
Citation: Liu, C.; Li, L.; Zhang, Y.

Internal Resonance of the Coupling

Electromechanical Systems Based on

Josephson Junction Effects.

Micromachines 2022, 13, 1958.

https://doi.org/10.3390/mi13111958

Academic Editors: Laura Ruzziconi

and Amal Z. Hajjaj

Received: 9 October 2022

Accepted: 8 November 2022

Published: 11 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Internal Resonance of the Coupling Electromechanical Systems
Based on Josephson Junction Effects
Canchang Liu * , Lijun Li and Yirui Zhang

School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China
* Correspondence: sdutlcch@163.com

Abstract: The internal resonances of the coupling vibration among electro-dynamic modes of an
NEMS are studied for the coupling resonators connected on a Josephson junction. The methodology
adopted involves coupling a resonator connected on a Josephson junction. The mathematical model
of the coupled system is then obtained by considering the regulatory nonlinear effect of the phase
difference of that Josephson junction. The resulting dynamic differential equation is deduced by
considering the nonlinear terms of the Josephson junction and the nanobeam. The multi-scale method
is then used to obtain the 1:1:1 resonant amplitude–frequency response equation of the coupled
electromechanical system. The influence of the phase difference of the Josephson junction, magnetic
field, external excitation and other factors are analyzed based on the internal resonant amplitude of
the coupled system. The simulation results illustrate that the changes in the values of the magnetic
field, excitation amplitude and divided resistances can lead to a remarkable change in the values
of the nanobeam frequency and amplitude. The internal resonance principle is used to generate a
mutual conversion and amplification among electrical signals and mechanical signals. This research
provides a theoretical framework and a numerical approach for improving the sensitivity of magnetic
quality detection.

Keywords: coupling beam; Josephson junction; internal resonance

1. Introduction

The superconducting Josephson junction effect and Josephson junction array devices
have been widely used in the quantum voltage reference and the basic units of the inter-
national system of units in metrology. Moreover, superconducting microwave devices
provide superior performance over traditional microwave devices, which have been widely
used in mobile communication, radar and some special communication systems. By that
means, the Josephson junction devices play an increasingly important role in the field of
geophysics, astrophysics, quantum information technology, materials science, biomedicine
and many other frontier fields [1]. The Josephson effects are widely used in the generation
and reception of very high frequency signals, which are also a good candidate in the model-
ing and fabrication of very weak magnetic field sensors. This has been the subject of many
areas of research recently [2–6].

The nonlinear resonance of a coupling structure is usually accompanied by the transfer
and distribution of energy. Younis et al. studied the energy transfer phenomenon between
resonator modes, which resulted in the establishment of the frequency stabilization of
the micro electro-mechanical system (MEMS) resonator [7,8]. The coupling effect exists
among different resonant modes in the vibration structure, and the driving energy can
generate multi-steady energy transfer among these different resonant modes. The nonlin-
ear mechanism plays an important role in the energy transfer process of the mechanical
system [9], which is an important reason for the generation of modal energy concentra-
tion. Hu et al. pointed out that energy can be transferred between objects with internal
resonances and can affect the nonlinear characteristics of the structure [10]. The study
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of the chaotic behavior in Duffing systems has been widely studied during the last few
decades [11,12]. However, there are difficulties in pumping energy from the lower level to
the higher level of stiffness for this class of electromechanical systems, mainly due to the
mechanical structures representing very high values of stiffness and energy density. This
requires a stronger work mode and a longer pumping time, which restricts its applications
in the field of engineering.

The coupled micro-beam oscillators can produce resonance, and their theoretical
and experimental studies have gradually attracted the attention of many scientific re-
searchers [13–17]. Some research works aim firstly to analyze the resonance conditions
resulting from these types of oscillators along with their characteristics. Huan et al. pointed
out that the phase delay, the nonlinear coefficient and the excitation amplitude can ef-
fectively regulate the width and the position of the resonance interval of the nonlinear
oscillator. Moreover, a temperature compensation circuit was already designed to fine-
tune the synchronous resonance working interval of the resonator by using the Joule heat
effect [13]. Along similar lines, the double-mechanically coupled cantilever beam can gen-
erate a nonlinear resonance frequency multiplication effect with a low frequency excitation
and a high frequency output [14]. The superharmonic vibration of a single beam has high
amplitudes at the output, which is conducive to the improvement of the sensor sensitivity
and resolution [14,16]. Wei et al. studied the triggering conditions of the internal resonance
frequency locking, the amplitude range of that locking frequency and the influence of
coupling and excitation intensity on the amplitude range [17]. Other research works aim as
well to study the synchronous resonance of a coupled microbeam. Wei et al. also studied
the 1/121 order synchronous vibration [17], whereas Shim et al. studied the 1/7 order
synchronous vibration [18]. The results illustrate that the resonance interval decreases with
the increase in the frequency ratio. Note that, for higher order beam synchronizations, reso-
nances are more difficult to perform. Indeed, the above studies found that the frequency
band range of a nonlinear resonance is narrow. The narrower frequency band of the highest
order resonance brings challenges in terms of controlling the synchronous tuning of the
coupling structure in question.

The coupling resonance of MEMS has become one of the hot topics in research.
The nonlinear coupling and energy transfers between multiple modes in micro/nano-
mechanical resonators were studied on intermodal coupling, internal resonance and syn-
chronization [19–23]. Multimode nonlinear coupling was achieved by (1:2) internal reso-
nance and parametric excitation with efficient coherent energy transfer [20]. The influence
of residual stress on the modal characteristics of MEMS resonator array was analyzed with
the laser Doppler method [21]. Asadi et al. investigated experimentally and analytically the
1:2 and 2:1 internal resonance in a clamped–clamped beam resonator to provide insights
into the detailed mechanism of internal resonance [22]. A theoretical model was developed
to depict the scale effect on the intermodal coupling in nanomechanical resonators based
on the nonlocal theory of elasticity [23]. A size-dependent electrostatic model for cantilever
micro-actuated beams was investigated considering the microstructure and surface energy
effects [24]. The generalized differential quadrature method was employed to investi-
gate the static and dynamic pull-in instability of nano-switches with small width/height
ratios [25]. The strain gradient continuum theory was employed to investigate the size
dependent pull-in instability of beam-type nano-electromechanical systems [26].

The Josephson junction is a suitable choice among many other mechanical devices.
This has been the subject of intensive research recently [27–31]. Moreover, there are multiple
applications for Josephson junctions in various fields such as engineering, health and
communication. Koudafokê et al. studied the influence of a Josephson junction on the
dynamic modes of the micro-beam oscillator [27]. They also modeled and analyzed the
electro dynamic modes of a self-sustaining active sensor with Josephson junctions [28].
Zhang et al. proposed a Josephson junction-based feasible neuron to estimate the effect of
the magnetic field. Along similar lines, a magnetic flux-controlled memristor connected
in parallel with an ideal Josephson junction was used to percept the induction currents
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induced by the magnetic field [2,3]. The Josephson effects are widely used for the generation
and the reception of very high frequency signals. In addition, the dynamics of three and
four non-identical Josephson junctions connected in series and coupled with an RLC dipole
were investigated [30]. Yamapi et al. studied the noise effect of a biorhythmic Josephson
junction coupled to a resonator. They have found that the stability analysis of the Josephson
junction coupled to a resonator shows a striking change in the biorhythmic region. The
coupled oscillators with nonlinearity of sinus similar to Josephson junctions were also
discussed in the context of designing chaotic generators in [32].

The measurement of magnetic fields has become a hot topic in the field of engineering
technology. The external magnetic field can affect the performances of electromechanical
nano-bridges sensors and switches [33]. The dynamic electromagnetic instability of nano-
sensors immersed in an external magnetic flux was simulated [34]. The fundamental
equations of motion of a doubly clamped CNT-based nano-sensor were calculated with
regard to the nonlocal elasticity by using Hamilton’s principle and the Euler–Bernoulli
beam model [35].

Inspired by this rich literature, the aim of this paper is then proposed to model and
generate the dynamic modes of an active sensor whose frequencies satisfy the internal
resonance conditions and whose oscillation frequencies are controlled by a Josephson
junction. The aim of this work is then to study the nonlinear dynamical behavior of the
nanobeam coupled to a Josephson junction, which can show the possibilities of control
of the frequencies and amplitudes of vibrations of the nanobeam in order to make more
dynamic and effective these nanomachines in their fields of use. The dynamic and electrical
oscillation modes of a NEMS are obtained by coupling a Josephson junction with a resonator.
By that means, the study of the internal resonances of the coupling electromechanical
vibration is conducted in order to find the influence relations on the phase difference of
the Josephson junction along with the magnetic field, the external excitation and other
factors on the nonlinear behavior of the coupled system. This paper provides a magnetic
field strength detection method, which provides a high sensitivity and a fast on-line test
method. This methodological approach can be applied to magnetic field detection in
medicine, geology, mining and mechanical fields, which is beneficial for the improvement
of sensitivity detection.

2. Model of Coupling System

The NEMS (Nano Electro-Mechanical System) that we propose to study is presented
in Figure 1. This NEMS is obtained by coupling resonators at a Josephson junction [1]. The
set of two resonators mounted in series and coupled to a Josephson junction consist of a
mechanical resonator and an electric resonator. All the parameters related to the nano-beam
will be calculated based on the formulas well enumerated in [1,36].
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Figure 1. Schematic circuit of NEMS with Josephson junction. 
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Figure 1. Schematic circuit of NEMS with Josephson junction.
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According to Kirchhoff’s laws and the differential equation of the dynamics of the
nanobeams (Euler Bernoulli model), we have [1,37]

I0 cos ωt = ij + ic (1)

ug = up + uL0 + uC0 (2)

where, I0 is amplitude of the excitation current. ω is the frequency of the excitation. t is
time. ij is instantaneous current through the Josephson junction. ic is instantaneous current
through electrical and mechanical resonators. ug, up, uL0 and uC0 are the instantaneous
electrical voltage across the generator, instantaneous electrical voltage across the beam,
instantaneous electrical voltage across C0 and L0, respectively.

Considering Equations (1) and (2), phase difference of the Josephson junction and
coupled circuit equations can be written as

..
ϕ(t) +

1
RjCj

.
ϕ(t) +

2eICj

}Cj
sin ϕ +

2e
}Cj

.
q− 4eBA

}CjµL

∫ L

0

∂w(z, t)
∂t

dz =
2eI0

}Cj
cos(ωt) (3)

..
q +

(r0 + rp)

L0

.
q +

1
L0C0

q− 2BA
µL

∫ L

0

∂2w
∂t2 dz− }

2eL0

.
ϕ− 2BAr0

µLL0

∫ L

0

∂w
∂t

dz = 0 (4)

where,
.
() = ∂/∂t,

..
() = ∂2/∂t2. ϕ is phase difference of the Josephson junction (PDJJ). q is

the circuit power. Rj is resistance of the Josephson junction. B is the magnetic field vector. Cj
is self-capacitance of the Josephson junction. ICj is critical current of the Josephson junction.
e is elementary electric charge. C0 is capacitance. µ is resistivity of the micro-beam. z
is vertical coordinate of the nanobeam. r0 is electrical resistance of the divided resistor.
rp is electrical resistance of the micro-beam. L, d and h are length wide and high of the
micro-beam. h̄ is Planck constant. w is the deflection of the beam. L0 is coil inductance. A is
the cross sectional area of the nanobeam.

Considering the geometric nonlinearity of nanobeam, the dynamic differential equa-
tion of nanobeam can be written as

EIy
∂4w
∂z4 + ρA

∂2w
∂t2 + λ

∂w
∂t
− EA

2L

∫ L

0
(

∂w
∂z

)2dx
∂2w
∂z2 = F(t) (5)

where, E, ρ and λ are Young module, volume density, resistivity and damping coefficient
of the micro-beam. Iy is the moment of inertia of the nanobeam. F is the excitation for
the nanobeam.

Both the ends of nanobeam are fixed-fixed boundary, which are w(0, t) = w(L, t) = 0,
w′(0, t) = w′(L, t) = 0. The deflection of beam w(z, t) can be written as

w(z, t) =
∞

∑
n=1

Zn(z)un(t) (6)

where, n is the vibration mode. un(t) is the generalized coordinate of the amplitude. Zn(z)
is the set of eigenfunctions of the equation.

The deflection of the nanobeam can be written as

Zn =

√
2
3
[1− cos(

2πz
L

)] (7)

Taking the phase difference of the Josephson junction as a small quantity, the sine
expansion of this variable is expanded as a Taylor series. Substituting the deflection of
the nanobeam into Equations (3)–(5), the modal orthogonalization transformation can
be obtained

..
ϕ + α1

.
ϕ + ω2

ϕ ϕ−
ω2

ϕ

6
ϕ3 + α2

.
q− α3

.
u = f0 cos(ωt), (8)
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..
q + (β1 − γ3β3)

.
q + ω2

qq− β2
.
ϕ + (γ1β3 − β4)

.
u + γ2β3u = 0 (9)

..
u + γ1

.
u + ω2

uu− γ3
.
q + γ4u3 = 0 (10)

where,α1 = 1
RjCj

, ω2
ϕ =

2eICj
}Cj

, α2 = 2e
}Cj

, α3 =
√

2
3

4eBA
}Cjµ

, f0 = 2eI0
}Cj

, β1 =
(r0+rp)

L0
, ω2

q = 1
L0C0

,

β2 = }
2eL0

, β3 =
√

2
3

2BA
µ , β4 =

√
2
3

2BAr0
µL0

, γ1 =
(

λ
ρA + 4B2L

3µρ

)
, ω2

u =
√

16EIπ4

3ρAL4 , γ3 =
√

3
2

BL
ρA ,

γ4 = 8Eπ4

9ρL4 .

The dimensionless form of the above equation is given by τ = ω0t, ϕ = ϕ
ϕ0

, U = u
u0

and Q = q
Q0

. We get

..
ϕ + j1

.
ϕ + ω2

1 ϕ− j2 ϕ3 + j3
.

Q− j4
.

U = f cos(Ωt) (11)

..
Q + k1

.
Q + ω2

2Q− k3
.
ϕ + k4

.
U + k5U = 0 (12)

..
U + l1

.
U + ω2

3U − l3
.

Q + l4U3 = 0 (13)

where,j1 = α1
ω0

, ω2
1 =

ω2
ϕ

ω2
0

, j2 =
ω2

ϕ ϕ2
0

6ω2
0

j3 = α2Q0
ω0 ϕ0

, j4 = α3u0
ω0 ϕ0

, f = f0
ω2

0 ϕ0
, Ω = ω

ω0
, k1 = (β1−γ3β3)

ω0
,

ω2 =
(

ωq
ω0

)2
, k3 = β2 ϕ0

ω0Q0
, k4 = (γ1β3−β4)u0

ω0Q0
, k5 = ω2

u β3u0
ω2

0Q0
, ω3 = ω2

u
ω2

0
, l1 = γ1

ω0
, l3 = γ3Q0

ω0u0
,

l4 =
γ4u2

0
ω2

0
.

Letting ϕ = v− ϕe, Q = q−Qe, U = u−Ue and introducing a small parameter, the
dynamics equations near the equilibrium point can be written as

..
v + ω2

1v + ε(j1
.
v− j2v3 + j3

.
q− j4

.
u + j5v2 + j6v + j7) = ε f cos(Ωt) (14)

..
q + ω2

2q + ε(k1
.
q− k3

.
ϕ + k4

.
u + k5u− k6) = 0 (15)

..
u + ω2

3u + ε(l1
.
u− l3

.
q + l4u3 − l5u2 + l6u− l7) = 0 (16)

where, j5 = 3j2 ϕe, j6 = −3j2 ϕ2
e , j7 = j2 ϕ3

e−ω2
1 ϕe, k6 = ω2

2Qe + k5Ue, l5 = 3l4Ue, l6 = 3l4U2
e ,

l7 = ω2
3Ue + l4U3

e . ε is a small parameter.

3. Internal Resonance of Coupling Electromechanical System

The approximate solutions of Equations (13)–(15) are expressed in the following forms

v(t, ε) = v0(T0, T1) + εv1(T0, T1) + · · · (17)

q(t, ε) = q0(T0, T1) + εq1(T0, T1) + · · · (18)

u(t, ε) = u0(T0, T1) + εu1(T0, T1) + · · · (19)

where, ε is a small parameter, T0 = t represents a fast changing time scale. T1 = εt
represents a slow changing time scale.

The frequency of the adjusting external excitation and the natural frequency of the
beam form a primary resonance relationship. The natural frequency of the beam and the
natural frequency of the circuit system form a 1:1:1 internal resonance relationship [28].
The internal resonance frequencies satisfy the following forms

Ω = ω1 + εσ1, ω2 = ω1 + εσ2, ω3 = ω1 + εσ3 (20)

where, σ1, σ2 and σ3 are excitation frequency tuning parameters.
Substituting Equation (14) and its derivative with respect to time into Equation (15)

and equalizing the same power of the left and right sides of Equations (14)–(16) lead to

O
(

ε0
)

: D2
0v0 + ω2

1v0 = 0 (21)
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O
(

ε0
)

: D2
0q0 + ω2

2q0 = 0 (22)

O
(

ε0
)

: D2
0u0 + ω2

3u0 = 0 (23)

O
(
ε1) : D2

0v1 + ω2
1v1 = −2D0D1v0 − j1D0v0 + j2v3

0
−j3D0q0 + j4D0u0 − j5v2

0 − j6v0 − j7 + f cos Ωt
(24)

O
(
ε1) : D2

0q1 + ω2
2q1 = −2D0D1q0

−k1D0q0 + k3D0 ϕ0 − k4D0u0 − k5u0 + k6
(25)

O
(
ε1) : D2

0u1 + ω2
3u1 = −2D0D1u0

−l1D0u0 + l3D0q0 − l4u3
0 + l5u2

0 − l6u0 + l7
(26)

The approximate solution of Equation (21) is expressed as follows

v0 = A1(T1)eiω1T0 + A1(T1)e−iω1T0 (27)

The approximate solution of Equation (22) is expressed as follows

q0 = A2(T1)eiω2T0 + A2(T1)e−iω2T0 (28)

The approximate solution of Equation (23) is expressed as follows

u0 = A3(T1)eiω3T0 + A3(T1)e−iω3T0 (29)

In the formula, Ai is the complex conjugate of Ai (i = 1, 2, 3), and the polar coordinate
form Ai is

A1 =
1
2

a1eiθ1 , A2 =
1
2

a2eiθ2 , A3 =
1
2

a3eiθ3 (30)

In order to avoid the occurrence of the secular term, substituting Equations (27)–(30)
into Equations (19)–(21) yields the following forms

−2iω1D1 A1 − j1iω1 A1 + 3j2 A2
1 A1 − j3iω2 A2ejσ2T0

+j4iω3 A3ejσ3T0 − j6 A1 +
1
2 f ejσ1T1 = 0

(31)

−2iω2D1 A2eiω2T0 − k1iω2 A2eiω2T0 + k3iω1 A1eiω1T0

−k4iω3 A3eiω3T0 − k5 A3eiω3T0 = 0
(32)

−2iω3D1 A3eiω3T0 − l1iω3 A3eiω3T0 + l3iω2 A2eiω2T0

−3l4 A2
3 A3eiω3T0 − l6 A3eiω3T0 = 0

(33)

Substituting Equations (27) and (30) into Equation (31) and separating the real and
imaginary parts yield into

D1a1 = − j1
2

a1 −
j3ω2

2ω1
a2 cos φ1 +

j4ω3

2ω1
a3 cos φ2 +

f
2ω1

sin φ (34)

a1D1φ = (σ1 +
j6

2ω1
)a1 −

3j2
8ω1

a3
1 −

j3ω2

2ω1
a2 sin φ1 +

j4ω3

2ω1
a3 sin φ2 −

f
2ω1

cos φ (35)

where, φ1 = θ2 − θ1 + σ2T1, φ2 = θ3 − θ1 + σ3T1, φ = σ1T1 − θ1.

− j1
2

a1 −
j3ω2

2ω1
a2 cos φ1 +

j4ω3

2ω1
a3 cos φ2 +

f
2ω1

sin φ = 0 (36)

(σ1 +
j6

2ω1
)a1 −

3j2
8ω1

a3
1 −

j3ω2

2ω1
a2 sin φ1 +

j4ω3

2ω1
a3 sin φ2 −

f
2ω1

cos φ = 0 (37)
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Eliminating the phase ϕ, the amplitude–frequency equation of the phase difference
variable of the superconductor is

( j1
2 a1 +

j3ω2a2 cos φ1−j4ω3a3 cos φ2
2ω1

)
2
+ [(σ1 +

j6
2ω1

)a1

− 3j2
8ω1

a3
1 −

j3ω2a2 sin φ1−j4ω3a3 sin φ2
2ω1

]2 = ( f
2ω1

)
2 (38)

For the electric resonator system, as the electromotive force generated by the nanobeam
is weak, and the effect of the magnetic field term can be ignored, so it can be obtained as

(
j1
2

a1 +
j3ω2a2 cos φ1

2ω1
)

2
+ [(σ1 +

j6
2ω1

)a1 −
3j2
8ω1

a3
1 −

j3ω2a2 sin φ1

2ω1
]
2
= (

f
2ω1

)
2

(39)

By substituting Equations (28) and (30) into Equation (32), the real and imaginary
parts are separated into

D1a2 = − k1

2
a2 +

k3ω1

2ω2
a1 cos φ3 −

k4ω3 + k5

2ω2
a3 cos φ4 (40)

a2D1φ4 = −σ23a2 +
k3ω1

2ω2
a1 sin φ3 −

k4ω3 + k5

2ω2
a3 sin φ4 (41)

where, φ3 = (σ1 − σ2)T1 − θ2, φ4 = (σ3 − σ2)T1 − θ2, σ23 = (σ2 − σ3). Let φ3 = φ4, we get

D1a2 = − k1

2
a2 +

k3ω1a1 + (k4ω3 + k5)a3

2ω2
cos φ3 (42)

a2D1φ4 = σ23a2 +
k3ω1a1 + (k4ω3 + k5)a3

2ω2
sin φ3 (43)

By canceling the phase ϕ3, the amplitude–frequency equation of the phase difference
variable of the superconductor is

(
k1

2
)

2
a2

2 + σ2
23a2

2 = [
k3ω1a1 − (k4ω3 + k5)a3

2ω2
]
2

(44)

As the effect of the magnetic field term is ignored, it can be obtained as

(
k1

2
)

2
a2

2 + σ2
23a2

2 = [
k3ω1a1

2ω2
]
2

(45)

Let the tuning parameters σ3 − σ2 = 0, and the peak amplitude can be obtained as

a2max =
k3ω1a1

k1ω2
(46)

Equation (39) can be simplified as

( j1
2 a1 +

j3k3 cos φ1
2k1

a1)
2
+ [(σ1 +

j6
2ω1

)a1−
3j2
8ω1

a3
1 −

j3k3 sin φ1
2k1

a1]
2 = ( f

2ω1
)

2 (47)

By substituting Equations (29) and (30) into Equation (33), the real and imaginary
parts are separated into

D1a3 = − l1
2

a3 +
l3ω2

2ω3
a2 cos φ5 (48)

a3D1φ5 = σ23a3 +
l6

2ω3
a3 +

3l4
8ω3

a3
3 −

l3ω2

2ω3
a2 cos φ5 (49)
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where, φ5 = (σ2 − σ3)T1 − θ3.

D1a3 = − l1
2

a3 +
l3ω2

2ω3
a2 cos φ5 (50)

a3D1φ5 = σ23a3 +
l6

2ω3
a3 +

3l4
8ω3

a3
3 −

l3ω2

2ω3
a2 cos φ5 (51)

Eliminating the phase ϕ5, the amplitude–frequency equation of the phase difference
variable of the superconductor is

(
l1
2
)

2
a2

3 + [σ23 +
l6

2ω3
+

3l4
8ω3

a2
3]

2
a2

3 = (
l3ω2

2ω3
a2)

2
(52)

Equation (52) can be simplified as

(
l1
2
)

2
a2

3 + [σ23 +
l6

2ω3
+

3l4
8ω3

a2
3]

2
a2

3 = (
l3k3ω1

2k1ω3
a1)

2
(53)

The vibration of the nanobeam is driven by changing the Jefferson excitation signal to
produce a changing circuit signal.

4. Equilibrium Points

Equations (14)–(16) for the non-autonomous system are written as [1]

.
x1 =

.
v = x2 (54)

.
x2 = −j1x2 −ω2

1x1 + j2x3
1 − j3y2 + j4z2 − j5x2

1 − j6x1 − j7 + f cos(Ωt) (55)
.
y1 =

.
q = y2 (56)

.
y2 = −k1y2 −ω2

2y1 + k3x2 − k4z2 − k5z1 + k6 (57)
.
z1 =

.
u = z2 (58)

.
z2 = −l1z2 −ω2

3z1 + l3y2 − l4z3
1 + l5z2

1 − l6z1 + l7 = 0 (59)

The fixed points of the MEMS are found and we note that the origin point is a fixed
point and that the dynamic system possesses an infinite number of equilibrium points
given by [28]

E·(x·1,
.
x·1, y·2,

.
y·2, z·3,

.
z·3) = E(0, 0, 0.2π/ϕ0, 0, 0, 0) (60)

5. Example Calculation and Analysis

The relevant parameters used in the analysis and calculation of the examples are
shown in the Table 1.

Figure 2 illustrates the amplitude–frequency diagram of the phase difference of the
Josephson junction for different excitation amplitudes. It can be seen from the figure that
the phase difference of the Josephson junction deviates to the right with the increase in the
value of the excitation amplitudes, which means that the nonlinear term of the Josephson
junction phase difference equation has a nonlinear hardening property. The solid line of
the curve is the stable region of the nonlinear internal resonance, while the dash part of the
curve is the unstable part. A similar representation is used for the next graph stable and
unstable curves. Therefore, the phase difference solution of the Josephson junction appears
to have a multi-valued phenomenon with the increase in the excitation amplitude, and
there exists an unstable vibration interval in the solution. The amplitude of the solution
of the phase difference of the Josephson junction equation increases with a corresponding
increase in the value of the excitation amplitude.
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Table 1. List of symbols and corresponding definitions.

Symbols Corresponding Definitions Value Units

Rj Resistance of the Josephson junction 1 Ω

B The magnetic field vector 6 T

Cj Self-capacitance of the Josephson junction 3 × 10−9 F

C0 Capacitance 9.7 × 10−12 F

I0 Amplitude of the excitation current 1 × 10−10 A

E Young module of the micro-beam material 50 × 109 Pa

ρ Volume density of the micro-beam material 2330 kg/m3

λ Damping coefficient of the micro-beam 0.02 -

r0 Resistance of the divided resistor 1 × 10−5 Ω

rp Electrical resistance of the micro-beam 1 × 10−5 Ω

L Length of the micro-beam 5 × 10−7 m

d wide of the micro-beam 5 × 10−8 m

h high of the micro-beam 5 × 10−8 m

µ Resistivity of the micro-beam material 0.25

h̄ Planck constant 6.63 × 10−34

L0 Electrical inductance 1 × 10−10 H
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Figure 2. Internal resonant amplitude-frequency diagram of PDJJ for different excitation amplitudes.

The amplitude–frequency diagram of the circuit charge for different phase difference
of the Josephson junction is shown as Figure 3. The amplitude of the circuit charge of
the Josephson junction first increases and then decreases with the increase in the tuning
parameters. There is no multi-valued phenomenon in the solution of the charge equation,
and the solution of the equation has a stable vibration interval.

Figure 4 illustrates the amplitude frequency diagram of the amplitude variation of the
nanobeam for different PDJJ when the magnetic field intensity is 3 T. It can be seen from
the figure that the amplitude of the nanobeam deviates to the left with the increase in the
value of amplitudes of PDJJ, which means that the nonlinear equation of the nanobeam has
a nonlinear softening property. The amplitude solution of the nanobeam appears to have
multi-valued phenomenon with the increase in the amplitudes of PDJJ. The amplitude of
the solution of the equation increases with the increasing of amplitudes of PDJJ.
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Figure 4. Diagram of internal resonant amplitude-frequency of nanobeam for different amplitudes
of PDJJ.

Figure 5 illustrates the amplitude frequency diagram of the variation of the amplitude
of the nanobeam for different magnetic field when the excitation amplitude is 0.1. The
amplitude of the nanobeam deviates to the left with the increase in the value of magnetic
field. The deflection of the nanobeam under the magnetic force increases with the increase
in the value of the magnetic field amplitude, and the nonlinear effect of the equation is
enhanced for the couple system. The resonant vibration amplitude of the nanometer beam
is sensitive to the change of magnetic field intensity, which can measure the change of
magnetic field intensity. In addition, the online test method can measure the strength of the
magnetic field quickly.

Figure 6 illustrates the amplitude frequency diagram of the variation of the divided
resistances when the magnetic field intensity is 6 T and the excitation amplitude is 0.1. It
can be seen from the figure that the amplitude of the nanobeam deviates to the left with
the decrease of divided resistances. The amplitude of the nanobeam appears multi-valued
phenomenon with the decrease in the value of divided resistances. Therefore, there exists
an unstable vibration interval of the solution.
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In this part, we will illustrate some electrodynamic behaviors of the system using phase
spaces by using the fourth order Runge-Kutta integration algorithm to solve numerically
Equations (54)–(59) with the zero initial conditions. Some conclusions of internal resonances
for the electrodynamic system will be drawn when the excitation frequency of the generator
is equal to that of the nano-beam. An analysis of the effect of the magnetic field on the
system is made and some other interesting applications are listed. Figure 7 illustrates
the time domain and frequency domain diagram for PDJJ for the magnetic field 6 T.
The phenomenon of multi-periodic solution appears in the amplitude PDJJ, which also
verifies the conclusion that the existence of nonlinear term leads to the emergence of
multi-periodic solution.

Figure 8 is the time domain and frequency domain diagram for the circuit charge of
different phase difference of the Josephson junction for the magnetic field 6 T. Figure 9
is the time domain and frequency domain diagram for the amplitude of the nanobeam
for the magnetic field 6 T. Figures 7 and 8 illustrate that the coupling and nonlinearity of
the system can lead to the multiperiodic solutions. The presence of the internal resonance
produces a phenomenon similar to beat vibration, indicating the flow of energy between
systems. In fact, the internal resonance dynamic modal analysis is one of the goals of this
study. We are particularly interested in analyzing and comparing the oscillatory properties
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of each type of the nanobeam coupled to the Josephson junctions and electrical resonators.
Through this numerical study, we found that the unique electromagnetic characteristics
of the Josephson junction have a great influence on the vibration characteristics of the
nanobeam, especially the frequency and amplitude of oscillation.
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Figure 8. Time domain and frequency domain diagram for circuit charge of different phase difference
of the Josephson junction for the magnetic field 6 T.

Figure 10 illustrates the time domain and frequency domain diagram for amplitude of
the nanobeam for the magnetic field 6 and 3 T. We evaluated the influence of the magnetic
field intensity on the amplitudes, frequencies and modes of electromechanical oscillations.
The amplitude of the nanobeam increases with the increase in the value of the magnetic
field intensity, which is same as the conclusions as shown in Figure 5.
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The red line is the amplitude of the nanobeam for the magnetic field 3 T. The blue line is the amplitude
of the nanobeam for the magnetic field 6 T.

The involvement of the Josephson junction can estimate the effect of an external
magnetic field on the coupling channel by changing the phase error in the Josephson
junction. In addition, the junction current is regulated in an effective way. The coupled
circuit can estimate the effect of electromagnetic induction and external magnetic field when
the Josephson junction is incorporated into the circuits. The physical field effect is described
by the channel current in these electronic components. The slight changes in these physical
parameters are sensitive to detection in the condition of internal resonance. As a result, the
physical fields can be detected by the channel current across the Josephson junction. Given
the importance of the parameter of magnetic field intensity on the nanobeam vibration, we
hope to bring an idea for the improvement of the amplitudes and frequencies of oscillation
of the nanobeam. This idea can be also used in the field of the measurement of the magnetic
field intensity.
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6. Conclusions

The phase difference of the Josephson junction equation shows a nonlinear hardening
property with the mathematical treatment method based on a Taylor series expansion. In
addition, the peak amplitude of the phase difference of the Josephson junction shows an
increase with the corresponding increase in the value of the excitation current. Furthermore,
the circuit charge equation of the Josephson junction has a weak non-linearity, while its
solution illustrates a linear behavior. Moreover, the charge solution does not show a multi-
valued phenomenon, and the solution of the equation has a stable vibration interval. On
the other hand, the circuit of charge increases with the corresponding increase in the value
of the divider resistance. The nanobeam in the coupling of the electromechanical system
has also a nonlinear softening property, and the solution of the equation appears to have
a multi-valued phenomenon. Meanwhile, there is an unstable vibration interval in the
solution of the nonlinear vibration of the nanobeam. Lastly, the nonlinear equation of
the nanobeam dynamics becomes stronger with the increase in the value of the driving
magnetic field intensity, whereas the vibration amplitude of the nanobeam decreases
with the increase in the values of the voltage divider resistance. In the next research, the
Josephson junction could allow the nanobeam to be used as an electro-mechanical nano
actuator with a piezoelectric, photoelectric or photo-voltaic effect, and the generator can be
replaced with a piezoelectric, photoelectric or photovoltaic material. This paper studies the
phenomenon of internal resonances between coupled system of nanobeam and Josephson
junctions. The change of magnetic field can be reflected by the change of amplitude of the
nanobeam, and the magnetic field size can be measured by this principle. Therefore, the
measurement of the internal amplitude can indirectly measure the magnetic field strength.
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