
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Figure 24. Distribution of the five analyzed nodes at the contact interface.
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Figure 25. Simulated trajectories and contact forces for 5 nodes at the contact surface: (a) first three
circles in the ON transient state, (b) one circle in steady state, and (c) first three circles in the OFF
transient state.
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Figure 26. Partially enlarged view of the dashed area in Figure 23a.

5.2.3. Energy Transmission at Contact Interfaces

According to the above analysis, the possible energy transmission between the stator
and mover includes the positive driving energy, the negative driving energy, as well as
the frictional loss energy due to the slip of the stator–mover contact interfaces. Due to
the periodic force transmission process between the contact tip and the mover, the three
energies acted by the contact tip to the mover are calculated in terms of period. Because
the numerical simulation results are discrete in time, one running cycle is divided into a
series of time steps. The energy transmission of one node during a single time step can be
approximated as {

Wij = FTij
u̇mj δt

W∗ij = FTij
vijδt

(25)

where i and j are the numbers of interfacial nodes and time steps. v is the relative velocity
between the node and mover. Wij is the work done by one contact node to the mover, and
W∗ij is the energy loss due to sliding friction. Then the positive driving, negative driving
and frictional loss energies (Wp, Wn, and W f ) of all nodes during one running cycle can be
given by 




Wp = ∑
i

∑
j
(W+

ij )

Wn = ∑
i

∑
j
(W−ij )

W f = ∑
i

∑
j
(W∗ij)

(26)

Here, W+
ij and W−ij donate the elements greater and less than zero in Wij, respectively.

The proportions of the three energies in one cycle are given by





λp =
Wp

Wp+|Wn |+W f

λn = |Wn |
Wp+|Wn |+W f

λ f =
W f

Wp+|Wn |+W f

(27)

In this operating condition, the variation of the three energies transmission percentage
with the number of running cycles during the ON and OFF transient states is depicted in
Figure 27. In the ON transient state, the sliding friction of contact interfaces spends much
energy which may be the reason for low efficiency in LUM, and the negative driving energy
is a small minority because the frictional force is small when the stator and mover are in
reverse motion. With the increase in the operating cycle, the proportion of frictional loss
energy is decreased and the positive driving energy is increased. When the velocity of the
mover reaches stable after about 2500 operating cycles, each of the energy percentages also
reaches a balanced state. It can be found that the mover velocity has a significant effect on
the three energy percentages even when the interfacial driving forces reach stability. After
power-off, what is interesting is that the proportion of positive driving energy illustrates a
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short-term growth and then drops to zero. This can be explained as: (1) when the electric
excitation is powered off, the rapid attenuation of the stator vibration leads to the velocity of
the contact tip being close to the mover velocity first and farther away later, so the relative
velocity between stator and mover will decrease first and then increase. (2) The positive
driving energy is determined by the mover velocity and the amplitude of stator vibration;
however, the frictional loss energy also relates to the velocity of the contact tip surface of
the stator. The velocity of the contact tip decreases faster than the mover velocity. After
the stator vibration stops, the negative driving energy also exists due to the mover still
moving forward and it is equal to the frictional loss energy, and the stator acts as a brake. It
is interesting that the percentage of the positive driving energy is almost the same change
in velocity, so it can be used as a novel index to evaluate the performance ofthe motor.

0 2000 4000 6000
0

4

8

12

p
, 

n
 (

%
)

85

90

95

100

f (
%

)

Positive driving energy

Negative driving energy
Frictional loss energy(a)

1.05 1.06 1.07 1.08

10
4

0

20

40

60

p
, 

n
 (

%
)

40

60

80

f (
%

)

Positive driving energy

Negative driving energy Frictional loss energy(b)

Power-off

Figure 27. The transient energy transmission with the running cycle during: (a) ON transient state;
(b) OFF transient state.

5.3. Evaluation of the LUM’s Output Performance

The steady-state velocity of the mover is the most important index to evaluate the
output performance of the LUM. The accurate evaluation of the output velocity of the
mover under different input electric parameters would be useful to the design of the
motor. In addition, the precision control of the motor depends heavily on the evaluation
of the low-velocity state and the deadzone range of the motor, because the nonlinear
stick–slip behavior between contact interfaces would occur and which could cause large
position errors in the control of such motor [38]. For the LUM analyzed in this paper,
the input parameters of the electric excitation signal of such a motor include the voltage
amplitude, the voltage frequency, and the phase difference between the two excitation
electrodes (CH1/CH2). Therefore, the variations of steady-state speeds of the mover with
the amplitude, frequency, and phase difference of the excitation voltages are compared
between the simulation and experiment at a fixed pre-pressure of 5 N. In addition, the
steady-state driving trajectories of the contact tip under different output performances are
also analyzed by numerical simulation for understanding the operational mechanism and
guiding the design of LUM.

Figure 28 shows the steady-state velocity of mover versus the amplitude of driving
voltage obtained by experiment and simulation, where the frequency is fixed as 53 kHz
and the phase difference between the two driving voltages is fixed as 90◦. Good agreement
between the simulation and experimental results is observed. It is worth noting that this
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simulated model can characterize the voltage amplitude deadzone (from 0 to 10 V) in
which the stator can not drive the mover. This range of voltage amplitude is important
for designing a compensating voltage in the amplitude modulation control of the motor.
When the voltage amplitude is larger than 10 V, the velocity is approximately proportional
to the voltage amplitude. In this case, the steady-state driving trajectories of the central
position at the contact tip for several voltage amplitudes are shown in Figure 29 in which all
trajectories are clockwise directions. It is found that the voltage amplitude only affects the
size of the elliptical trajectory, and a bigger elliptical trajectory would increase the output
performance of the motor.
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Figure 28. Velocity of the mover versus the amplitude of the excitation voltage.

50 V

100V

150 V

200 V

Figure 29. Driving trajectory of the contact tip for different voltage amplitudes.

The steady-state velocities of a mover for different frequencies of driving voltage
are tested and simulated, as shown in Figure 30. The voltage amplitude and the phase
difference are fixed as 100 V and 90◦, respectively. Within the frequency range from
52 to 55 kHz, the mover velocity rises first and starts to decline after passing 53.4 kHz
which is called the motor reasonable frequency. The motor resonant frequency is higher
than the designed stator resonant frequencies (53.3 kHz), which can be attributed to the
effect of the stator–mover contact behaviors. The driving trajectories of the contact tip for
several excitation frequencies near the motor resonant frequency are given in Figure 31. The
solid and dashed lines denote the frequency below and above the stator resonant frequency,
respectively. Additionally, the trajectories are clockwise directions. The excitation frequency
not only affects the size of the elliptical trajectory but also the response phase difference
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between tangential and normal directions because the obliqueness of the elliptical trajectory
is changed with different excitation frequencies. This is because the phase difference
between excitation and response changes dramatically when the excitation frequency is
close to the resonant frequency of the stator; however, the tangential and normal responses
of the contact tip mainly rely on two resonant modes of the stator. It should be noted that
the elliptical trajectory with the best performance has the maximum normal amplitude
and obliqueness, however, the tangential amplitude is not maximum. This indicated that
the motor performance can also be improved by adjusting the obliqueness of the elliptical
trajectory in addition to increasing the vibration amplitude of the contact tip.
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Figure 30. Velocity of the mover versus the frequency of the excitation voltage.
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Figure 31. Driving trajectory of the contact tip for different voltage frequencies.

The phase difference between the two excitation electrodes (CH1/CH2) is an important
parameter affecting the obliqueness of the elliptical trajectory, so it was chosen as the
variable, and the steady-state velocity of the mover is measured and simulated, as shown in
Figure 32. The amplitude and frequency of excitation voltage are fixed as 100 V and 53 kHz,
respectively. The relationship between the velocity and phase closely resembles a sine wave
shape. It can be found that the velocity of the mover reverses when the phase difference
exceeded 180◦ due to the reverse driving of the contact tip. The maximum velocities in
the forward and backward directions were observed around 45◦ and 315◦. It is noted that
three voltage phase deadzone (from 0◦ to 5◦, from 175◦ to 185◦, and from 355◦ to 360◦)
are recognized. Figure 33 shows several driving trajectories with different excitation
phase differences. The solid and dashed lines denote clockwise and counterclockwise
driving. When the phase difference is around 0◦, the contact tip almost only generates
normal displacement and the tangential displacement is too small to drive the mover. With
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the phase difference increasing from 0◦ to 175◦, the tangential amplitude of the elliptic
trajectory increases and the normal amplitude decreases, and the obliquity going from
90◦ to 0◦. When the phase difference is around 180◦, the contact tip mainly moves back
and forth in the tangential direction. The small normal displacement results in the contact
forces for back-and-forth driving being almost equal, i.e., the positive and negative driving
effects of the contact tip almost cancel each other out in a running cycle so that the mover
can not be driven. From 185◦ to 355◦, the tangential amplitude of the elliptic trajectory
decrease and the normal amplitude increase, and the obliquity goes from 0◦ to 90◦. It can
be concluded that the obliquity of the elliptic driving trajectory of the contact tip can be
controlled by excitation phase modulation, and the obliquity of the elliptic trajectory has an
optimal value for the interfacial energy transmission and output performance of the motor.

Simulation

Experiment

Figure 32. Velocity of the mover versus the phase difference between two excitation voltages.
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Figure 33. Driving trajectory of the contact tip for different excitation phase differences.

5.4. Effect of Micro-Topography Parameters on the Interfacial Force Transmission

The micro-topography of the contact interface has always been the top priority for a
high-performance and low-wearing ultrasonic motor [39,40] because the motor is driven
by the stator vibration in micro-scale. It is difficult to study the effect of micro-topography
parameters on the interfacial forces transmission and the output performance of such motor
directly because these parameters are interrelated with each other. Thus, simulations with
only one variational parameter are conducted in this section, where the excitation voltage
and the pre-pressure are respectively 100 V and 5 N, and other parameters in Table 1 are
used. Effects of the roughness (σ), the areal density of asperity (η), the elastic constant (E∗),
and the curvature radius of asperity (R) of the contact pairs on the interfacial forces trans-
mission during steady state and the output velocity of mover are discussed, respectively.
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Figure 34a shows the simulation results with different roughness, in which the tangen-
tial driving force and the mover velocity are given. With the increase of the roughness, both
the output velocity of the mover and the driving force of the contact tip decreases. Similarly,
the effect of areal density of asperity, elastic constant, and curvature radius of asperity are
illustrated in Figure 34b–d, respectively. It can be seen that high areal density of asperity,
elastic constant and curvature radius of asperity are beneficial to the transferred load of in-
terface and then improve the performance of the motor. Although these micro-topography
parameters do not change independently, these conclusions provide a theoretical basis for
the choice of contact material and the manufacture of the contact surface, which would be
helpful for improving the performance of LUMs.
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Figure 34. Effects of the micro-topography parameters on the driving force and the mover velocity
response: (a) effect of roughness (σ), (b) effect of areal density of asperity (η), (c) effect of elastic
constant (E∗), and (d) effect of the curvature radius of asperity (R).
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6. Conclusions

A multi-point contact model considering a rough surface for the contact analysis
between the stator and mover in an LUM is presented in this paper. Differing from the
previous contact models for LUMs, this contact model not only considers the stator–mover
contact as surface contact but also considers the interfacial micro-topography parameters.
Furthermore, a piezoelectric bimorph sensor, which can simultaneously and quantitatively
measure the dynamic normal and tangential contact forces between stator and mover, is
introduced. Both the interfacial contact forces and the output performance of the sample
motor are compared between the experiment and simulation. Results show that the model
is effective for analyzing the static/dynamic contact mechanism and predicting the output
performance. Based on this modeling method, the transient forces and energies transmis-
sion at the contact tip surface, the output performance of the motor under different electric
excitation, and the effect of the interfacial micro-topography parameters on the interfacial
force transmission and the output velocity of mover were simulated and discussed. Results
show that stator vibration reaches stability much faster than the mover velocity which
means that the response speed of the motor may be able to be improved. The carried forces
at different positions of the contact tip surface not only exist hysteresis in time but different
in amplitude which is important for investigating the wear of the contact interface. The
interfacial energy transmission is defined and calculated in terms of the operating period,
in which the percentage of positive driving can be used as a novel index to evaluate the
motor’s performance. Both the size and obliquity of the elliptic driving trajectory of the
contact tip influence the output performance, and the obliquity of the elliptic trajectory has
an optimal value for interfacial energy transmission and output performance of the motor.
The contact pair with a high areal density of asperity, elastic constant, curvature radius of
asperity, and low roughness would be helpful for improving the force transmission at the
contact interface and output performance of the mover.

Absolutely, other linear ultrasonic motors with different structures of the stator are
also able to be simulated by the presented methodology because the stator is modeled
based on the finite element method. Both the frictional contact behaviors and the motor
performance are allowed to be evaluated in the simulation results, which is useful for
designing a new type of LUM. Obtaining the carried force at different positions at the
contact tip surface may be able to be employed to better analyze the wear of the contact
pair, which will be investigated in future work.
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Appendix A. Equivalent Contact of Two Rough Surfaces

This appendix contains an equivalent approach to mathematically describe the normal
contact between two rough surfaces presented in [24]. The contact of two elastic surfaces
can be converted into the contact of a rigid smooth surface and an equivalent elastic rough
surface, as shown in Figure A1.
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Figure A1. Normal contact of two stochastic rough surfaces.

The roughness σ of the equivalent rough surface is calculated by

σ =
√

σ2
1 + σ2

2 , (A1)

where σ1 and σ2 are the roughness of two contact surfaces, and the equivalent elastic
modulus E∗ satisfies

1
E∗

=
1− ν2

1
E1

+
1− ν2

2
E2

, (A2)

here E and ν are the elastic modulus and Poisson’s ratio, respectively. The subscripts ‘1’
and ‘2’ denote the two contact materials. The height distribution of the equivalent rough
surface is expressed as

ψ(z) =
√

2πσe−
z2

2σ2 . (A3)
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