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Abstract: This study investigates the operational characteristics of AlGaN/GaN high-electron-
mobility transistors (HEMTs) by applying a slant-gate structure and drain-side extended field-plate
(FP) for improved breakdown voltage. Prior to the analysis of slant-gate-based HEMT, simulation
parameters were extracted from the measured data of fabricated basic T-gate HEMTs to secure the
reliability of the results. We suggest three different types of slant-gate structures that connect the basic
T-gate electrode boundary to the 1st and 2nd SiN passivation layers obliquely. To consider both the
breakdown voltage and frequency characteristics, the DC and RF characteristics of various slant-gate
structures including the self-heating effect were analyzed by TCAD simulation. We then applied a
drain-side extended FP to further increase the breakdown voltage. The maximum breakdown voltage
was achieved at the FP length of 0.4 µm. Finally, we conclude that the slant-gate structures can
improve breakdown voltage by up to 66% without compromising the frequency characteristics of the
HEMT. When the drain-side FP is applied to a slant-gate structure, the breakdown voltage is further
improved by up to 108%, but the frequency characteristics deteriorate. Therefore, AlGaN/GaN
HEMTs with an optimized slant-gate-based structure can ultimately be a promising candidate for
high-power and high-frequency applications.

Keywords: GaN; high-electron-mobility transistor; slant-gate; field-plate; breakdown voltage

1. Introduction

AlGaN/GaN high-electron-mobility transistors (HEMTs) are widely used as power
devices due to their high off-state breakdown voltage (VBD) that is a result of their remark-
able material and electronic properties, such as wide energy bandgap (3.3 eV) and high
critical electric field (3.39 MV/cm) [1–3]. These characteristics make GaN more practicable
for high-voltage and high-temperature applications than silicon or gallium arsenide [4].
Additionally, HEMTs based on the AlGaN/GaN heterostructure show superb performances
owing to the two-dimensional electron gas (2-DEG) via tensile and compressive stresses in
the channel region that exhibits high electron mobility and high electron density, which
have important roles in the output current and power amplification. Nevertheless, to fully
cater to the market requirements, GaN-based HEMTs need to be capable of both high
voltage and high-frequency applications [5–7]. Therefore, we designed slant-gate structures
with high VBD and high cut-off frequency (fT) simultaneously, which were evaluated by
Johnson’s figure of merit (JFOM) (=fT ×VBD) [8–10].

Generally, the field-plate (FP) technology has the effect of increasing the VBD by
providing an extra metal edge, which leads to the redistribution and reduction in the electric
fields concentrated at the drain-side gate electrode edge over the 2-DEG channel [11–13].
However, FP structures create additional parasitic capacitances, which can degrade RF
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characteristics in high-frequency operation and can also reduce power efficiency over the
operating frequency range [14–16]. But the optimum slant-gate structure in this study
can improve VBD without degrading the frequency characteristics of the HEMT. Also, we
confirmed that the VBD of the slant gate structure is greatly improved with only a slight
geometrical change in the existing basic T-gate electrode structure, with same gate length
(Lgate) of 0.18 µm and same epitaxial layer configurations.

The optimal gate structure was determined by analyzing the trade-off between VBD
and frequency characteristics of the various slant-gate-based structures. First, the simulated
data were matched with measured drain current-gate voltage (IDS-VGS) transfer character-
istics and frequency characteristics data of fabricated basic T-gate AlGaN/GaN HEMTs
for verification. Afterward, we applied three different slant-gate structures to improve
not only the VBD while maintaining or improving other DC characteristics but also the RF
performances. To further increase the VBD, we then applied a drain-side extended FP to the
most effective of the three slant-gate structures. The VBD was simulated while increasing
the drain-side FP length up to 1.0 µm to determine the optimum FP length that results in
the highest VBD. The AlGaN/GaN HEMTs with slant-gate-based structure which has high
VBD and high fT are expected to be used not only in 5G wireless network applications such
as high-power amplifiers, but also in military systems such as radar transmitters.

2. Materials and Methods

In order to verify the simulation parameters, HEMT with basic T-gate structure was
fabricated. Figure 1 shows scanning electron microscope (SEM) images of a fabricated
AlGaN/GaN HEMT. Figure 1a shows a top view of a four-finger transistor device consisting
of the gate, source, and drain contact pads with a unit gate width of 100 µm and source-
to-drain distance (LSource–Drain) of 5 µm. Figure 1b is a magnified cross-sectional view
of the red dotted region in Figure 1a, showing the conventional T-gate structure. As
shown in Figure 1b, a T-shaped gate was formed by combining a narrow gate-foot length
(LGate–Foot) of 0.18 µm, a gate-middle length (LGate–Middle) of 0.34 µm, and a gate-head
length (LGate–Head) of 0.8 µm.
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Figure 1. Scanning electron microscope (SEM) images of the fabricated AlGaN/GaN high-electron-
mobility transistor (HEMT) structure: (a) top view of a four-finger transistor device and red dashed 
frame shows the representative one-finger gate electrode; (b) cross-sectional view of a basic T-gate 
electrode. 

Figure 1. Scanning electron microscope (SEM) images of the fabricated AlGaN/GaN high-electron-
mobility transistor (HEMT) structure: (a) top view of a four-finger transistor device and red dashed
frame shows the representative one-finger gate electrode; (b) cross-sectional view of a basic T-gate
electrode.

The unit device structure of a one-finger transistor was used in the modeling, and
a cross-sectional schematic of a basic T-gate structure is shown in Figure 2. And Table 1
provides detailed geometrical parameter information of the T-gate structure used in the
simulation. The AlGaN/GaN heterostructure HEMTs were grown on a 4-inch SiC substrate
using metal-organic chemical vapor deposition. The epitaxial layers were consisted of a
nucleation layer, a 2 µm thick Fe-doped GaN buffer layer, and a 25 nm thick Al0.25Ga0.75N
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barrier layer. Ti/Al/Ni/Au ohmic metallization was formed by rapid thermal annealing
at 900 ◦C for 30 s, and device isolation was carried out by P+ ion implantation. Then, a
50-nm-thick SiN layer was deposited using plasma-enhanced chemical vapor deposition
(PECVD). The first metal interconnections with the ohmic contacts were formed by the
evaporation of Ti and Au metal after etching the SiN layer. The T-shaped gate process was
performed by using two-step electron-beam lithography. First, the LGate–Foot of 0.18 µm
was formed by electron-beam exposure in poly methyl methacrylate (PMMA) resist and
the SiN layer underneath the gate pattern was etched by reactive ion etching (RIE). Then, a
T-shaped gate pattern with the LGate–Middle of 0.34 µm was directly written by additional
electron-beam exposure after coating with PMMA/Co-polymer/PMMA triple layers. The
gate recess was formed using inductively coupled plasma (ICP) etching with BCl3/Cl2
gas and the two-step procedure to form the recessed gate was optimized by using ICP
dry etching with a BCl3/Cl2 gas mixture and a wet cleaning process consisting of oxygen
plasma treatment and diluted-HCl etching. For gate metallization, an Au/Ni metal stack
with the respective thickness of 500/30 nm was deposited by electron-beam evaporation
and lifted off. A SiN PECVD film was deposited for device passivation and etched using
RIE for the source and drain pad contacts. A more detailed description of the process can
be found in the previous paper [17].
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Figure 2. A cross-sectional schematic of the basic T-gate AlGaN/GaN HEMT used in the modeling.
The S, D, and G stand for source, drain, and gate electrode, respectively, and the numbers are
explained in the Table 1.

Table 1. Geometrical parameters of the basic T-gate structure and epitaxial layer used in the simulation.

Parameter Value (µm)

1© LGate−Source 1.05
2© LGate−Head 0.8
3© LGate−Middle 0.34
4© LGate−Foot 0.18
5© LGate−Height 0.6
6© LGate−Drain 3.15
7© LSidewall 0.2

1st passivation 0.05
2nd passivation 0.25
AlGaN barrier 0.025
GaN buffer 2
Nucleation layer 0.2

For the simulation study, it is important to apply the appropriate electrical and thermal
parameters for each material and simulation model to ensure data reliability and consistency
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with actual device operating characteristics. Figure 3 shows the acceptor trap density and
conduction energy band of the AlGaN/GaN interface. Acceptor trap doping by Fe (Iron)
was exploited in the GaN buffer layer to prevent the electron punch-through effect and
minimize the substrate leakage current to improve VBD [18]. As shown in Figure 3a, we
used the Gaussian acceptor doping profile to consider diffusion as actual doping, in which
the doping concentration gradually decreased with the peak trap concentration of 1018/cm3;
thus, the acceptor doping concentration at the AlGaN/GaN interface was set to 6.376 ×
1016/cm3 [19].
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Figure 3. (a) Acceptor trap doping profile for the GaN buffer layer as a function of depth;
(b) conduction energy band level of the simulated device as a function of depth.

Figure 3b shows the conduction energy band level of the simulated device as a function
of depth. When a heterojunction between AlGaN and GaN is formed, the conduction band
and valence band throughout the material must bend to form a continuous Fermi level.
The conduction band offset of AlGaN and GaN layer transfers electrons from AlGaN to
GaN layer, from states with higher to lower energy level using band bending. The electrons
that are transferred to GaN layer are confined to a small region in the channel layer near the
hetero interface, which is called the 2-DEG, as shown in Figure 3b. It was confirmed that a
2-DEG potential well was formed at a depth of 0.0125 µm below the AlGaN/GaN interface
with a 2-DEG charge carrier density of 4.35 × 1012/cm2. All the electrical and thermal
parameters of AlGaN and GaN used for the simulation are summarized in Table 2 [20,21].

Table 2. Material parameters used for simulation at a temperature of 300 K (SRH: Shockley–Read–Hall).

Parameters Units GaN AlGaN

Bandgap energy eV 3.39 3.88
Electron affinity eV 4.2 2.3

Relative permittivity - 9.5 9.38
Low field electron mobility cm2/V-s 1500 300
High field electron mobility - GANSAT Mobility Model
Electron saturation velocity cm/s 1.9 × 107 1.12 × 107

Hole saturation velocity cm/s 1.9 × 107 1.00 × 106

Electron SRH lifetime s 1.0 × 10–8 1.0 × 10–8

Hole SRH lifetime s 1.0 × 10–8 1.0 ×10–8

TC.CONST W/cm-K 1.3 0.4
TC.NPOW - 0.43 0

The heat generated in the device due to the self-heating effect (SHE) causes phonon
scattering, which reduces electron mobility and degrades device performance. Therefore,
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it is essential to consider the SHE for an accurate simulation of the HEMT operational
characteristics [22,23]. To include the SHE for AlGaN/GaN HEMTs in the simulation, we
applied the lattice heat flow equation as:

C
∂TL

∂t
= ∇(κ∇TL) + H (1)

where C is the heat capacitance per unit volume, κ is the thermal conductivity, TL is the local
lattice temperature, and H is a heat generation term [24–26]. When the carrier transport is
handled by the drift-diffusion approximation, H in Equation (1) has the simplified form:

H =

(→
Jn +

→
Jp

)
·
→
E (2)

where
→
Jn and

→
Jp are the electron and hole current densities, respectively, and E → is the

electric field [27].
The thermal conductivity model which is vital for the calculation of the SHE in the

simulation can be expressed as:

κ(T) = (TC.CONST)/(TL/300)TC.NPOW (3)

where TC.CONST is a thermal conductivity constant for each material at 300 K, and
TC.NPOW is a thermal conductivity factor which is an experimental value for each material
in the thermal conductivity model. With Equation (3), the thermal conductivity of a material
according to the lattice temperature can be calculated by setting the appropriate TC.CONST
and TC.NPOW parameters. The applied thermal conductivity constants of GaN and AlGaN
are also shown in Table 2 [28,29].

Because RF characteristics can deteriorate with the application of the FP, we analyzed
the frequency characteristics according to the parasitic capacitances. Figure 4 shows
the small-signal equivalent circuit of HEMTs which can be divided into intrinsic part
(emphasized by a dashed frame) and extrinsic part. The extracted values for all extrinsic
and intrinsic small-signal parameters of simulated basic T-gate structure are listed in
Table 3 [30]. Current gain and unilateral power gain were used to determine the fT and the
maximum oscillation frequency (fmax), respectively. Equations (4) and (5) explain the fT
and fmax, according to Figure 4:

fT =
gm

2π
(

Cgs + Cgd

) ≈ gm
2πCgs

(4)

fmax =
fT

2
√

πfTCgd
(
Rs + Rg + Rgs + 2πLs

)
+ Gds

(
Rs + Rg + Rgs + πfTLs

) ≈
√

fT

8πRgCgd
(5)

where Cgs and Cgd represent the gate-to-source capacitance and gate-to-drain capaci-
tance, respectively. These parasitic capacitances dominate the decrease in fT according
to Equation (4); thus, Cgs and Cgd must be reduced to obtain higher fT. The Rs, Rg, Rgs,
and Gds are the source resistance, gate resistance, gate-to-source resistance, and output
conductance, respectively [31]. As denoted in Equation (5), decreasing the denominator
components, such as Rg and Cgd, increases the fmax.
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Table 3. Extracted small-signal parameters for extrinsic elements at drain voltage (VDS) = 0 V and
gate voltage (VGS) = 0 V and intrinsic elements at VDS = 20 V and VGS = −3.2 V.

Extrinsic Elements Intrinsic Elements

Lg = 2.58698 pH Rg = 0.1299 Ω Cgd = 13.9719 fF Rgd = 266.914 Ω
Ld = 2.26741 pH Rd = 16.082 Ω Cgs = 58.5212 fF Rgs = 0.00019 Ω
Ls = 2.05828 pH Rs = 9.8563 Ω Cds = 4.22561 fF Rds = 725.569 Ω

In addition, the Fermi–Dirac distribution, Auger recombination, Shockley–Read–Hall
recombination, and polarization models were applied to the simulation to calculate the
basic operating characteristics of the device. The Selberherr model was used to calculate
the temperature dependent impact ionization phenomenon caused by the electric field in
the channel layer concentrated under the gate electrode during device operation [32].

3. Results
3.1. Matching of Simulated Data with Measured Data of a Basic T-Gate HEMT

To confirm the reliability of the simulation, the drain current-gate voltage (IDS-VGS)
transfer and small-signal characteristics between the simulated and measured data of the
fabricated basic T-gate AlGaN/GaN HEMT were matched. Figure 5a shows the overlay of
the measured and simulated values for the IDS-VGS transfer characteristics of a basic T-gate
HEMT at a drain voltage of 10 V. The simulated threshold voltage (Vth) was −4.4 V, which
matches well with the measured value of−4.5 V. The measured and simulated values of the
maximum transconductance (Gm) were 275.00 mS/mm and 273.68 mS/mm, respectively,
at a drain bias of 10 V. In addition, the drain current at a gate voltage of 0 V (Idss) was
837.65 mA/mm in the measured data and 838.24 mA/mm in the simulated data, both of
which are similar. A dip of the simulated drain current around gate voltage of −2.5 V was
found since two different electron mobility models were used in simulation as described
in Table 2 and it is not known exactly which criterion divides the low field and the high
field. There could be a mismatch in drain current at the turning point of these two mobility
models. Consequently, the reliability of the simulation study was confirmed by matching
the simulated data with the measured data, the maximum error rate of which was only
2.2%. The DC measurements of the fabricated device were conducted using a HP4142B
Modular DC Source/Monitor probe station and a Cascade Microtech Summit 12000 probe
station.



Micromachines 2022, 13, 1957 7 of 16Micromachines 2022, 13, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 5. (a) Overlay of measured and simulated drain current-gate voltage (Iୈୗ-Vୋୗ) transfer char-
acteristics of a basic T-gate HEMT; (b) measured and simulated frequency characteristics of a basic 
T-gate HEMT at drain voltage (Vୈୗ) = 20 V, gate voltage (Vୋୗ) = –3.2 V. 

The measured and simulated frequency characteristics of the basic T-gate structure 
were shown together in Figure 5b. The f୘ was defined at the point where the –20 dB/dec-
ade slope extension line of the current gain (Hଶଵ) becomes 0 dB. The point where the ex-
tension line of the –20 dB/decade slope at the intersection point of the maximum sta-
ble/available gain (MSG/MAG) becomes 0 dB was defined as f୫ୟ୶ [33]. The bias voltage 
applied for the simulation of RF characteristics is Vୈୗ = 20 V, Vୋୗ = –3.2 V, where f୘ and f୫ୟ୶ are the highest among the measured values of a basic T-gate structure. Simulated f୘ 
and f୫ୟ୶ were 45.02 GHz and 108.68 GHz, and measured f୘ and f୫ୟ୶ were 47.58 GHz 
and 102.2 GHz, respectively, for the basic T-gate structure. The simulated f୘ and f୫ୟ୶ 
values were well matched to measured values of those with the error rate within 6.3%. 
The small-signal RF performance of the fabricated device was measured from 0.5 GHz to 
50 GHz with a PNA-X N5245A network analyzer. 

3.2. Comparative Analysis of a Basic T-Gate and Slant A, Slant B, and Slant C Structures 
To increase the V୆ୈ, three different slant-gate structures were suggested, as shown 

in Figure 6. Each slant-gate structure was slantly connected to the gate electrode edge 
point where the 1st and 2nd SiN passivation layers meet, respectively. Figure 6 shows a 
standard basic T-gate, slant A, slant B, and slant C structures with maintaining an Lୋୟ୲ୣି୊୭୭୲ of 0.18 μm as in Table 1. The slope of the slanted gate was 32° for slant A (α), 
75° for slant B (β), and 44° for slant C (γ). The lengths of the slant region of slant A, slant 
B, and slant C are 0.26 μm, 0.31 μm, and 0.43 μm, respectively. 

 
Figure 6. Schematics of various gate electrode structures for the AlGaN/GaN HEMT: A basic T-gate 
structure, slant A structure, slant B structure, and slant C structure. 

  

Figure 5. (a) Overlay of measured and simulated drain current-gate voltage (IDS-VGS) transfer
characteristics of a basic T-gate HEMT; (b) measured and simulated frequency characteristics of a
basic T-gate HEMT at drain voltage (VDS) = 20 V, gate voltage (VGS) = −3.2 V.

The measured and simulated frequency characteristics of the basic T-gate structure
were shown together in Figure 5b. The fT was defined at the point where the−20 dB/decade
slope extension line of the current gain (H21) becomes 0 dB. The point where the extension
line of the −20 dB/decade slope at the intersection point of the maximum stable/available
gain (MSG/MAG) becomes 0 dB was defined as fmax [33]. The bias voltage applied for
the simulation of RF characteristics is VDS = 20 V, VGS = −3.2 V, where fT and fmax are the
highest among the measured values of a basic T-gate structure. Simulated fT and fmax were
45.02 GHz and 108.68 GHz, and measured fT and fmax were 47.58 GHz and 102.2 GHz,
respectively, for the basic T-gate structure. The simulated fT and fmax values were well
matched to measured values of those with the error rate within 6.3%. The small-signal RF
performance of the fabricated device was measured from 0.5 GHz to 50 GHz with a PNA-X
N5245A network analyzer.

3.2. Comparative Analysis of a Basic T-Gate and Slant A, Slant B, and Slant C Structures

To increase the VBD, three different slant-gate structures were suggested, as shown in
Figure 6. Each slant-gate structure was slantly connected to the gate electrode edge point
where the 1st and 2nd SiN passivation layers meet, respectively. Figure 6 shows a standard
basic T-gate, slant A, slant B, and slant C structures with maintaining an LGate−Foot of
0.18 µm as in Table 1. The slope of the slanted gate was 32◦ for slant A (α), 75◦ for slant B
(β), and 44◦ for slant C (γ). The lengths of the slant region of slant A, slant B, and slant C
are 0.26 µm, 0.31 µm, and 0.43 µm, respectively.
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3.2.1. Simulation of DC Characteristics

We first simulated the DC characteristics of the slant-gate structure HEMTs and
compared them to those of the basic T-gate HEMT. As shown in Figure 7a,b, the IDS-VGS
transfer characteristics, such as the threshold voltage, drain current, and transconductance,
at a drain voltage of 10 V and 20 V were compared. In Figure 7a, it can be observed that the
slant gate structures except slant A improve both the drain current and transconductance
than basic T-gate structure, with constant Vth. In Figure 7b, the SHE becomes severe at
the drain voltage of 20 V, which shows more pronounced drain current reduction and
transconductance decrease than those at the drain voltage of 10 V. With the increase in
drain voltage, more heat is generated, which decreases the mobility of the electrons due
to phonon scattering. By comparing Figure 7a,b, the thermal operational degradation
confirms that a higher electric field between the drain and source results in less drain
current because of the severe SHE. Figure 7c shows the drain current–drain voltage (IDS-
VDS) output characteristics and decrease in drain current for all structures is observed as the
drain voltage increases due to the SHE. When the higher drain voltage was applied, higher
electric fields generated more heat, resulting in phonon scattering that reduced electron
mobility and drain current density [34]. Moreover, you can also find the slight increase
in the drain current at a certain high drain voltage, which is called the kink effect. The
kink effect is caused by the carrier trapping process, occurred by the hot electrons which
contribute to the trap formation in the AlGaN barrier or GaN buffer layer. The hot electrons
in the 2-DEG channel generated under high field acceleration of high drain bias under
gate electrode with sufficient energy could be injected into the adjacent AlGaN barrier or
GaN buffer layer, where they can be captured by donor-like traps [35–37]. In addition, the
proposed slant C structure reduces the device on-resistance (RON) by 9%, compared to the
basic T-gate structure [38–40].

Figure 8a shows the electric field in the 2-DEG channel layer which shows a reduced
peak electric field in slant C structure by 5%, compared to the basic T-gate structure. In
Figure 8b, the three different slant gate structures demonstrated an increased VBD compared
with the basic T-gate structure. Since impact ionization cause a sufficient increase in the
drain current due to the generation of electron-hole pairs in the channel region from a
high electric field close to the gate, dispersing the electric field is effective in improving the
breakdown voltage. The VBD was extracted at the point where the drain leakage current
exceeds 1 mA/mm, when the gate pinch-off voltage of −7 V was applied to ensure the
off-state of the device. Those were 167.44, 196.32, 187.93, and 278.13 V for the T-gate, slant
A, slant B, and slant C structures, respectively. The VBD of the slant C structure increased
the most to 278.13 V, which is 66% higher than the VBD of 167.44 V of the basic T-gate
structure.
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Figure 8. (a) Electric field across the two-dimensional electron gas channel layer between source and
drain at VGS = −7 V, VDS = 50 V; (b) breakdown characteristics at a pinch-off of VGS = −7 V.

3.2.2. Simulation of RF Characteristics

In Figure 9, the Cgs and Cgd of each gate structure are compared at a drain voltage
of 20 V and a gate voltage of −3.2 V. The structural change in the gate electrode affected
both Cgs and Cgd. Because Lgs were shorter than Lgd, as described in Table 2, Cgs were
generally larger than Cgd. As shown in Figure 9a, the slant C structure showed the largest
Cgs because the distance between the drain and gate electrode is relatively shorter. The Cgd
of the T-gate, slant A, slant B, and slant C structures were almost the same at approximately
130 fF/mm, as shown in Figure 9b. Compared with Cgs, only a small change in Cgd was
observed for various gate structures. For the same reason that Lgd was longer than Lgs, Cgd
was less affected by the changes in the gate structure [41].
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Figure 9. Capacitance characteristics as a function of frequency for different gate structures:
(a) gate-to-source capacitance; (b) gate-to-drain capacitance.

Figure 10 shows the simulated fT and fmax of three slant-gate structures. The simulated
fT values of the slant A, slant B, and slant C structures at a drain voltage of 20 V and a gate
voltage of −3.2 V were 46.97, 48.17, and 46.23 GHz, respectively. According to Equation (4),
the fT of the slant-gate structures may have been influenced by the gm and Cgs. The fmax
values of the slant A, slant B, and slant C structures were 119.16, 110.82, and 115.72 GHz,
respectively. The fmax of the slant-gate structures increased due to the increase in fT and the
decrease in Rg according to Equation (5). When the slant-gate structures are applied, the fT
is increased by up to 7% and the fmax is increased by up to 10%, compared to those for the
basic T-gate structure, respectively. Through these results, it was confirmed that there was
no degradation in the RF characteristics when the slant-gate structures were applied.

3.3. Comparative Analysis of the Operating Characteristics for the Slant C Structure with an
Extended FP

Since the slant C structure demonstrated the highest VBD among the slant-gate struc-
tures, we applied a drain-side extended FP to the slant C structure and further improved
the VBD. Figure 11 shows the schematic of the slant C with a drain-side extended FP applied
gate structure. Except for the FP length, which was increased from 0.2 µm to 1.0 µm, all
the remaining structural variables of the device were fixed. We analyzed five different FP
lengths, i.e., 0.2, 0.4, 0.6, 0.8, and 1.0 µm, to determine the optimum FP length.
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Figure 11. Schematic of the slant C with a drain-side extended field-plate (FP) applied gate structure.

3.3.1. Simulation of DC Characteristics

To determine the optimum FP length, the DC characteristics of the device, such as IDS-
VGS transfer, IDS-VDS output, and the breakdown voltage characteristics were simulated and
compared by increasing the FP length up to 1.0 µm. The Vth, Gm, and Idss did not change
significantly with the extension of FP as shown in Figure 12a. As shown in Figure 12b,
the thermal operational degradation due to the SHE was detected in the IDS-VDS output
characteristics, but there were no significant differences in the overall curve trends and
RON according to the FP length. Similarly, a kink effect as shown in Figure 7c was also
found near a drain voltage of 20 V or 25 V.

Figure 12c presents the VBD, showing the drain current as a function of drain voltage
for different FP lengths. The VBD is strongly related to the FP length because the extension of
the gate edge point redistributes the peak electric field in the channel layer. All breakdown
voltages were much larger than that of the slant C structure without the FP. The slant C
structure with an extended FP length of 0.4 µm showed the maximum VBD of 349.87 V,
which is an increase of 26% compared with that of the slant C structure without the FP. A
further increase in the FP length beyond 0.6 µm decreases the VBD because the electric field
that increases as it approaches the drain electrode has more influence than the electric field
dispersed by the FP. From the above results, it can be observed that when FP was applied
to the slant C structure, other DC characteristics were almost maintained, but only the VBD
was affected.
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3.3.2. Simulation of RF Characteristics

As expected, the sum of the parasitic capacitances increased with extending FP length,
which affects the operational frequencies of the AlGaN/GaN HEMT. Figure 13 shows the
capacitance variations for different FP lengths. Since Lgs is shorter than Lgd, Cgs shows
generally larger values than Cgd due to the fact that the capacitance is inversely proportional
to the distance between the electrodes. Both Cgs and Cgd tend to increase with respect to FP
length as shown in Figure 13a,b. Drain-side extended FP not only affects Cgd but also Cgs.
The reason is that in addition to the FP’s own extrinsic capacitance, there is also intrinsic
capacitance beneath the gate edges (gate-to-source and gate-to-drain) due to the depletion
region. The FP regulates the depletion region by uniform distribution of the electric field
beneath both gate edges. The reduction in the electric field results in suppression and
extension of the channel depletion region, hence raising the capacitance [42].

Figure 14 shows the simulated fT and fmax values for different FP lengths at the drain
voltage of 20 V and gate voltage of −3.2 V. The fT and fmax of the slant C structure, without
any FP, were 46.23 GHz and 115.72 GHz, respectively. The fT was simulated to be 43.57,
40.98, 39.01, 35.92, and 33.99 GHz for the slant C structure with FP lengths of 0.2, 0.4, 0.6,
0.8, and 1.0 µm, respectively. The fT showed a tendency to decrease by approximately 5–9%
as the FP length was extended by 0.2-µm-steps. As Cgs and Cgd raise as FP length increases,
fT decreases by Equation (4). The fmax also decreased as the FP length was extended. The
fmax was simulated to be 107.09, 88.42, 83.40, 72.74, and 64.23 GHz for the slant C structure
with FP lengths of 0.2, 0.4, 0.6, 0.8, and 1.0 µm, respectively. Comparing the fmax of the slant
C structure based on the different FP lengths, it can be observed that the fmax decreases by
6% to 21% with the 0.2 µm step increase in FP. The fmax tends to decrease as fT decreases
and Cgd increases according to Equation (5). This finding shows the dependence of a
noticeable reduction in fT and fmax values with respect to FP length. Consequently, we
can conclude that FP length of 0.4 µm is superior in performances with different lengths
of FP, considering both the high breakdown voltage and high frequency characteristics
simultaneously.
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4. Discussion

In this paper, we conducted simulations of the DC and RF characteristics for various
slant-gate-based structures and studied the trade-off between VBD and fT. Among the slant
A, slant B, and slant C structures, the slant C structure demonstrated the highest VBD. It
is meaningful that the breakdown voltage can be greatly improved without a significant
change in the fabrication process of conventional T-gate structure. In addition, it was found
that fT and fmax were enhanced together with the improvement of the VBD by employing the
slant-gate structures. Thereafter, with varying lengths of drain-side extended FP applied,
the slant C structure with a FP length of 0.4 µm demonstrated the highest VBD. However,
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the increase in FP length was inevitably accompanied by the decrease in fT and fmax due to
parasitic capacitances.

Table 4 presents a summary of the DC and RF characteristics for the optimum two
different slant-gate-based structures of the AlGaN/GaN HEMT. Compared with the basic
T-gate structure, it was shown that the VBD, fT, and fmax are all increased when the slant C
structure is applied. The VBD of the slant C structure with 0.4-µm FP appears higher, but
the fT and fmax are decreased. The slant C structure increases the VBD by 66%, and the slant
C structure with a 0.4 µm FP increases the VBD by 109% compared with the basic T-gate
structure. Another noteworthy advantage of the proposed slant-gate-based structures is
that they increase the VBD while maintaining the Vth of the HEMT.

Table 4. Summary of typical DC and RF characteristics for three different gate structures.

Parameters Unit Basic T-Gate Slant C Slant C with
0.4-µm FP

DC characteristics

Threshold voltage V −4.4 −4.4 −4.4
Maximum transconductance mS/mm 273.68 311.04 320.06
Drain current (@VGS = 0 V) mA/mm 838.24 885.98 920.00
On-resistance Ω-mm 3.06 2.78 2.79
Breakdown voltage V 167.44 278.13 349.88

RF characteristics
Cut-off frequency GHz 45.02 46.22 40.98
Maximum oscillation
frequency GHz 108.68 115.72 88.42

Johnson’s figure of merit THz-V 7.54 12.86 14.34

5. Conclusions

In this study, we investigated the operational characteristics of AlGaN/GaN HEMTs
with slant-gate-based structures using TCAD simulation. Unlike other structures that only
improve the breakdown characteristic, the trade-off between the breakdown voltage and
frequency characteristics of suggested slant-gate-based structures were analyzed. The
simulation parameters were obtained from fabricated basic T-gate AlGaN/GaN HEMT
devices to verify the reliability of the simulation results. We proposed two optimum slant-
gate-based structures for AlGaN/GaN HEMTs with enhanced operational characteristics;
the slant C structure can be an excellent choice to obtain both high breakdown voltage
and high frequency characteristics. For high-power applications, the slant C structure
with a 0.4-µm-long FP can greatly improve the breakdown voltage even if the frequency
characteristics are degraded. The simulated results clearly show that the suggested slant-
gate-based HEMTs are superior in performance over conventional T-gate HEMTs for future
high-power and high-frequency applications.
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