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Abstract: Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial
resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes
using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect
the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple
microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility
testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel
0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were
prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple
sample addition. This combination was selected to closely match current standard methods for
both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits
observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device
fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2
camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital
microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field
of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image
quality was sufficient to detect how bacterial motility was inhibited by different concentrations of
antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable
microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding
detection of antibiotic resistance.

Keywords: antibiotic motility test; antimicrobial resistance; microfluidic; bacterial cytometry; digital
microscope; 3D printing

1. Introduction

The analysis of cellular behavior by cytometry can arguably provide insight into
bacterial behavior more rapidly than most other methods. This can be useful for making
quick phenotypic observations, including antibiotic susceptibility. Rapid and portable
measurements of antibiotic susceptibility are needed to combat the increasing spread
of antibiotic resistance. Bacterial motility can provide some information on bacterial
identification, but can also be used to distinguish between live and dead cells and can be
used as a measure of antibiotic susceptibility [1].

Motility has been widely acknowledged as a virulence factor in some pathogenic
bacteria and plays a critical role in the formation of biofilm, which increases bacterial
tolerance to antibiotics [2,3]. For the last several decades, different methods have been
developed to differentiate and classify bacteria based on their motility. There are four kinds
of different movement of bacteria: darting motility is presented by Vibrio species; active
motility by Salmonella; sluggish motility by Bacillus and Clostridia genus; and thumbing
motility by Listeria. Initial developments of bacterial motility tests included the use of
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culture medium and naked-eye observation, such as in the Craigie, J. (1993) tube method,
which was then advanced by the inclusion of microscopic examination (e.g., the Wet
mount method) [4]. Furthermore, these techniques have been enhanced by the use of dyes,
including carbon fuchsin, safranin, and methyl blue or a novel single-tube agar-based
technique for motility enhancement of E. coli O157:H7. Likewise, microscopy-based in situ
growth assays have been developed [5,6].

Open source hardware has also emerged as a major trend in scientific research. Open
source systems make scientific equipment much more accessible not only for research
but for a wider range of users [7]. One powerful digital imaging platform makes use of
Raspberry Pi hardware in research, offering low cost and accessibility; indeed, this was orig-
inally developed as an educational platform. Raspberry Pi hardware has been incorporated
into commercial laboratory instruments (e.g., NuGenius by Syngene) and in many research
laboratories for custom laboratory equipment. Many of these are based on imaging systems.
One low-cost open source multi-fluorescence imaging system was developed using simply
a Raspberry Pi computer and Pi camera [8]. In addition to being low cost and allowing fully
programmable imaging, the flexible Raspberry Pi GPIO output pins simplify addition of
robotic sample manipulation or lighting control alongside imaging. Thus, digital imaging
capability can be combined with robotics, for example, open source 3D printer hardware
motion systems can be used as a platform for Raspberry Pi imaging, such as the Raspberry
Pi camera Open source Laboratory Imaging Robot (POLIR) that consists of a 3D-printed
3-axis frame moving a Raspberry Pi camera controlled by an Arduino microcontroller,
previously used for time-resolved analytical microbiology, including measuring antimi-
crobial resistance in bacteria [9]. Another simple and cost-effective Raspberry Pi system
provides controlled temperature and pressure monitoring systems [10]. Affordable 3D
printing has likewise made it easier for the science and engineering community to create
rapid prototypes of complex products, paving the way for faster and easier setup of a
lab [11]. Small portable 3D printed structures combined with CMOS digital cameras are
ideal for microscopy, illustrated by the OpenFlexure system [12] and by digital holographic
microscope [13]. Open source hardware allow scientists to share, customise and improve
their instrumentation alongside software, ensuring that technological advances in digital
imaging can drive rapid scientific progress.

As digital cameras become cheaper, there has been a move from traditional labo-
ratory instruments (e.g., based on film camera, photomultipliers, photodiodes, or CCD
cameras) to consumer cameras offering a simplified approach to producing scientific imag-
ing devices. The use of small CMOS cameras for digital microscopy is transforming the
cost/performance of microimaging. For example, the Raspberry Pi Camera Module v2
is affordable yet still contains a high-quality CMOS image sensor (3280 × 2464 pixels),
with a fixed focus lens that can be reversed and mounted far from the sensor to produce
high resolution macro images. This system has been extensively adapted for digital mi-
croscopy [14–16] by combination with 3D printed x-y-z stages. Matching this trend in
microelectronics, recently, microfluidics-based analytical microbiology and diagnostic tech-
nology has emerged to offer a promise of improved healthcare systems by allowing the
development of low-cost, rapid point-of-care diagnostic devices [17]. Ideally, microelec-
tronics, such as small digital cameras, can be combined with microfluidics to perform
diagnostic assays, such as immunoassays [18].

Here, we explore for the first time if the OpenFlexure microscope has the resolution to
be used for microfluidic microbiology, to directly observe bacterial behaviour and motion.
In this study, we combined inexpensive portable components for microbial cytometry, to
establish the feasibility of rapidly monitoring bacterial motility in the presence of antibiotics.
A novel device is presented that exploits melt-extruded microcapillary film to create panels
of microfluidic antibiotic-loaded chambers [19]. We investigated whether the 3D-printed
OpenFlexure microscope using a low-cost Raspberry Pi v2 camera has sufficient magnifica-
tion and resolution to monitor bacterial motility in microdevices. Adequate magnification
and contrast were achieved to view motile bacteria and allowed differences in behavior
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to be observed in the presence of antibiotics above the organisms’ minimum inhibitory
concentration (MIC) for that antibiotic. We suggest that this combination of inexpensive
mass-manufactured microfluidic devices with open source 3D-printed digital microscopes
permits rapid bacterial cell measurement suitable for portable analytical microbiology tests,
such as rapid antibiotic susceptibility testing.

2. Materials and Methods
2.1. Open Source 3D Printed Digital Microscope

The open flexure microscope was built following 3D designs and assembly instructions
provided by the open flexure project with details available on a public repository (https:
//github.com/rwb27/OpenFlexure_microscope (accessed on 10 January 2021)) and the
project website (https://openflexure.org/ (accessed on 10 January 2021)). Components
were printed as advised, on a Prusa i3 MK2S (Prusa Research, Prague, Czech Republic)
from standard polylactic acid (PLA; Ooznest, Essex UK). The camera was run using a
Raspberry Pi (RPi) 3 Model B or Raspberry Pi 4 Model B single-board computer, operated
by USB mouse and keyboard, focused manually with preview images displayed on a
computer screen via HDMI. Python code scripts using the PiCamera library (https://
picamera.readthedocs.io/ (accessed on 10 January 2021)) were used to control length of
time to record videos, using default resolution at 15 frames per second.

2.2. Microbiology Materials and Methods

Isolates E. coli ATCC 25,922 (EC), P. aueruginosa ATCC 10,145 (PSA) and K. pneumoniae
ATCC 13,883 (Klebsiella) strains were obtained from the National Collection of Type Cul-
tures (NCTC, Salisbury, UK) maintained and subcultured on Luria Bertani (LB) agar and
broth (ThermoFisher, Loughborough, UK) and serially diluted (1:10) to an appropriate cell
density before testing for motility. Gentamicin, ceftazidime and triphenyl tetrazolium chlo-
ride (TTC) were purchased from Sigma Aldrich (Gillingham, UK). The microcapillary film
(MCF), manufactured by Lamina Dielectrics Ltd. (Billlingshurst, West Sussex, UK) [20,21],
with capillary diameter of 200 µm was used for this study.

2.3. Antibiotic-Loaded Microfluidic Test Strips

Capillaries were filled with warm liquid agar (0.4% w/v) in Mueller-Hinton broth
containing various antibiotics, which was allowed to solidify in the capillaries. Twenty-
millimeter-long strips were held in a 3D-printed holder with design files available at the
project Zenodo repository (https://zenodo.org/record/7249682#.Y3yG8HbMJPY, accessed
on 10 January 2021). Overnight cultures inoculated in LB broth were diluted to approxi-
mately 108 CFU/mL, and the motility was compared to a non-antibiotic control and scored
by migration distance along the microcapillaries after exposure to the antibiotics.

The novel microfluidic method was compared to a conventional multiwall stab method.
To prepare semi-solid agar, Mueller-Hinton agar (0.4% w/v) was made and when cooled
to below 55 ◦C, but before gelation, antibiotics were added with a dilution range between
0.0125 and 32 mg/mL (depending on the antibiotic), and 200 µL was added in each
96-well microtitre plate strip-well. TTC dye was added at 1% w/v to stain bacteria (Sigma,
Gillingham, UK). Then, 10 µL of liquid overnight bacterial culture was stabbed into the
surface of the agar with a 20 µL pipette tip, and strips were incubated at 37 ◦C for 16–18 h
in the PiRamid time-lapse imaging box [Long et al., HardwareX, manuscript accepted].
Bacterial visible stab line and cloudiness were recorded as positive motile, and is considered
resistant if antibiotic is present. In contrast, the visible stab line with clear agar was recorded
as negative and thus non–motile, which was considered susceptible.

https://github.com/rwb27/OpenFlexure_microscope
https://github.com/rwb27/OpenFlexure_microscope
https://openflexure.org/
https://picamera.readthedocs.io/
https://picamera.readthedocs.io/
https://zenodo.org/record/7249682#.Y3yG8HbMJPY
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3. Results and Discussion
3.1. Concept of Microfluidic Bacterial Cytometry using Microcapillaries Combined with
3D-Printed Microscope

Microfluidic devices allow portable testing, transporting laboratory instruments into
near-patient devices, and have been demonstrated for use of antibiotic susceptibility testing
(AST). Motility and single-cell imaging provides one of the fastest measurements of pheno-
typic AST, providing results in as little as 20 min. However, these often require complex
and bulky imaging or cytometry systems, such as microscopes or flow cytometers that
require a laboratory environment to be operated. Previously, we have demonstrated the use
of microcapillary film as a scalable and accurate AST device suited for point-of-care (PoC)
applications, using a colour-based indicator to determine growth after several hours [19].
However, using single-cell imaging, there is a potential to simplify sample preparation and
decrease the time to result.

Here, we miniaturised a soft agar motility assay into microcapillaries (Figure 1).
Samples containing bacteria are added to the open end of a microcapillary film test strip,
with the capillaries containing soft agar with or without antibiotics. Motile bacteria are
able to swim freely into the capillary end, and into the soft agar. However, if susceptible to
the antibiotic, a change in motility was observed, including decreased migration into the
capillary and after time, bacteria killed from antibiotic exposure stopped moving.

This test device was combined with a 3D-printed holder to fit the stage of the 3D-
printed OpenFlexure microscope to record videos and thereby determine motility. In this
way, a small and compact bacterial cytometer can be produced for under $200 (based on
$100 for the Raspberry Pi computer, $30 for the v2 camera and a small budget for 3D
printing and accessory parts). The 3D-printed OpenFlexure microscope is much smaller
and lighter than a conventional laboratory microscope. The system is controlled by a
Raspberry Pi, and the sample is lit by a single LED, allowing the system to be powered by
5V USB or even by battery rather than requiring mains power, making it ideal for field use
or low-resource settings.

3.2. Establishing if System Has Sufficient Resolution to Observe Bacteria for Motility Assays

There is a trade-off between cost of instrument, field of view and resolution. Biological
samples often use phase contrast microscopy or differential interference contrast (DIC)
microscopy, allowing unstained samples and cellular structures to be more visible. The
OpenFlexure lack these modifications, and the sample is lit simply from above using a
single white LED. This provides limited contrast for cellular samples, yet the OpenFlexure
microscope was originally developed for water quality testing [12].

Imaging motility does not necessarily require high resolution or clear structural images;
however, to fully observe sample motility and migration into the capillaries, the entire
capillary opening needs to be observed. To identify if single bacteria could be imaged
using the OpenFlexure microscope in the microcapillaries, a sample of P. aeruginosa was
loaded into the devices and imaged on a conventional laboratory microscope equipped
with a digital camera, and these were compared with the OpenFlexure system (Figure 2).
At magnification in which the full diameter of the 200 µm diameter capillary is in view,
individual P. aeruginosa are clearly visible, and the motile rod-shaped bacteria move quickly
in the capillary (Figure 2C). Images and videos collected by the OpenFlexure microscope
also show clear individual bacteria (Figure 2D), and both systems can identify individual
bacteria with the full capillary diameter in view. We conclude that the OpenFlexure
microscope can be used to image single bacterial cells and screen motility in unstained
samples within microfluidic devices.
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Figure 1. Combining inexpensive microfluidics with 3D-printed digital microscopy to create a simple
cytometer for observing response of motile bacteria to antibiotics. (A) Schematic of configuration
of microcapillary film strip presenting different antibiotics, or different concentrations of a single
antibiotic, to a bacterial sample. (B) Test strip is contained in simple holder with transparent base;
each holder can present four strips each of ten conditions to a single drop of sample. (C) Combined
with 3D-printed OpenFlexure microscope allows direct observation of how motile bacterial cells
response to exposure to antibiotics.
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Figure 2. Comparison of conventional phase contrast microscopy (using 40X objective) with
OpenFlexure 3D-printed digital microscope. Samples of P. aeruginosa are shown imaged using
(A–C) conventional microscope compared with (D,E) OpenFlexure microscope. (B,C) show how the
rapid movement of motile bacteria are clearly visible when the micrograph is enlarged. Although
the OpenFlexure micrograph (D) has lower magnification, and bacterial cells are still clearly visible
(E) but are smaller and with less intense contrast than the conventional microscope.

The focal plane of the microscope is smaller than the diameter of the microcapillaries,
and the fixed focal length of the raspberry pi camera means the system has to be adjusted
correctly to ensure that motility of bacteria inside the capillaries are observed. The system was
focused on the widest part of the capillary, but this can mean that bacteria move in and out
of focus as they swim above and below the focal plane. The system may be improved using
smaller diameter capillaries or devices with flatter channels, or with robotic z-stage added to
the OpenFlexure microscope that can scan and image the full depth of the microdevice.

3.3. Confirming Antibiotic Susceptibility Can Be Tested by Conventional Motility Assays

Motility assays are typically used to measure motility, and in contrast, different stan-
dardised antibiotic susceptibility testing (AST) methods, such as disc diffusion, broth
microdilution or agar dilution, are used to measure antibiotic susceptibility [22]. We there-
fore checked whether motility measurement assays could be adapted to perform AST by
combining conventional agar dilution AST with soft agar motility measurement. When
checked using reference strains of E. coli and P. aeruginosa, this combination of conven-
tional method allowed us to observe motility macroscopically with a range of antibiotic
concentrations. Soft agar (0.4%) containing TTC and doubling dilutions of ceftazidime and
gentamicin were poured into 96-well plate format microtitre stripwells. Cultures of E. coli
and P. aeruginosa were stabbed into each well, and movement of bacteria away from the stab
site was monitored during overnight incubation at 37 ◦C using Piramid, a time-lapse Rasp-
berry Pi imaging box recently developed by our group [Long et al., HardwareX, accepted
manuscript]. The MIC can be recorded as the lowest concentration of antibiotic that fully
inhibits growth (Figure 3). The stab culture can clearly identify motile versus non-motile
bacteria; the motile bacteria were able to swim into the soft agar, and live bacteria convert
TTC, forming a diffuse bloom of purple dye. The reduction of TTC forms an insoluble
dye that does not diffuse in the soft agar, making bacterial movement clearly recordable
with the digital camera. In contrast, non-motile bacteria, such as K. pneumoniae, were still
able to grow and convert the TTC, but the colour change is strictly limited to the original
stab location (Figure 3B). The motile E. coli and P. aeruginosa isolates both showed clear
spread without antibiotic, which was inhibited by antibiotics at expected concentrations.
We observed an MIC of 4 µg/mL for gentamicin and <4 µg/mL for ceftazidime for both or-
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ganisms. We conclude that conventional macroscopic methods demonstrate that a bacterial
motility readout can be used to quantify antibiotic susceptibility.

Figure 3. Confirming motility is inhibited by antibiotics using a combination of conventional methods.
(A) Soft agar containing the indicated antibiotic concentrations was stabbed with an inoculum of
the indicated motile bacteria, and time-lapse images recorded during overnight incubation. Dark
staining by bacteria migrating away from the stab site become clear from 3 h, with spread across
the whole well visible by 8–16 h; in contrast, antibiotics above the inhibitory concentration block
migration and growth. (B) Close-up of endpoint images of motile E. coli and P. aeruginosa contrast
with K. pneumoniae. Similar observations were seen in at least 5 independent experiments.



Micromachines 2022, 13, 1974 8 of 10

3.4. OpenFlexure Microscope Plus Microcapillary Devices Allow Rapid Direct Microfluidic
Bacterial Cytometry to Measure Antibiotics Inhibiting Motility

The feasibility of motility-based AST was then assessed in the low-cost, portable
combined microfluidic cytometry system, with bacterial movement recorded directly at the
inlet of microcapillaries using the OpenFlexure digital microscope. Results were recorded
for two bacteria and two antibiotics at concentrations where motility was known to be
inhibited in the soft agar-filled capillaries. Videos of 6 min duration were recorded using
a frame-rate of 15 frames per second, which gave the best compromise between image
resolution and stable video capture by the Raspberry Pi computer, resulting in movies that
run at double speed of real-time microbial (Supplementary Materials listed in Table 1). The
video files clearly show motile bacteria are able to migrate from the end along the capillary
length in agar without antibiotics present (PSA no antibiotic) and that the distance travelled
is affected by antibiotic.

Table 1. Summary of motility observed in video recordings of microcapillaries with a range of
antibiotic/bacteria combinations.

Video File Name # Organism Antibiotic/Concentration Motility Observed *

PSA no antibiotic

P. aeruginosa ATCC 10145

No antibiotic +++
PSA Ceftazidime 0_5 Ceftazidime/0.5 µg−1 ++

PSA Ceftazidime 4 Ceftazidime/4 µg−1 +
PSA Gentamicin 4 Gentamicin/4 µg−1 -

EC Gentamicin 0_5
E. coli ATCC 25922

Gentamicin/0.5 µg−1 +++
EC Gentamicin 4 Gentamicin/4 µg−1 +

EC Ceftazidime 32 Ceftazidime/32 µg−1 -

* Motility score based on migration distance along capillary: +++ >300 µm, ++300 < 201 µm, +200 < 100 µm,
−99 < 0 µm. Similar observations were seen in at least five independent experiments. # Video files available from
the project Zenodo repository at doi:10.5281/zenodo.7249682 or via URL https://zenodo.org/record/7249682
(accessed on 10 January 2021).

The results of the microcapillary motility follow the same trends as the stab culture,
although as is commonly a challenge for AST, the exact MIC is less clear cut and can be
challenging to define. One aspect of this is due to timing. Motility was assessed after just
3 min, compared to 16 h under standard AST conditions. Furthermore, the test involved
the bacteria moving into the soft agar capillaries to be exposed to the antibiotics; while
motile bacteria can clearly migrate into soft agar, this process is likely to be slower than
motility in liquid due to increased viscosity. One adjustment that could be made to this
system would be to use liquid media cultures in capillaries containing dried antibiotics;
this would expose the bacteria much faster to the antibiotic of interest. The disadvantage
of such a liquid system is the risk of rapid mixing or flow of antibiotic solution out of
the microcapillary, leading to less confidence in the antibiotic concentration. Another
disadvantage of the agar-loaded antibiotic test strips is the limited stability of antibiotic in
solution. Our test strips are unlikely to have long shelf-life for many antibiotics. However,
the results presented here with this soft agar method clearly demonstrate the concept of
low-cost compact 3D-printed microscope combined with melt-extruded microfluidic device

To measure motility in the 200 µm microcapillary film, individual bacteria need to
be identifiable, as proven to be possible using the OpenFlexure microscope configured
with an approximately 400–500 micron field of view. However, this is not possible with
lower magnification that allows monitoring all ten capillaries at once, as the resolution
is no longer enough to identify individual bacteria, so capillaries have to be monitored
individually, and the stage moved to monitor the next capillary. This makes the system
more involved to use, but this compromise between resolution and field of view is also true
of conventional microscopes.

https://zenodo.org/record/7249682
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4. Conclusions

The OpenFlexure microscope provides a low-cost, portable microscopy that com-
bined with increasingly more affordable portable devices, such as microfluidic systems,
can allow field use cytometry, for example as near-patient diagnostics, in this example
illustrated by rapid antibiotic resistance detection. The microscope has sufficient resolution
to identify individual bacteria under simple single-LED bright field illumination, and video
recording can readily capture the motility of unstained bacteria in the microcapillaries
used in this study. The increase in availability of microelectronics such as low-cost but
high-quality optoelectronics combined with microfluidics, will drive the development
of new portable diagnostic devices, improving healthcare needs in especially in rural or
low-resource settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//zenodo.org/record/7249682, accessed on 30 October 2022. Rapid bacterial motility monitoring
using inexpensive 3D-printed OpenFlexure microscopy|Zenodo, Video files: PSA no antibiotic, PSA
Ceftazidime 0_5, PSA Ceftazidime 4, PSA Gentamicin 0_5, PSA Gentamicin 4, EC Gentamicin 0_5,
EC Gentamicin 4, EC Ceftazidime 32.
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