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Abstract: This paper proposes a real-time heart rate detection method based on 77 GHz FMCW
radar. Firstly, the method establishes a new motion model according to respiratory and heartbeat
rules, and extracts the motion signals of the chest and the abdomen; then, the random body motion
(RBM) signal is eliminated by a combination of polynomial fitting and recursive least squares
(RLS) adaptive filtering; lastly, multi-detection-point adaptive harmonics cancellation (AHC) is
used to eliminate respiratory harmonics. In addition, the method introduces a spectrum analysis
algorithm based on linear predictive coding (LPC). The experimental results show that the method
can effectively eliminate the RBM signal and respiratory harmonics, and that the average real-time
heart rate detection error rate is 2.925%.

Keywords: real-time heart rate; 77 GHz FMCW radar; random body motion; multi-detection-point
adaptive harmonics cancellation; linear predictive coding

1. Introduction

Heart rate is one of the important vital signs parameters: it can not only reflect the
health status of the human body, but can also provide a reference for clinical diagnosis [1,2].
Furthermore, heart rate variability can reflect the activity, balance and related pathological
states of the cardiac autonomic nervous system [3]. As a non-contact detection instrument,
Doppler radar can detect heartbeat signals from micro-motion signals on the surface of the
human body, and it has attracted more and more attention in the medical field [4–7].

However, there are two problems for Doppler radar, in detecting heart rate in near real-
time: the first is how to eliminate the RBM signal, which seriously affects the accuracy of
heart rate extraction [8]; the second is how to eliminate respiratory harmonics. Respiratory
harmonics and heartbeat are relatively close in frequency; therefore, respiratory harmonics
may be mistaken for heartbeat signals [9].

In references [10–12], the RBM signal was eliminated using two systems; however, it
was difficult for the two systems to operate synchronously without interfering with one
other. Gu et al. [13] proposed a method to remove the RBM signal using deep neural net-
works, which successfully extracted the respiration rate; however, it was difficult to extract
the heart rate due to lack of training data. Yang et al. [14] proposed a scheme combining
adaptive noise cancellation with polynomial fitting, which would effectively eliminate
the RBM signal; however, the step size factor was fixed in the adaptive noise cancellation
algorithm, which made it difficult to balance steady-state error and convergence speed.

In references [15,16], to eliminate respiratory harmonics, the respiratory harmonics
cancellation method and the adaptive harmonics comb notch digital filter method were
proposed; however, both these methods required the respiratory rate to eliminate the
harmonics, which increased the dependence of the heart rate on the respiratory rate. In
reference [17], to distinguish between respiratory harmonics and heartbeat signals, the
heartbeat signals were amplified; however, the respiratory harmonics were also amplified,
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which reduced the accuracy of the heart rate extraction. Yang et al. [18] proposed a wave-
form-driven matched filtering method based on polynomial fitting; however, it was difficult
to extract the heart rate quickly.

In addition to the above problems, real-time heart rate detection also needs to solve
the problem of insufficient frequency resolution. To this end, Lee et al. [19] proposed an
algorithm based on redistribution of the joint time–frequency transform. Hu et al. [20]
applied a continuous wavelet filter and ensemble empirical mode decomposition to recover
and separate cardiopulmonary signals; they used the peak-to-peak interval to detect the
frequency. References [5,21] proposed the time-window-variation technique combined with
the fast Fourier transform and wavelet transform, respectively. Park et al. [22] proposed
a novel polyphase-basis discrete cosine transform. Ye et al. [23] proposed a stochastic
gradient algorithm based on the time-window-variation technique. Lv et al. [24] proposed
a non-contact short-term heart rate detection system based on a 120 GHz narrow beam
FMCW millimeter wave radar. Gao et al. [25] proposed a method for extracting the life
activity spectrum based on millimeter wave radar; although this method was able to extract
the heart rate in near real-time, the acquisition time was long, and the accuracy of the heart
rate left room for improvement.

In order to solve the above problems, this paper proposes a real-time heart rate detec-
tion method based on 77 GHz FMCW radar, and conducts experimental verification. The
method establishes a new motion model according to respiratory and heartbeat rules, elimi-
nates the RBM signal by a combination of polynomial fitting and RLS adaptive filtering, and
eliminates respiratory harmonics by multi-detection-point AHC. In addition, a spectrum
analysis algorithm based on LPC has been introduced, to improve detection accuracy.

2. Theory

Figure 1 shows the block diagram of a typical FMCW radar structure. The transmitted
signal can be expressed as:

S(t) = cos(2π fct + π
B
Tc

t2) (1)

where fc is the carrier frequency, B is the total bandwidth and Tc is the duration. Assume
the initial distance between the radar and the body is d0; then, the received signal can be
expressed as:

R(t) = cos

{
2π fc

[
t− 2[d0 + x(t)]

c

]
+ π

B
Tc

[
t− 2[d0 + x(t)]

c

]2
}

(2)

where c is the speed of light, and x(t) is the motion of the human body; then, the interme-
diate frequency signal can be expressed as:

RIF(t) = exp
{

j
[

2π
2Bd0

cTc
t +

4π[d0 + x(t)]
λ

]}
(3)

where λ is the maximum wavelength of the signal. The sampled signal can be expressed as:

RIF(mTs + nTf ) = exp
{

j
[

2π
2Bd0

cTC
nTf +

4π[d0 + x(mTs)]

λ

]}
(4)

where m and n represent the index number of chirps and the index number of the sampling
point in each chirp, respectively; Ts is the slow time sampling period, and Tf is the fast
time sampling period.
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3. Methods 
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inward. The motion of the chest can be expressed as: 
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Figure 1. Block diagram of the non-contact FMCW radar. SG: Signal Generator; VCO: Voltage
Controlled Oscillator; PA: Power Amplifier; Tx: Transmitting antenna; Rx: Receiving antenna; LNA:
Low Noise Amplifier; MIXER: Mixer; ADC: Analog Digital Converter; DSP: Digital Signal Processing.

3. Methods
3.1. New Motion Model

Figure 2 shows the structure of the chest and diaphragm. When you inhale, the chest
and diaphragm expand outward. When you exhale, the chest and diaphragm contract
inward. The motion of the chest can be expressed as:

x1(t) = ar sin(2π frt) + ah sin(2π fht) + nt(t) (5)

where ar is the thoracic amplitude due to respiration, fr is the respiration rate, ah is the
thoracic amplitude due to heartbeat, fh is the heart rate, and nt(t) is the noise signal; nt(t)
contains the RBM signal. The motion of the abdomen can be expressed as:

x2(t) = aa sin(2π frt) + na(t) (6)

where aa is the abdominal amplitude due to respiration, and na(t) is the noise signal; na(t)
contains the RBM signal.
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Assume that the initial distance from the radar to the chest and abdomen are d1 and
d2, respectively. The chest and abdomen belong to the far field targets. After introducing
the multi-receiving antenna model, Formula (4) can be rewritten as:

RIF(mTs + nTf , l) =
2

∑
k=1

exp
{

j
[

2π
2Bdk
cTC

nTf +
4π[dk + xk(mTs)]

λ
+

2π(l − 1)d sin θk
λ

]}
(7)

where l represents the index number of receiving antennas, d is the distance between
adjacent receiving antennas, and θ1 and θ2 are the respective azimuth angles from the chest
and from the abdomen to the radar.

3.2. Acquisition of Vital Signs

This paper, to obtain the distance-Doppler-angle dimension data, performed fast time
dimension FFT, slow time dimension FFT and angle calculation on RIF(mTs + nTf , l). The
Doppler dimensional effective spectral lines were calculated according to the rules of
respiration and heartbeat. The formula for calculating the lower and upper spectral lines
can be expressed as:

p1 =

{
min

(
4MTaar

tr−maxλ
,

4MTaaa

tr−maxλ

)}
(8)

p2 =

{
max

(
4MTaar

tr−minλ
,

4MTaaa

tr−minλ

)}
(9)

where M is the number of chirps, Ta is the time interval, tr−max is the maximum respiratory
cycle, and tr−min is the minimum respiratory cycle. The energy of the Doppler slices was
accumulated between the Doppler dimensions [p1–p2]; the energy value of each point can
be expressed as:

E(r, a) =
p2

∑
p=p1

Mr,p,a(r, p, a) (10)

where Mr,p,a is distance, Doppler slice, and angle dimension data. Finally, the data after
energy accumulation was used for distance and angle dimension CFAR detection.

3.3. Elimination of the RBM Signal

Figure 3 shows the block diagram of the RBM signal elimination. A polynomial fitting
algorithm was used to fit the RBM signal from xi(n), denoted x̂i(n). Assuming that the
tap-weight vector of the digital filter is wi(n− 1), then the estimation error vector can be
expressed as:

ei(n) = xi(n)− ŷi(n) = xi(n)− wi(n− 1)T x̂i(n) (11)

where T denotes transposition. The error-weighted sum of the squares of ei(n) can be
expressed as:

si(n) =
n

∑
k=1

σn−k|ei(n)|2 (12)

where σ is the forgetting factor. At this point, the tap-weight vector can be expressed as:

wi(n) = wi(n− 1) + R−1
i (n)x̂i(n)ei(n) (13)

where R−1
i (n) is a non-fixed step factor. When the value of si(n) is minimum, the cycle will

end and the estimation error vector ei(n) is output.
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Figure 3. Block diagram of the RBM signal elimination: xi(n) is the motion signal of the human body;
RLS: recursive least squares; x1(n) is the motion signal of the chest; x2(n) is the motion signal of
the abdomen.

3.4. Elimination of Respiratory Harmonics

Figure 4 shows the block diagram of respiratory harmonics elimination. The motion
signal of the chest after removing the RBM signal is denoted by e1(n), which contains
respiratory signals, respiratory harmonics and heartbeat signals. The motion signal of
the abdomen after removing the RBM signal is denoted e2(n), which contains respiratory
signal and respiratory harmonics. The second, third and fourth harmonics of respiration are
easily confused with the heartbeat signal; therefore, e1(n) and e2(n) are decomposed into
five IMF (i.e., IMF11, IMF12, IMF13, IMF14 and IMF15) and four IMF (i.e., IMF21, IMF22,
IMF23 and IMF24), respectively. Signal components with frequencies between [0.6–2.5 Hz]
are reconstructed separately and denoted h′t,r(n) + ht,h(n) and h′a,r(n). When performing
harmonic elimination processing, h′t,r(n) + ht,h(n) and h′a,r(n)·ac are used as the original
signal and the reference signal, respectively (the adaptive filtering process based on RLS is
detailed in Section 3.3); ac is the energy weight, which can be expressed as:

ac = max
{

E
[
h′t,r(n) + ht,h(n)

]}
/max

{
E
[
h′a,r(n)

]}
(14)

where E[ ] represents the energy of each signal component; when the cycle ends, an
approximate heartbeat signal can be obtained. Using LPC [26] to extend h′t,h(n), it can be
expressed as:

ĥ′t,h(n) =
L

∑
l=1

alh′t,h(n− l) (15)

where L is the model order, and al is the prediction coefficient. Finally, analyzing the
spectrum of ĥ′t,h(n) can obtain the heart rate.
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Figure 4. Block diagram of respiratory harmonics signal elimination: e1(n) is the motion signal of the
chest after removing the RBM signal; e2(n) is the motion signal of the abdomen after removing the
RBM signal. VMD: Variational Mode Decomposition; IMF: Intrinsic mode function; AHC: adaptive
harmonics cancellation.
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4. Results and Discussion

We conducted the experimental validation using the commercial Texas Instruments
IWR1443BOOST mmWave radar sensor (Texas Instruments, Dallas, TX, USA), which can
form an FMCW radar in a MIMO system. The system parameters were: fc = 77 GHz;
B = 3.98 GHz; Tc = 52 µs; λ = 3.9 mm; N = 512; Tf = 0.07 µs; M = 256; Ts = 50 ms.
Figure 5 shows the experimental scene. During data collection, each subject sat directly in
front of the radar, typing on the keyboard with his/her left hand while moving the mouse
with his/her right hand. The subject’s left and right arms performed irregular movements,
and the subject’s chest and abdomen slowly shook back and forth, which simulated the
motion state of office workers in a real environment as far as possible. At the same time,
there was a medical finger-pressure pulse sensor YX306 (Yuwell, Suzhou, China) on the
finger, which displayed the number of heartbeats. When the value of the figure-pressure
pulse sensor was stable, the radar started to collect data and record the value displayed by
the finger-pressure pulse sensor every second (reference heart rate). As the data collected
by the radar and the numerical value recorded by the figure-pressure pulse sensor needed
to be synchronized, this may also have caused small errors. Additionally, we measured the
distance with a tape measure, and calculated the angle (expected result). In order to verify
the real-time heart rate extraction performance, we collected data for 12.8 s each time, and
implemented the method in MATLAB. To quantify the performance of the method, the
error rate and the average error rate were introduced into the performance analysis, which
can be expressed as:

error =
∣∣∣∣HRmea − HRrea

HRrea

∣∣∣∣× 100% (16)

error = (
L

∑
l=1

errorl)
/

L (17)

where HRmea is the measured heart rate, HRrea is the average heart rate recorded by the
figure-pressure pulse sensor, and L is the number of measurement groups. It should be
noted that the radar board was placed vertically, and clockwise was positive.
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Figure 6 shows a set of experimental results. The chest and abdomen belong to the
far field targets. Figure 6a shows the localization results of the chest and abdomen, the
distance and angle of which were: 21

◦
, 45.91 cm, 44

◦
and 28.69 cm. These results were

in fair agreement with the expected values. Figure 6b,c show the motion signals of the
chest and abdomen, respectively, after removing the RBM signal. As can be seen, the RBM
signal has been removed and the baseline is effectively back on the central axis. To better
demonstrate the performance of real-time heart rate extraction, the 12.8 s signal was equally
divided into four segments (i.e., segment 1, segment 2, segment 3, segment 4). Figure 6d–g
show the results of the four-segment elimination of the respiratory harmonics. As can be
seen from the figure, the motion signals of the chest and abdomen contained respiratory
harmonics of the same frequency. Observing the results, it can be seen that the respiratory
harmonics were effectively eliminated. The signal after harmonic elimination was linearly
predicted based on LPC, and the heart rates obtained by spectrum analysis were: 1.527 Hz,
1.464 Hz, 1.412 Hz and 1.465 Hz. The error rates were: 3.74%, 1.74%, 0.07% and 3.83%,
respectively. The average error rate was 2.35% and the computer calculation time was 3.01 s
(MagicBook 16 Pro).

We validated the proposed approach by conducting 15 experiments on five subjects,
differing in height (172–188 cm) and in age (26–49 years). During the experiment, each
subject sat directly in front of the radar and used his/her computer. We collected data for
12.8 s each time. Table 1 shows the results of the experimental validation. The average error
rates of the four segments were: 3.10%, 3.37%, 2.68% and 2.55%. The average error rate for
all experiments was 2.925%. At the same time, the computer running time was less than
3.01 s. This shows that the proposed method can effectively extract the real-time heart rate.

Table 1. Results of the experimental validation.

Segment 1 (3.2 s) Segment 2 (3.2 s) Segment 3 (3.2 s) Segment 4 (3.2 s)

HRmea/Hz HRrea/Hz error/% HRmea/Hz HRrea/Hz error/% HRmea/Hz HRrea/Hz error/% HRmea/Hz HRrea/Hz error/%

1 1.5124 1.5722 3.80 1.6625 1.5833 5.00 1.4808 1.5222 2.72 1.4584 1.4583 0.01

2 1.4452 1.4778 2.21 1.4461 1.4500 0.27 1.4387 1.4167 1.56 1.4293 1.4167 0.89

3 1.6998 1.6333 4.07 1.6437 1.5944 3.09 1.5625 1.5222 2.65 1.4323 1.4250 0.51

4 1.4176 1.3500 5.01 1.3715 1.3222 3.29 1.4168 1.3278 6.70 1.3697 1.3611 0.61

5 1.5276 1.4667 4.15 1.4638 1.4389 1.73 1.4123 1.4111 0.08 1.4650 1.4056 3.82

6 1.3385 1.3222 1.23 1.4446 1.3222 9.36 1.4305 1.3167 8.65 1.3753 1.3500 1.87

7 1.4252 1.4417 1.14 1.4235 1.4167 0.48 1.3939 1.4000 0.44 1.4058 1.3722 2.45

8 1.4366 1.3833 3.85 1.3347 1.3833 3.52 1.4048 1.3944 0.74 1.3410 1.3833 3.06

9 1.4153 1.4111 0.29 1.4159 1.4500 2.35 1.4047 1.3792 1.85 1.3329 1.3125 1.55

10 1.6660 1.5778 5.59 1.6342 1.5667 4.31 1.4657 1.4917 1.74 1.3995 1.4444 3.11

11 1.3705 1.4500 5.48 1.4312 1.4111 1.42 1.3589 1.3667 0.57 1.3481 1.3722 1.76

12 1.4006 1.4056 0.35 1.4104 1.4444 2.80 1.3733 1.3889 1.28 1.4198 1.3400 5.96

13 1.4215 1.4667 3.08 1.4167 1.4500 2.30 1.3647 1.3889 1.74 1.3864 1.3667 1.44

14 1.3649 1.3000 4.99 1.3854 1.3000 6.57 1.3966 1.3056 6.97 1.3611 1.2944 5.15

15 1.4124 1.3944 1.29 1.3930 1.3389 4.04 1.3668 1.3333 2.51 1.3897 1.3222 5.10
error/% 3.10 error/% 3.37 error/% 2.68 error/% 2.55
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Figure 6. Experimental results: (a) localization results of the chest and abdomen; (b) the motion signal of the chest after removing the RBM signal; (c) the motion 
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Figure 6. Experimental results: (a) localization results of the chest and abdomen; (b) the motion signal of the chest after removing the RBM signal; (c) the motion
signal of the abdomen after removing the RBM signal; (d) the result of the segment 1 elimination of respiratory harmonics; (e) the result of the segment 2 elimination
of respiratory harmonics; (f) the result of the segment 3 elimination of respiratory harmonics; (g) the result of the segment 4 elimination of respiratory harmonics.
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Table 2 lists the comparison results with other works. We set the distance between
0.28–0.70 m to simulate an office scene realistically. When detecting the real-time heart
rate, the time window length was generally required to be less than 5 s. In order to better
verify the performance of the proposed method in detecting the real-time heart rate, we set
a 3.2 s time window for detecting the heart rate. In general, the shorter the time window,
the lower the accuracy of the heart rate detection. As can be seen from the table, the biggest
advantage of the proposed method is that the required detection time is short, and accurate
heart rate detection can be performed at any time.

Table 2. Comparison of the proposed method with the other existing real-time heart rate
detection methods.

Ref. No. Detection Distance/m Acquisition Time/s Time Window Length/s error/%

[19] 0.5 75 5 5

[20] 0.5 240 15 <3

[21] Not mentioned 30 2–5 3.4

[5] Not mentioned 60 3–5 3.5

[22] 1–1.1 80–90 3, 2, 1.5 3.75, 5.58, 7.58

[23] 0.8 120 8 4.2

[24] 1 100 3 4.38

[25] <0.5 Not mentioned Not mentioned 3.65

This work 0.28–0.70 12.8 3.2 2.925

5. Conclusions

In order to improve the application of non-contact detection technology in the medical
field, this paper proposes a real-time heart rate detection method based on 77 GHz FMCW
radar. The method eliminates the RBM signal by a combination of polynomial fitting and
RLS adaptive filtering, and eliminates respiratory harmonics by a multi-detection-point
AHC. The heart rate is then obtained using an LPC-based spectral analysis algorithm.
Through experiments, it was found that the proposed method effectively eliminated the
RBM signal and respiratory harmonics, and detected the real-time heart rate of office
workers. The proposed method has great potential for the real-time heart rate detection of
key personnel, such as office workers, drivers, etc.
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