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Abstract: Implanting rotary blood pumps (RBPs) has become the principal treatment for patients
suffering from severe heart failure. There are still many challenges to address for RBP control
systems. These problems include meeting the patient’s physiological perfusion, eliminating postoper-
ative complications, as well as debugging the patient’s physiological control system (automatically
and indiscriminately). This paper proposes a non-invasive adaptive control system based on the
Frank–Starling-like mechanism (NAC-FSL) to solve these problems. This control system uses the
motor speed of the rotary blood pump as the only input variable, and the pump flow was estimated
by the motor speed for achieving non-invasive detection. Simultaneously, a cardiovascular reference
model was developed to provide an appropriate real-time preload for heart failure patients. The
Frank–Starling-like control baseline was tracked to obtain the desired reference average pump flow
by using the preload. Avoiding suction was done by adopting the control baseline (CLn), which
included a flat slope under a high preload. Moreover, the NAC-FSL system could potentially unload
the left ventricle and provide a higher pump flow with a smaller error during the exercise state, as
compared to the CSC system. Finally, the K value indicating the preload sensitivity in the NAC-FSL
controller was optimized to meet the perfusion needs according to the hemodynamic parameters.

Keywords: rotating blood pumps; non-invasive control system; Frank–Starling-like mechanism;
preload sensitivity

1. Introduction

RBPs acting as left ventricular assist devices (LVADs) always operate in a constant-
speed mode in clinics, providing sufficient output for serious heart failure patients. Al-
though this control method possesses the merits of simplicity, reliability, stability, and
durability, it reduces pulsatility, which may lead to a variety of complications [1,2]. More-
over, this control mode cannot adapt to a patient’s complex and variable physiological
environment. Owing to the lower preload sensitivity of RBPs in the conventional constant
speed controller (CSC) [3], various physiological control techniques have been developed
to match the pump output to physiological perfusion requirements [4].

To meet the perfusion prerequisites for different physiological states of the patient, a
variable speed physiological control system is needed for adjusting the motor speed. The
Frank–Starling mechanism that mimics the natural heart has been used widely in the devel-
opment of variable speed physiological control systems [5–9]. Stevens MC et al. proposed a
control strategy mimicking the Frank–Starling mechanism by directly measuring LAP with
a pressure sensor and mounting a flow sensor at the pump outlet catheter used to measure
pump flow [5]. The control system adjusts the pump speed according to the measured
pump flow rate, and the Frank–Starling mechanism enables the adjusted pump flow rate to
correspond to the venous return volume. However, this control strategy relies on pressure
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and flow sensors. Petrou et al. proposed a physiological controller based on left ventricular
systolic pressure [6]. Cordeiroa put forward a synchronous physiological control system
of a pulsatile pediatric pump to adjust the pump ejection pressure at each cardiac cycle
to keep the mean arterial pressure at a specified reference value [7]. Fetanat developed a
novel adaptive physiological control system for an implantable heart pump to respond
to interpatient and intra-patient variations to maintain the left ventricular end-diastolic
pressure in the normal range to prevent ventricle suction and pulmonary congestion. This
study shows that the control performance can be guaranteed across different patients
and conditions when using the adaptive physiological control system [8]. Magkoutas
presented a physiological data-driven iterative-learning controller (PDD-ILC) that accu-
rately tracked predefined pump flow trajectories, and achieved physiological, pulsatile,
and treatment-driven responses of cfVADs [9].

Most physiological control systems use sensors to measure hemodynamic parameters,
such as pressure and flow in real time for feedback to the controller. However, there are no
commercially available implantable sensors, which are stable over time, and the use of these
sensors may increase the risk of postoperative complications, such as thrombosis, or require
extensive regulatory inquisition [10]. Therefore, a non-invasive physiological control
system using the estimator may solve this problem. Wang Y et al. proposed a sensorless
suction prevention and physiologic control (SPPC) algorithm for axial and centrifugal
pumps that required only the inherent parameters of the left ventricular assist (pump speed
and power) and used a proportional-integral (PI) controller to keep the differential motor
speed (4RPM) above a defined threshold [11]. This controller can effectively maintain
the mean reference pressure difference between the left ventricle and the aorta to achieve
physiological perfusion, but the performance of the algorithm is affected by problems,
such as pump thrombosis. Fu and Xu [12] proposed a sensorless fuzzy logic control
system that uses motor speed and current as inputs to the system without making invasive
measurements. However, the assumption that pump flow is proportional to heart rate
ignores the influence of cardiac contractile and peripheral circulation on the required flow.
Bakouri [13] used the sliding mode non-invasive control algorithm to take pump speed as
the input and pump flow as the estimated output. However, this control algorithm has a
corresponding drawback. When left ventricular failure occurs, as is the case in all patients
implanted with left ventricular assist devices, the systolic capacity of the left ventricle is
severely reduced. Therefore, the dynamic range of the pulsation index is very small, so its
ability as a control input is limited. In this paper, a non-invasive adaptive physiological
control system based on the Frank–Starling-like mechanism (NAC-FSL) is proposed to
solve these problems. The system is also designed to enhance the adaptability to cardiac
demand and clinical conditions of the heart that have plagued traditional control strategies.
It linked the preload and reference average pump flow and imitated the preload sensitivity
of the native heart. This non-linear relationship between the pump flow and ventricular
preload enabled the controller to deliver a low preload sensitivity at a high preload, thereby
avoiding the ventricle suction and reducing the pump power at a high preload to avoid
over-pumping [14,15].

In the preload-based control systems using the Frank–Starling mechanism or Frank–
Starling-like mechanism, there are no non-invasive instantaneous preload measurement
methods available. Although the preload sensitivity (K) of the left ventricle was primarily
defined in a third-order polynomial function by Guyton [16], the determination of the K
value, which might affect the robustness of the control system is still unknown. Conse-
quently, this paper will put forward a non-invasive instantaneous preload measurement
method and explore the effect of the K value range on the NAC-FSL system under various
degrees of heart failure.
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2. Methodology
2.1. Mock Circulation Loop (MCL)

The classic four-element Windkessel model was used to model the LVAD-cardiovascular
system, including a blood pump as LVAD and the vascular system. Figure 1 shows the
equivalent circuit model of the system [17]. In this model, Rs is the systemic vascular
resistance and can be adjusted according to the patient’s different activity levels, Rm is the
time-varying mitral valve resistance, and Clv(t) is the ventricular compliance that changes
according to left ventricular elasticity. State variables x1–x6 represent the left ventricular
pressure, left atrial pressure, arterial pressure, aortic pressure, aortic flow, and mitral valve
flow, respectively, in the cardiovascular system, and x7 represents the blood pump flow. Sets
of state equations were derived from each of the circuits and combined into simultaneous
ordinary differential equations, given as Equation (1), based on state variables. Solving
Equation (1), the differential equations with MATLAB R2016a/SIMULINK (the MathWorks,
Natick, MA) yields time series data of hemodynamic parameters. For details of parameters,
variables, equations, and matrix, refer to reference [16,17].

.
x = A(t)× x + B(t)× p(x) + C× u(t) (1)

Figure 1. Equivalent circuit model of the LVAD-cardiovascular system.

2.2. Control Strategy

A simplified block diagram of the complete control system is represented in Figure 2.
Based on the motor speed of the LVAD, a corresponding estimation algorithm was designed
to estimate the pump flow (Qest) and achieve non-invasive measurement. A cardiovascular
model was established to mimic heart failure and provide preload for the control system.

Figure 2. Block diagram of the control system. CVS, reference cardiovascular system; LVAD, left
ventricular assist device;ω, motor speed; Qest, estimated average pump flow; PLVED, left ventricular
end-diastolic pressure; QPr, desired average pump flow; PI, proportional and integral controller;
CLn, Control Line; S1, original state; S2 and S3, deviated states. Gray circles represent the position
of operating points after a change in states. Black circles represent the positions of operating points
upon arriving at the new steady-state located at the intersection between the control line and the new
system line. The controller drives the changes in the operating points along the path indicated by the
arrows along the new system line.
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2.2.1. Estimate Average Pump Flow

This paper uses the algorithm proposed by Zhang et al. for measuring the pump
flow non-invasively [18]. These parameters were re-fitted by the authors according to the
cardiovascular system to achieve better adaptability to this system [17]. The algorithm
proved to accurately estimate the pulsating flow and predict regurgitation flow through
animal experiments.

In a steady state, the estimated flow Qest uses the motor’s electric power (Pe) and
speed (ω) as inputs, as to the following:

Qest(m + 1) = a×Qest(m)− b×Qest(m− 1) + c×Qest(m− 2) + d× f(m)− e× f(m− 1) (2)

f(m) = f + g× Pe(m) + h× Pe(m)2 + i× Pe(m)3 + j×ω(m) + k×ω(m)2 (3)

The fitting coefficients a, b, c, d, and e were constants with values 1.98, 1.24, 0.24, 0.27,
and 0.25, respectively. Moreover, f, j, and k were constants, and g, h, and i were defined to
have a linear relationship with Hematocrit values (HCT).ω was the motor speed, and Qest
was the estimated value of the beat pump flow. f(m) was the input signal of the system. Pe
represents electric power, and Qp(m) represents the pump flow calculated through state
equations to the model developed by the authors in reference [17].

Pe(m + 1) =
β×ω2(m)×QP(m)

δ
(4)

δ =
η

ρ× g
(5)

Discrete-time t = m × h, where h was the sampling interval with a 0.0001 value.
Meanwhile, the parameter settings are shown in Table 1.

Table 1. Setting of model parameters.

Parameters Value Physiological Meaning

f
cell7 row 1
cell8 row 1

10.06 constant

g
cell6 row 2
cell7 row 2
cell8 row 2

6.5-HCT × 3.25 × 10−2 Linearly related values to HCT

h
cell6 row 3
cell7 row 3
cell8 row 3

HCT × 4.67 × 10−3–0.557 Linearly related values to HCT

i 0.009-HCT × 2.90 × 10−4 Linearly related values to HCT
j 0.0105 constant
k 5.5 constant
ρ 13,600 reference liquid density (kg/m3)
g 9.8 gravity acceleration (m/s2)

η 100% efficiency of electrical power to
hydraulic power

β 9.9025 × 10−7 pump parameter (mmHg/rpm2)

2.2.2. Calculate the Desired Average Pump Flow

To make it easier for doctors in adjusting the reference value for each patient, an
adaptive physiological control system was introduced.

A control line was generated using a third-order polynomial function from Equation (6)
that fitted into Guyton’s data [16]. This line relates the desired mean pump flow QPr to the
reference preload (PLVEDm). A scaling factor (K) was introduced to provide a means of al-
tering the sensitivity of the pump toward the changes in PLVEDm, which made Equation (6)
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adaptive to various preload sensitivities of different patients [19]. The range of K values
required for patients with different degrees of heart failure will be discussed and studied in
the next chapter.

QPr = (0.0003× PLVEDm
3 − 0.0276× PLVEDm

2 + 0.9315× PLVEDm − 0.0928)×K (6)

HR, ω, and Emax are the main three factors affecting PLVEDm. If Emax is given,
PLVEDm is estimated through the fitting model (R2 > 0.9310) in Equation (7).

PLVEDm(ω, HR) = (1.77× 10−10 ×HR2 − 1.791× 10−8 ×HR− 2.067× 10−7)×ω2

+(−1.873× 10−5 ×HR + 0.00218)×ω+ 1.334× 10−3 ×HR2 + 0.198×HR + 1.192
(7)

The preload-based Frank–Starling control system was illustrated in Figure 3. The
physiological state of the patient (rest or exercise) was first determined, which was then
fed as an input to the reference cardiovascular model, mimicking the heart failure with
the same level to obtain a pathological preload. The average pump flow was estimated
using the motor speed. The unadjusted state point (OPt) was determined according to the
preload at t time (PLVEDm). According to Equation (8), the estimated average pump flow
returned to CLn to obtain the intersection point OPt+1, which was the appropriate reference
point for identifying the patient on the control baseline. The abscissa of OPt+1 was the
reference average pump flow (Qest,t+1) required by the patient [20].

Qest,t+1 = (

√
(Qest,t)

2
+ PLVEDm2)sinθn (8)

Figure 3. Pump flow regulator. OPND,t, the original operating point; OPt, the unadjusted state point
of the patient at time t; Qest,t, the pump flow of the patient at time t; OPt+1, the state point after the
patient adjusts at t+1; Qest,t+1, the ideal pump flow after the patient adjusts at time t+1 (reference
pump flow); θn, the nth control angle of the operating angle of the baseline.

To reduce the risk of abnormal states, such as excessive speed caused by motor failure,
suction caused by the failure of the NAC-FSL system, and to provide enough perfusion,
the designed average pump flow was limited to between 2 and 8 L/min and the preload
was limited to 2–10 mmHg in this paper. The control system works in the gray domain in
Figure 3. When the K value is too small, the controller works in an abnormal state.
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2.2.3. Motor Speed Control

A PI controller was used to track the error between the actual pump flow and the
reference pump flow. Further, the error was used to calculate ∆ω in Equation (9) to control
the motor speed (ω) in each cardiac cycle.

∆ω = KP(Qest −QPr) + KI

T∫
0

(Qest −QPr)dt (9)

where KP and KI were the proportional and integral gains, with the values 170 and 0.0001,
respectively. The values were determined by using a critical proportioning method [17].

2.3. Parameters Setting for Physiological States

The NAC-FSL and CSC system performances were compared under hemodynamic
perturbations. When the patient with an implantable LVAD switched from a resting
position to the moving position, a series of hemodynamic parameters were observed to
have altered. Emax, HR, and RS represented the heart contraction, the heart rate, and
the system circulation resistance of heart failure patients, respectively, and further details
were referred to [17]. Table 2 describes the parameter settings of control systems at rest
and motion. This paper simulated 30 cardiac cycles, out of which, the initial 15 cycles
simulated the patient’s resting state during 15 s, 2.5 s simulated the state changing, while
16 to 30 cycles simulated the patient’s motion state in the next 7.5 s.

Table 2. Parameter settings for the physiological state.

Parameter Rest State Exercise State

Emax (mmHg/mL) 1.0 1.0
HR (bpm) 60 120

Rs (mmHg.s/mL) 1.2 0.5

3. Results

Figure 4 showed the effects of the control systems on hemodynamic parameters from
the resting to exercise state. Rotational speed and pump flow are periodic parameters.
Therefore, the mean rotational speed means the average value of rotational speed over its
period and the mean pump flow refers to the average value over its period in this paper.
From the resting to exercise state, the mean motor speed during a cycle of the CSC system
remained constant at 2600 r/min. In contrast, the mean motor speed of the NAC-FSL
system fluctuated at first and then remained at 2859 r/min at the resting state for the
Frank–Starling mechanism. When changing to the exercise state, the mean rotational speed
increased to 2945 r/min. As demonstrated in Figure 4a, Qest1 in the CSC system rose from
5.28 L/min to 6.33 L/min, with an increase of 1.05 L/min. The average error in the CSC
system between QP1 and Qest1 reached R = 0.991 by the algorithm. Qest2 in the NAC-FSL
system increased from 4.6 L/min to 6.85 L/min, rising by 2.25 L/min from rest to exercise
state, and the average error between QP2 and Qest2 achieved R = 0.9552. The error between
QP and Qest in the NAC-FSL system was smaller than that of the CSC system. When the
control system changed from the resting to exercise state, the increase of average pump
flow in the NAC-FSL system was higher than that in the CSC system. The higher pump
flow helped the NAC-FSL system adapt to the blood flow required for state changes.

In this paper, the pump power (Pe) from a resting state to an exercise state is estimated
under the control of two systems, according to the motor speed (ω). Equation (4) depicted
the specific calculation for both the systems and the trend of Pe was indicated in Figure 4b.
In the CSC system, Pe was between 2.94 and 5.01 W during both states. However, in the
NAC-FSL system, Pe changed from 5.0 to 6.73 W during the resting state and 6.79 to 9.32 W
during the exercise state. It means that in the NAC-FSL system, more power from the
pump motor is needed to provide higher hydraulic performance, thus unloading the left
ventricle more.
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Figure 4. Effect of CSC control system and NAC-FSL control system on hemodynamic parameters
from resting to exercise state. (a) The measured and estimated mean pump flow in two states. QP1 and
QP2 represent the measured mean pump flows of CSC and NAC-FSL, respectively. Qest1 and Qest2

represent the estimated mean pump flows of CSC and NAC-FSL, respectively. The error between the
estimated mean pump flow and the measured mean pump flow was compared. (b) The estimated
power corresponding to the motor speed from resting to exercise. NAC-FSLM represents the mean
pump power at a variable speed and CSCM represents the mean pump power at a fixed speed.
(c) Changes in the P-V loops of the two control systems.

The ability to unload the left ventricle is an important indicator for evaluating the
physiological control system. The P-V loop (the relationship between LAP and LVV) is
always used to evaluate the ability to unload the control systems. In Figure 4c, the solid
lines represent the P-V loop under the resting state, while the broken lines represent an
exercise state. Comparing the P-V loops under both control systems, in the rest state, the P-
V loop under the NAC-FSL shifts to the left distinctly against the CSC, with a stroke volume
(SV) of 40.87 mL and ejection fraction (EF) of 52.19%. While in the exercise activity level, the
scores of NAC-FSL and CSC system reach 47.75 mL vs. 41.53mLml and 42.39% vs. 37.49%,
respectively. In general, the NAC-FSL control system unloads the left ventricle more than
the CSC control system, with a higher EF close to normal levels.

The K value mentioned earlier was added to the controller to provide a means of
altering preload sensitivity. The selection of an optimal scale factor (K) for patients with
different levels of heart failure was explained in this paper in order to provide the appro-
priate pump flow. As suggested in Table 3, this paper approximately graded the degree of
heart failure into severe heart failure (Emax = 0.5), moderate heart failure (Emax = 1.0), and
mild heart failure (Emax = 1.5) [18].

Figure 5 depicts the differences in hemodynamic parameters due to the changes in the
value of K, thereby figuring out a more appropriate value of K for different degrees of heart
failure. Figure 5a–c represent severe, moderate, and mild heart failures, respectively, and
highlight the changes in aortic flow (AOF), aortic pressure (AOP), and Qest for different
K values. For a patient undergoing severe heart failure (Emax = 0.5), when K is less
than or equal to 1.0, the control system will work out of the normal states and the data
were over-adjusted. When 1.0 < K < 1.5, AOP, AOF, and Qest tended to stabilize, but as
the K value increased, the Frank–Starling-like control baseline CLn tended to be flatter
concerning smaller preload, resulting in a decrease in average pump flow. When K ≥ 1.7,
severe oscillations were observed in Qest. Thus, when the patient undergoes severe heart
failure, this paper recommends the K value to be about 1.3. When the patient experiences
moderate heart failure, as indicated in Figure 5b, K ≤ 0.5, and the data are over-adjusted.
For 0.5 < K < 1.3, AOP, AOF, and Qest tend to stabilize. Similarly, Qest gradually decreases
with the increase in the K value. For K ≥ 1.3, the system data oscillates. When the patient
experiences moderate heart failure, the K value of around 1.0 is recommended in this article.
When the patient undergoes mild heart failure, in Figure 5c, and 0.8 < K < 1.5, AOP, AOF,
and Qest are relatively stable.
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Table 3. Comparison of controller sensitivity under different degrees of heart failure.

Emax K Qest(L/min) QP (L/min) Error Stability

0.5

1.0 * * * *

1.2 5.0069 5.0591 1.68% stable

1.3 4.9773 4.9058 1.44% stable

1.5 4.7617 4.6595 2.15% slight shock

1.7 4.3598 4.5163 3.59% shock

1.0

0.5 * * * *

0.8 5.1000 5.1933 1.87% stable

1.0 4.9686 4.8988 1.2% stable

1.3 4.7179 4.6247 1.4% slight shock

1.5 4.3560 4.4967 3.23% shock

1.5

0.4 * * * *

0.8 4.9229 5.0477 2.24% stable

1.0 4.7588 4.8539 1.99% stable

1.3 4.3526 4.5904 5.46% slight shock

1.5 4.0980 4.4797 9.31% shock
*—refers to a state of dysregulation and no valuable data.

Figure 5. Changes in hemodynamic parameters as K values change for different degrees of heart
failure. (a) Emax = 0.5, severe HF. (b) Emax = 1.0, moderate HF. (c) Emax = 1.5, mild HF. K: Scale
factor. Qest: estimated average pump flow.

For K ≥ 1.5, the system would shock. In the case of mild heart failure, this paper
suggests that the optimal K value was around 0.8.
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4. Discussion

The NAC-FSL controller not only solves the postoperative complications in the tradi-
tional control system, which uses invasive sensors but also helps to prevent suction by the
control curve construction of Frank–Starling. Since the NAC-FSL controller includes a flat
slope at high preload, over-pumping at the high preload can be prevented.

Compared to CSC, the NAC-FSL evaluated in this study is able to synchronize the
systemic and pulmonary flow irrespective of variations in the venous return by emulating
the Starling mechanism of the native’s heart. When changing from a resting state to an
exercise state, the increase of the average pump flow in NAC-FSL reached 2.25 L/min,
which is higher than CSC. For the closed state of the aortic valve, the cardiac output was
found to be equal to the pump flow. Therefore, it was concluded that the system under
NAC-FSL could provide more cardiac output and meet the perfusion requirements under
various physiological states. When changing from the resting to exercise state, the P-V
loops under NAC-FSL shift to the left with a reduction in the area, and shift to the right
with an increase in area under CSC. This means that the NAC-FSL system could unload
the left ventricle effectively, so the left ventricle does less work. However, the CSC system
under the exercise state could not help the effective unloading of the left ventricular. For
matching the perfusion requirement in exercise, the left ventricle has to do more work,
leading to the enlargement of the P-V loops.

Gaddum et al. (2014) utilized pulsatility-based controllers to imitate the native Starling
flow sensitivity and proved that each hemodynamic parameter was superior to CSC [21].
In the controller system, pump pulsatility is a consequence of LV contraction, which
is dependent on the LV preload. When severe heart failure occurs, the contraction of
the left ventricle is not sufficient to provide a suitable pulsatility index for this control
system. When the speed of the motor increases with the patient’s perfusion requirement,
the unloading effect of the left ventricle becomes more obvious, and the contractility
decreases accordingly.

To determine the patient’s working point OPt in one cycle, the NAC-FSL control
system proposed in this paper measured instantaneous preload instead of average preload.
As a result, the system responded to the changes in the physiological state of the patient in
time. Mahdi Mansouri et al. proposed a preload-based Frank–Starling system where they
measured average preload to determine the patient’s working point and cost for at least
two cycles and could not successfully respond to changes in the physiological state of the
patient in time [18].

The NAC-FSL control system still had some problems that needed to be addressed.
When setting the reference CVS to obtain a patient’s pathological preload, it is mandatory to
obtain a large amount of information from the patient to fit into the patient’s cardiovascular
model. Moreover, when the control system changes from resting to exercise state, the
NAC-FSL has higher fluctuation than CSC. One reason may be the non-real-time control
method. This issue needs to be solved in a future study.

In this study, the effect of K on control robustness and hemodynamics was investigated
and appropriate K values were determined in the NAC-FSL control system. K value is
always used to indicate preload sensitivity. The K value might be determined by the
physiological states, the level of heart failure, and various other parameters. However, the
appropriate way of selecting the K value remains uncertain. When designing and utilizing
physiological control systems based on the Frank–Starling mechanism, the determination
of the K value is crucial and needs to be solved. At each level of heart failure (mild,
moderate, and severe), if the K is too small, the control system overshoots, and the motor
speed goes out of control. As the K value increases, the waveform of parameters gradually
becomes stable, but the error between Qest and QP becomes larger, thereby compromising
the accuracy of the controller. When K exceeds a predefined limit, the hemodynamic system
parameters severely oscillate, and the unstable system is unable to adjust the LVAD motor
speed to meet the perfusion requirement. By considering the stability, error, and overshoot
of the control system, the optimal range of the K value under different degrees of heart
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failure was suggested in this paper. The K values in three grades of heart failure (mild,
moderate, and severe) were recommended to be around 1.3, 1.0, and 0.8, respectively. In
this study, overshoot and oscillation were observed for inappropriate K values. These
phenomena must be avoided to prevent accidents while using a preload physiological
control system based on the Frank–Starling-like mechanism. Further work will focus on
the validation of the K value in in vitro and in vivo experiments.

5. Conclusions

The proposed NAC-FSL controller adjusts the rotational speed of the LVAD based on
the physiological state of the patients to meet their perfusion requirements. This controller
uses the Frank–Starling-like mechanism to track the optimal average pump flow. The
merits and demerits of the NAC-FSL controller in different states were discussed. Suction
was avoided by adopting the control baseline (CLn) that had a flat slope under high preload
conditions. The NAC-FSL system could unload the left ventricle effectively and provide a
greater pump flow and cardiac output with less error during the exercise state, as compared
to the CSC system. Eventually, the K value in the NAC-FSL controller was optimized to
meet the perfusion needs according to the hemodynamic parameters, which vary with
different preload sensitivities (K values).
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S.W.; investigation, Z.L. and S.W.; data curation, Z.L.; writing—original draft preparation, F.X.;
writing—review and editing, C.H.; visualization, C.H.; supervision, F.W.; project administration,
T.J.; funding acquisition, F.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
no. 51677082).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chang, Y.; Gu, K.; Gao, B.; Liu, Y. Hemodynamic influence of cardiovascular system in intra-aorta pump. J. Beijing Univ. Technol.

2013, 39, 629–633.
2. Shi, L.; Huo, C.; Liu, J. Observation and nursing of complications of mechanical assisted treatment after cardiac surgery. Chin. J.

Mod. Nurs. 2013, 19, 1684–1686.
3. Salamonsen, R.F.; Mason, D.G.; Ayre, P.J. Response of rotary blood pumps to changes in preload and afterload at a fixed speed

setting are unphysiological when compared with the natural heart. J. Artif. Organs 2011, 35, E47–E53. [CrossRef] [PubMed]
4. AlOmari, A.-H.H.; Savkin, A.V.; Stevens, M.; Mason, D.G.; Timms, D.L.; Salamonsen, R.F.; Lovell, N.H. Developments in control

systems for rotary left ventricular assist devices for heart failure patients: A review. J. Physiol. Meas. 2012, 34, R1–R27. [CrossRef]
[PubMed]

5. Stevens, M.C.; Gaddum, N.R.; Pearcy, M.; Meboldt, M.; Schmid, D.M. Frank-starling control of a left ventricular assist device. In
Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA,
USA, 30 August–3 September 2011; pp. 1335–1338.

6. Petrou, A.; Ochsner, G.; Amacher, R.; Pergantis, P.; Rebholz, M.; Meboldt, M.; Daners, M.S. A Physiological controller for
turbodynamic ventricular assist devices based on left ventricular systolic pressure. J. Artif. Organs 2016, 40, 842–855. [CrossRef]
[PubMed]

7. Cordeiroa, T.D.; Sousaa, D.L.; Cestari, I.A.; Lima, A.M.N. A physiological control system for ECG-synchronized pulsatile pediatric
ventricular assist devices. J. Biomed. Signal Process. Control. 2020, 57, 101752. [CrossRef]

8. Fetanat, M.; Stevens, M.; Hayward, C.; Lovell, N.H. A physiological control system for an implantable heart pump that
accommodates for interpatient and intrapatient variations. IEEE Trans. Biome. Eng. 2020, 67, 1167–1175. [CrossRef] [PubMed]

9. Magkoutas, K.; Arm, P.; Meboldt, M.; Daners, M.S. Physiologic data-driven iterative learning control for left ventricular assist
devices. Front. Cardiovasc. Med. 2022, 9, 922387. [CrossRef] [PubMed]

10. Stephens, A.F.; Gregory, S.D.; Burrellc, A.J.C.; Silvana, M.S.; Dion, S.D.; Salamonsenc, R.F. Physiological principles of Starling-like
control of rotary ventricular assist devices. Expert Rev. Med. Devices 2020, 7, 1169–1182. [CrossRef] [PubMed]

11. Wang, Y.; Koenig, S.C.; Slaughter, M.S.; Giridharan, G.A. Suction prevention and physiologic control of continuous flow left
ventricular assist devices using intrinsic pump parameters. ASAIO J. 2015, 61, 170–177. [CrossRef]

12. Fu, M.; Xu, L. Computer simulation of sensorless fuzzy control of a rotary blood pump to assure normal physiology. ASAIO J.
2000, 46, 273–278. [CrossRef]

http://doi.org/10.1111/j.1525-1594.2010.01168.x
http://www.ncbi.nlm.nih.gov/pubmed/21355872
http://doi.org/10.1088/0967-3334/34/1/R1
http://www.ncbi.nlm.nih.gov/pubmed/23242235
http://doi.org/10.1111/aor.12820
http://www.ncbi.nlm.nih.gov/pubmed/27645395
http://doi.org/10.1016/j.bspc.2019.101752
http://doi.org/10.1109/TBME.2019.2932233
http://www.ncbi.nlm.nih.gov/pubmed/31380742
http://doi.org/10.3389/fcvm.2022.922387
http://www.ncbi.nlm.nih.gov/pubmed/35911509
http://doi.org/10.1080/17434440.2020.1841631
http://www.ncbi.nlm.nih.gov/pubmed/33094673
http://doi.org/10.1097/MAT.0000000000000168
http://doi.org/10.1097/00002480-200005000-00006


Micromachines 2022, 13, 1981 11 of 11

13. Bakouri, M.A.; Salamonsen, R.F.; Savkin, A.V.; AlOmari, A.H. A sliding mode-based starling-like controller for implantable rotary
blood pumps. Artif. Organs 2014, 38, 587–593. [CrossRef] [PubMed]

14. Wang, Y.; Simaan, M.A. A suction detection system for rotary blood pumps based on the lagrangian support vector machine
algorithm. IEEE J. Biomed. Health Inform. 2013, 17, 654–663. [CrossRef] [PubMed]

15. Haddad, F.; Hunt, S.A.; Rosenthal, D.N.; Murphy, D.J. Right ventricular function in cardiovascular disease, Part I: Anatomy,
Physiology, Aging, and Functional Assessment of the Right Ventricle. Circulation 2008, 117, 1436–1448. [CrossRef] [PubMed]

16. Guyton, A. Circulatory Physiology: Cardiac Output and Its Regulation; W.B. Saunders Company: Philadelphia, PA, USA; London,
UK, 1963; pp. 237–239.

17. Wang, F.Q.; Xu, Q.; Wu, Z.H.; Wen, T.Y.; Ji, J.H.; He, Z.M. Control Study of Blood Circulation System Based on Left Heart Assist
Device. J. Biomed. Eng. 2015, 33, 1075–1083.

18. Faragallah, G.; Simaan, M. An engineering analysis of the aortic valve dynamics in patients with rotary Left Ventricular Assist
Devices. J. Healthc. Eng. 2013, 4, 307–327. [CrossRef] [PubMed]

19. Zhang, X.T.; Alomari, A.H.; Savkin, A.V.; Ayre, P.J.; Lim, E.; Salamonsen, R.F.; Rosenfeldt, F.L.; Lovell, N.H. In vivo validation of
pulsatile flow and differential pressure estimation models in a left ventricular assist device. Conf. Proc. IEEE Eng. Med. Biol. Soc.
2010, 8, 2517–2520.

20. Salamonsen, R.F.; Lim, E.; Gaddum, N.; AlOmari, A.H.; Gregory, S.D.; Stevens, M.; Mason, D.G.; Fraser, J.F.; Timms, D.;
Karunanithi, M.K.; et al. Theoretical foundations of a Starling-like controller for rotary blood pumps. Artif. Organs. 2012, 36,
787–796. [CrossRef] [PubMed]

21. Gaddum, N.R.; Stevens, M.; Lim, E.; Fraser, J.; Lovell, N.; Mason, D. Starling-like flow control of a left ventricular assist device:
In vitro validation. Artif. Organs 2014, 38, E46–E56. [CrossRef] [PubMed]

http://doi.org/10.1111/aor.12223
http://www.ncbi.nlm.nih.gov/pubmed/24274084
http://doi.org/10.1109/TITB.2012.2228877
http://www.ncbi.nlm.nih.gov/pubmed/23192602
http://doi.org/10.1161/CIRCULATIONAHA.107.653576
http://www.ncbi.nlm.nih.gov/pubmed/18347220
http://doi.org/10.1260/2040-2295.4.3.307
http://www.ncbi.nlm.nih.gov/pubmed/23965593
http://doi.org/10.1111/j.1525-1594.2012.01457.x
http://www.ncbi.nlm.nih.gov/pubmed/22626056
http://doi.org/10.1111/aor.12221
http://www.ncbi.nlm.nih.gov/pubmed/24372519

	Introduction 
	Methodology 
	Mock Circulation Loop (MCL) 
	Control Strategy 
	Estimate Average Pump Flow 
	Calculate the Desired Average Pump Flow 
	Motor Speed Control 

	Parameters Setting for Physiological States 

	Results 
	Discussion 
	Conclusions 
	References

