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Abstract: The influence of the substrate temperature on the structural, surface morphological, optical
and nanomechanical properties of NiO films deposited on glass substrates using radio-frequency
magnetron sputtering was examined by X-ray diffraction (XRD), atomic force microscopy (AFM),
UV-Visible spectroscopy and nanoindentation, respectively. The results indicate that the substrate
temperature exhibits significant influences on both the grain texturing orientation and surface
morphology of the films. Namely, the dominant crystallographic orientation of the films switches
from (111) to (200) accompanied by progressively roughening of the surface when the substrate
temperature is increased from 300 ◦C to 500 ◦C. The average transmittance of the NiO films was also
found to vary in the range of 60–85% in the visible wavelength region, depending on the substrate
temperature and wavelength. In addition, the optical band gap calculated from the Tauc plot showed
an increasing trend from 3.18 eV to 3.56 eV with increasing substrate temperature. Both the hardness
and Young’s modulus of NiO films were obtained by means of the nanoindentation continuous
contact stiffness measurements mode. Moreover, the contact angle between the water droplet and
film surface also indicated an intimate correlation between the surface energy, hence the wettability,
of the film and substrate temperature.

Keywords: NiO thin film; XRD; AFM; UV-Vis; contact angle; nanoindentation

1. Introduction

NiO is a semi-transparent, wide band gap, p-type semiconducting material with a
cubic sodium chloride (B1) crystal structure [1,2]. The properties of NiO nanocrystals
are strongly dependent on the microstructures; therefore, the synthesis of various NiO
nanostructures (such as porous nano/microspheres, nanosheets, and nanofibers) has at-
tracted much attention [3–8]. In addition to possessing excellent chemical stability, NiO
also exhibits intriguing optical, electrical, and magnetic properties. As a result, it has
been regarded as a prominent candidate for an array of applications in areas including
solar cells [2,9], gas sensors [10], thin film transistors [11], electrochromic devices [12–14],
and antiferromagnetic spintronics [15–17]. However, while most of the research has been
concentrated on the abovementioned characteristics of NiO, research on the mechanical
properties of these prominent materials have been remaining largely ignored. Since the
contact loading during processing or packaging can significantly degrade the characteris-
tics of the material and hence the performance of devices fabricated based on it, thus, in
order to fully harvest the promised potential applications, a comprehensive understanding
of the mechanical characteristics of NiO films is indispensable, especially when applica-
tions involving structural/functional elements used in nano-devices are considered. In
this respect, nanoindentation is one of the most versatile tools being ubiquitously used
for characterizing the nanomechanical properties of a wide variety of film/substrate and
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nanostructured systems due to its high efficiency and practice convenience. For instance,
the nanomechanical properties (such as the hardness and elastic modulus) [18–22] as well
as the elastic/plastic deformation and fracture behaviors [23–26] of the indented materials
can be readily extracted by merely analyzing the load-displacement curves obtained from
the indentation measurement.

Another important property relevant to the future practical applications of NiO-
based devices is the characteristic of the film surface. Reducing surface energy can hinder
the adhesion of airborne contaminants such that they can be effectively removed by the
rolling drops due to the hydrophobic characteristic [27], which, in turn, would significantly
improve the environmental durability of NiO films. For instance, the hydrophobic surface
has been considered one of the critical factors in many applications of optoelectronic
devices [28,29]. Consequently, a comprehensive understanding of how the processing
parameters correlate to the hydrophobicity or hydrophilicity nature of the resultant surface
is also of great importance in designing the functional devices.

To date, several methods for preparing NiO films have been developed, including
electron beam evaporation [30], sol-gel method [31], pulsed laser deposition [32,33], and
radio-frequency (RF) magnetron sputtering [34,35], etc. Among them, the RF magnetron
sputtering [34] has been standing out as the most widely used method for fabricating thin
film functional oxides owing to its advantages of high deposition rates, low cost, easy
control, and high efficiency for growing films with good quality.

In the present study, the effects of substrate temperature on the structural, surface
morphological and optical properties of NiO films deposited on glass substrates by RF
magnetron sputtering method are investigated using X-ray diffraction (XRD), atomic force
microscopy (AFM), scanning electron microscopy (SEM) and UV-Visible spectroscopy
respectively. In addition, the nanomechanical properties of NiO films are measured by
nanoindentation using the continuous contact stiffness (CSM) mode. The obtained nanome-
chanical properties of NiO films are correlated with the crystalline structure, grain size, and
surface morphology of the resultant films, which are strongly dependent on the substrate
temperature during deposition. Furthermore, the wettability characteristics manifested by
the contact angle between the water droplets and film surface indicated that the surface
energy of the resultant NiO films is more relevant to the surface roughness than the intrinsic
surface energy anisotropy associated with the crystallographic orientations.

2. Materials and Methods

The NiO films were prepared by RF magnetron sputtering with a sintered NiO tar-
get [36] placed on the sputtering gun (Angstrom Sciences, PA, USA) as the source material.
The glass substrates (Corning, Eagle XG, NY, USA) used were kept at various temperatures
of 300 ◦C, 400 ◦C, and 500 ◦C. The base pressure of the sputtering chamber was kept at
5 × 10–6 torr. During deposition, pure Ar gas was used as the sputtering ion with a working
pressure of about 4 mtorr and the input power was 100 W. The deposition time was about
20 min and the thickness of all NiO thin films obtained was about 260 nm.

The crystal structure of the obtained NiO films was analyzed by X-ray diffraction
(XRD) using the Panalytical X’Pert diffractometer(Panalytical, Almelo, The Netherlands)
with the CuKα radiation (λ = 0.154 nm). The surface morphology and the root-mean-
square of the average surface roughness (Rrms) of NiO films were examined using atomic
force microscopy (AFM, Topometrix-Accures-II, Topometrix Corporation, Santa Clara, CA,
USA). Scanning electron microscopy (SEM, Hitachi S-4700, Hitachi, Tokyo, Japan) was
used to analyze the cross-sectional structures of the NiO films. The optical properties
were characterized with transmittance measurement by using a Shimadzu UV-2450 UV-Vis
spectrophotometer(Shimadzu, Kyoto, Japan). Moreover, the surface wettability of NiO
films was monitored using a Ramehart Model 200 contact angle goniometer (ramé-hart
instrument, NJ, USA) with deionized water as the testing liquid under ambient conditions.

The nanoindentation measurements were conducted at room temperature using the
MTS NanoXP® system (MTS Corporation, Nano Instruments Innovation Center, Oak
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Ridge, TN, USA). The resolutions of the loading force and displacement are 50 nN and
0.1 nm, respectively. A Berkovich diamond indenter was pressed into NiO films up to
an indentation depth of 50 nm. The strain rate varied from 0.01 to 1 s–1. An additional
harmonic modulation, with the amplitude and frequency being set at 2 nm and 45 Hz,
respectively, was simultaneously applied on the indenter to perform the CSM technique [37].
During the measurement process, the indenter was held at the peak load for 10 s before
it was completely withdrawn from the specimen to prevent the influence of creep from
interpreting unloading characteristics, which were of essential importance in computing
the mechanical properties of NiO films. Before each test, it is important to wait until the
thermal drift is reduced to below 0.01 nm/s. In order to assure statistical significance, at
least 20 indents were conducted on each sample with every indent being separated more
than 10 µm apart.

By definition, the hardness is simply described by dividing the applied indentation
load by the projected contact area, H = P/Ac; where Ac is the projected contact area
between the indenter and the film surface at a maximum indentation load, P. For an ideal
Berkovich indenter, the projected area is given by Ac = 24.56h2

c (hc is the contact depth).
The elastic modulus of the sample can be calculated based on the Sneddon expression:
S = 2βEr

√
Ac/
√

π [38]. Here, S is the contact stiffness of the material and β is a geometric
constant, with β = 1.00 for the Berkovich indenter, respectively. The reduced elastic modulus,
Er, can be calculated by the following expression:

Er =

(
1− v2

f

E f
+

1− v2
i

Ei

)−1

(1)

Here, vi, vf and Ei, Ef are the Poisson’s ratio and Young’s modulus of the indenter
and the film being measured, respectively. For the diamond indenter tip, Ei = 1141 GPa,
vi = 0.07, and vf = 0.25 [36] were assumed for all NiO films.

3. Results and Discussion

Figure 1 shows the typical XRD patterns of NiO films deposited at various substrate
temperatures of 300 ◦C (pattern (a)), 400 ◦C (pattern (b)), and 500 ◦C (pattern (c)), respec-
tively. Several features are immediately noticed in Figure 1. Firstly, all the diffraction
peaks appearing in each pattern can be readily indexed with the primary crystallographic
orientations of the B1-structured (i.e., NaCl structure) NiO (JCPDS 47-1049) [39]. This
is indicative that the films are not only have high crystalline quality but also essentially
single-phased. Secondly, although the films appear more or less equiaxial, it is noted that
substrate temperature does have noticeable influences on the detailed microstructure of
films. For instance, the intensity of the (111) diffraction peak for the substrate temperature
of 300 ◦C (pattern (a)) is relatively larger than that of the (200) peak, while the tendency is
reversed for films grown at the substrate temperatures of 400 ◦C (patterns (b)) and 500 ◦C
(patterns (c)), respectively. The orientation switching might due to the fact that the NiO(200)
surface is nonpolar with a surface energy of ~1.74 J/m2 compared to ~4.28 J/m2 for the
polar (111)-terminated surface [40]. Nevertheless, it is noted that this result is in contrast
to the tendency reported by Fasaki et al. [32] for NiO films deposited on oxidized Si sub-
strates by pulsed laser deposition, wherein higher substrate temperature appeared to favor
(111)-texturing. Moreover, it is also slightly different from the annealing-driven texturing
Cu-doped NiO films reported previously [36], wherein the mere effect of increasing the
annealing temperature from 300 to 500 ◦C appeared to be mainly on improving the film
crystallinity rather than switching the preferred texturing orientation. Thus, although
based on the surface energy argument cited above one might expect the dominance of
(200)-texturing in general, it is apparent that the resultant film texturing orientation has
been influenced by various relevant parameters in a much more complex manner. Finally,
the high crystalline quality as reflected in the sharpness of the diffraction peaks allows us
to estimate the average crystalline size and other local microstructural features. We first
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assume that all NiO films are fully relaxed, then, the average crystalline size (D) can be
estimated from the full width at half-maximum (FWHM) of a particular diffraction peak by
using the Sherrer’s equation [41]; that is, D = 0.9 λ/(β cosθ), where λ is the wavelength of
X-ray radiation (CuKα, λ = 1.5406Å), θ is the Bragg angle and β is the FWHM of the selected
diffraction peak. By using the (200) diffraction peak, the estimated average crystalline sizes
of NiO films deposited at the substrate temperatures of 300 ◦C, 400 ◦C, and 500 ◦C are
15, 19, and 24 nm, respectively. Alternatively, by taking into account the strain effect, the
Williamson–Hall analysis gives rise to the following expression [36]:

β cos θ =
0.9λ

DWH
+ 4ε sin θ (2)

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 13 
 

 

improving the film crystallinity rather than switching the preferred texturing orientation. 

Thus, although based on the surface energy argument cited above one might expect the 

dominance of (200)-texturing in general, it is apparent that the resultant film texturing 

orientation has been influenced by various relevant parameters in a much more complex 

manner. Finally, the high crystalline quality as reflected in the sharpness of the diffraction 

peaks allows us to estimate the average crystalline size and other local microstructural 

features. We first assume that all NiO films are fully relaxed, then, the average crystalline 

size (D) can be estimated from the full width at half-maximum (FWHM) of a particular 

diffraction peak by using the Sherrer’s equation [41]; that is, D = 0.9 λ / (βcosθ), where λ 

is the wavelength of X-ray radiation (CuKα, λ = 1.5406Å), θ is the Bragg angle and β is the 

FWHM of the selected diffraction peak. By using the (200) diffraction peak, the estimated 

average crystalline sizes of NiO films deposited at the substrate temperatures of 300 °C, 

400 °C, and 500 °C are 15, 19, and 24 nm, respectively. Alternatively, by taking into account 

the strain effect, the Williamson–Hall analysis gives rise to the following expression [36]: 

� cos � =
0.9�

���
+ 4� sin � (2) 

By using Equation (2) one can plot � cos � / � vs. sin � /� to obtain the magnitudes 

of DWH (the intercept) and the local micro-strain � (the slope) for the individual NiO film. 

Both D and DWH values obtained for the NiO films investigated in the present study and 

those reported in the previous report are listed in Table 1 for comparison. It is interesting 

to note that for films deposited at ambient temperature and then annealed [36] the grain 

size and associated local micro-strain, �, appeared to be smaller than those in films directly 

deposited at temperatures same as the annealing temperatures. The fact that the crystal-

line size of films deposited at 400 °C (29 nm) is about the same as that obtained by PLD 

at the same temperature (32 nm) [32] suggests that the residual kinetic energy of the 

depositing substances upon landing on the heated substrates have played a more efficient 

role in facilitating the grain growth. 

 

Figure 1. XRD patterns of NiO films deposited at various substrate temperatures of (a) 300 °C, (b) 

400 °C, and (c) 500 °C. 

Figure 1. XRD patterns of NiO films deposited at various substrate temperatures of (a) 300 ◦C,
(b) 400 ◦C, and (c) 500 ◦C.

By using Equation (2) one can plot β cos θ/ λ vs. sin θ/λ to obtain the magnitudes
of DWH (the intercept) and the local micro-strain ε (the slope) for the individual NiO film.
Both D and DWH values obtained for the NiO films investigated in the present study and
those reported in the previous report are listed in Table 1 for comparison. It is interesting
to note that for films deposited at ambient temperature and then annealed [36] the grain
size and associated local micro-strain, ε, appeared to be smaller than those in films directly
deposited at temperatures same as the annealing temperatures. The fact that the crystalline
size of films deposited at 400 ◦C (~29 nm) is about the same as that obtained by PLD at the
same temperature (~32 nm) [32] suggests that the residual kinetic energy of the depositing
substances upon landing on the heated substrates have played a more efficient role in
facilitating the grain growth.

Figure 2 displays the surface morphology examined by AFM for NiO films deposited at
various substrate temperatures, showing a rather dense and homogenous microstructural
appearance, albeit an obvious grain size difference can be immediately observed. The
surface roughness analysis revealed that the root-mean-square roughness (Rrms) were
2.97 ± 0.2, 5.87± 0.4 and 7.35± 0.5 nm for NiO films deposited at the substrate temperature
of 300 ◦C, 400 ◦C, and 500 ◦C, respectively. It is noted that the values of Rrms are substantially
larger than that of the annealed films [36] listed in Table 1, presumably due to the larger
grain sizes described above. The cross-sectional SEM images shown in Figure 2 reveal
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that the films are all with columnar structures, which might also explain the marked Rrms
increase with a larger effective grain size seen here.

Table 1. The structural and surface characteristics of the annealing-driven orientation textured and
the present substrate-temperature-induced textured NiO films.

Annealing driven orientation texturing Cu-doped NiO films [36]

Annealing temperature
(◦C)

Crystalline size (nm) and microstrain ε (%)
Rrms (nm) Contact angle (◦) Surface energy

(mJ/m2)D DWH ε

As-deposited 5.7 10.3 0.65 0.7 45.7 30.9

300 8.4 13.6 0.70 1.4 55.8 28.4

400 11.2 23.8 0.77 2.9 80.4 21.2

500 18.6 38.5 0.80 3.8 97.5 15.8

NiO films deposited at various substrate temperatures [this work]

Substrate temperature
(◦C)

Crystalline size (nm) and microstrain ε (%)
Rrms (nm) Contact angle (◦) Surface energy

(mJ/m2)D DWH ε

300 5 26 0.70 2.97 ± 0.2 100.8 14.7

400 9 29 0.91 5.87 ± 0.4 105.7 13.2

500 24 41 1.38 7.35 ± 0.5 114.5 10.6

The wettability behavior of the surface is strongly related to the surface morphology of
the sample surface [42]. Figure 3 shows the optical images of water droplets on the surface
of films deposited at the indicated substrate temperatures. The results are considered
one of the direct manifestations of substrate wettability. The contact angles (θCA) are
measured by depositing a water droplet on the surface of NiO films, and drawing a
tangent to the drop at its base. To reduce the measurement error, the data is obtained by
averaging ten measurements for each sample. The results clearly indicate that the θCA
between the water droplet and film surface increases with the film deposition temperature.
Since the θCA is a prominent parameter widely used in quantifying the surface energy
(hence the wettability) [43], it would be interesting to estimate the corresponding surface
energy of the films shown in Figure 3. By considering the dispersive force or the van der
Waals force across the interface existing between the water droplet and the solid surface

and the Fowkes–Girifalco–Good (FGG) theory [44], as γls = γs + γl − 2
√

γd
s γd

l ; where

γd
l and γd

s are denoted as the dispersive portions of the surface tension for the liquid
and solid surfaces, respectively. Combining Young’s equation [43] with the above FGG
expression, employing the nonpolar liquid deionized water (72.8 mJ/m2) as the testing
liquid, and assuming that γd

l is approximately equal to γl , the Girifalco–Good–Fowkes–
Young equation can be rewritten as: γd

s = 1
4 γl (cos θCA + 1); with γd

s being the surface
energy of films. The values of surface energy obtained are 14.7, 13.2 and 10.6 mJ/m2

for NiO films deposited at various substrate temperatures of 300 ◦C, 400 ◦C and 500 ◦C,
respectively. It is immediately noted that the obtained values of the film surface energy are
all about two orders of magnitude smaller than the intrinsic surface energy calculated by
Wolf [40], wherein the surface energy for nonpolar NiO(200) and polar NiO(111) surfaces
are 1.74 J/m2 and 4.28 J/m2, respectively. It is apparent that the surface characteristics
manifested in the present NiO films must have been dominated by some extrinsic factors.
As described above and evidenced in Table 1, higher substrate temperature tends to lead
to more equiaxed microstructure, larger grain size, and rougher film surface (i.e., larger
Rrms). The question is which of these apparent substrate temperature-related factors is more
prominent in determining the observed surface wettability? Bayati et al. [45] suggested that
a large amount of air trapped in the gap of nanoislands for rougher films surface might be
the primary reason for the increased hydrophobicity observed in films with larger surface
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roughness. This might be understood by recognizing that the significantly increased contact
area at the air/water interface prevented the water droplets from penetrating into the air
pockets and, hence, resulting in the larger θCA. On the other hand, since the obtained
surface energies were all orders of magnitude smaller than the intrinsic ones, the effect of
grain size might be more relevant to the resultant surface roughness than the relative areal
ratio between the exposed terminated grain orientations.
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temperatures: (a) 300 ◦C, (b) 400 ◦C and (c) 500 ◦C. (right) The corresponding cross-sectional
SEM images.
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Figure 3. Contact angle images of NiO films surface with water: the substrate temperature of 300 ◦C,
400 ◦C, and 500 ◦C, respectively.

The optical transmittance spectra of NiO films deposited at various substrate tem-
peratures of 300 ◦C, 400 ◦C, and 500 ◦C are displayed in Figure 4a. As can be seen, the
transmittance values of the present NiO thin films vary between 60 to 85% in wavelengths
ranging from 500 to 900 nm. Compared with the previous studies by Reddy et al. [35]
(40–70%), Al-Ghamdi et al. [46] (50–70%) and Hwang et al. [47] (30–60%), the obtained
transmittance for the present RF-sputtered NiO films appeared to have substantially higher
transmittance, presumably due to the better crystallinity of the present films. Indeed,
extensive efforts had been devoted previously to improving the film transmittance by
controlling the amount of gas mixtures during deposition [48], selecting various dopant
elements [49], and/or conducting additional annealing treatments [34] on NiO films. As
well, all results suggested that, for NiO films prepared by RF-sputtering with Ar as the
working gas, appropriate substrate temperature has played a key role in improving the
film transmittance. In Figure 4a, it is also noted that the film transmittance exhibits ap-
parent oscillating behavior. In general, the spectral oscillation behavior in thin dielectric
films could originate from absorption in combination with interference effects and/or
slight thickness non-uniformity in the films [50]. Judging from the cross-sectional SEM
images shown in Figure 2, the thickness of the present NiO films appeared to be quite
uniform. Thus, the oscillation behaviors in the transmittance spectra are most likely due
to the absorption and interference effects. Within the context of the interference scenario,
constructive interference will result whenever the condition t =

(
2m+1

2n

)
λ is satisfied and,

hence, the transmitted radiation will go through a maximum [51]. Wherein t is the film
thickness, m is an integer, n is the refractive index of the film, and λ is the wavelength of
the electromagnetic wave propagating within the film, respectively. Moreover, it is also
possible to find n by measuring the wavelength at which two adjacent maxima (λ1 and λ2)
occur through the following expression [51]:

n =
1(

1
λ2
− 1

λ1

)
t

(3)

However, if we assume the n~2.18 for NiO film [52] and take the transmittance
curve (blue) of the 300 ◦C film as an example, the wavelengths at which the two adjacent
maximum transmittances occur are ~430 nm and ~590 nm would give t ≈ 730 nm based
on Equation (3). At the first glance, this result is nearly 3 times larger than the real film
thickness of ~260 nm estimated in Figure 2. However, if we consider that the interference is
occurring between the incident radiation and the radiation first reflects at the film/substrate
interface and then reflects back again at the film surface, resulting in an effective path
difference of about 3 times of actual film thickness, which is quite consistent with the
obtained result. Nevertheless, it should be noted that n is also a strong function of the
wavelength [52] and the effects of absorption were not taken into account in the above
simplified zeroth order estimation. This might also explain the seemingly peculiar behavior
seen for the 400 ◦C film. Therefore, although the oscillations in the transmission spectra
could be reasonably attributed to the interference effects, quantitative analyses would need
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more detailed information about the wavelength dependence of the refractive index as well
as the absorption in the films.
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The other important parameter that can be obtained from the optical spectra is the
optical band gap (Eg), which can be calculated from the transmittance data by means of
the Tauc equation [53]: αhν = C(hν− Eg)

γ, wherein a is the absorption coefficient, hv is the
photon energy, C is the constant, and γ is an exponent describing the characteristic of the
energy gap, respectively. The exponent γ can be 0.5 or 2 depending on whether it is an
allowed direct or indirect gap [54]. Figure 4b shows a plot of (ahv)2 versus photon energy
which is linear at the absorption edge, confirming that the NiO films have a direct band
gap. The value of band gap is estimated by extrapolation straight line to the linear part
to intersect the photon energy axis at Eg values [53]. At the lower substrate temperature
(300 ◦C), the absorption edge of NiO film ranges from 1.5 eV to 3.5 eV, indicating that
the poor crystallinity of films. Moreover, it can be observed that the calculated values
of Eg for the present NiO films suggest that the optical energy gap increases with film
crystallinity, which is also in agreement with the previous studies [47,55]. Oh et al. [48]
proposed that the band gap of NiO films can be tailored by manipulating the preferred
orientation by controlling the amount of nitrogen incorporated into the gas mixtures during
film deposition. In this work, a similar trend is observed, namely the transmittance and
Eg values of NiO films are both increased as the preferred (200) orientation becomes more
predominant (see Figure 1).

The influences of substrate temperature, hence the film microstructure, on the nanome-
chanical properties of NiO films are also evaluated by nanoindentation tests. The typical
load-displacement curves of NiO films deposited at various substrate temperatures of
300 ◦C, 400 ◦C and 500 ◦C, as displayed in Figure 5. In Figure 5a, the nanoindentation
curves provide information about the elastic and plastic deformation behaviors. All the
curves appear to be smooth and regular. It is noted that the absence of any discontinuities
along either the loading (so-called pop-in event) or unloading (so-called pop-out event)
part is in sharp contrast to those observed in Ge thin films [56] and single-crystal Si [57],
indicating that neither the formation of crack nor indentation-induced phase transition is
involved here. Indeed, no cracking phenomenon is observed in the indented NiO films
surface, see Figure 5b.
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The total penetration depth into NiO films was approximately 50 nm, which was well
within the 30% criterion for avoiding the substrate effects proposed by Li et al. [37]. Thus,
the hardness and Young’s modulus of NiO films can be calculated directly from the load-
displacement curves (please see Figure 5a) following the analytic method developed by
Oliver and Pharr [58]. The values of hardness are 15.7 ± 0.1, 16.6 ± 0.2 and 22.3 ± 0.6 GPa
for NiO films deposited at various substrate temperatures of 300 ◦C, 400 ◦C and 500 ◦C, re-
spectively (please see Figure 5c). Moreover, the values of Young’s modulus are 185.4 ± 20.2,
189.6± 16.7 and 227.2± 21.3 GPa for NiO films deposited at various substrate temperatures
of 300 ◦C, 400 ◦C and 500 ◦C, respectively (please see Figure 5d). Compared with the results
reported by Fasaki et al. [32], the present results are substantially larger. In particular, the
hardness of the present NiO films is nearly twice as large compared to that reported in
the previous work [32]. It is noted, however, that, by judging from the intensity and the
FWHM of the (200) diffraction peak, the crystallinity of the present NiO films appeared
to be much better than that reported in Ref. [32]. Therefore, it is plausible to deduce that
the maximum hardness exhibited by the 500 ◦C NiO film may have intimate correlations
with the film crystallinity. Moreover, according to the XRD and nanoindentation results
described above, there is a clear tendency showing that films with larger grain size are
having larger hardness. The results appeared to exhibit a typical manifestation of the
inverse Hall-Petch effect [59]. It has been generally conceived that the Hall-Petch effect in
enhancing hardness is primarily governed by hindering the dislocation activities, while the
grain boundary sliding is more prominent in accounting for the film hardness displaying
the inverse Hall-Petch effect [60,61]. Consequently, the behaviors observed here may be
indicative that grain boundary structure is more relevant to the mechanical responses in
the present NiO films during nanoindentation.
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4. Conclusions

In summary, the microstructural, surface morphological, optical, nanomechanical
and wetting properties of NiO films deposited on glass substrates at various substrate
temperatures were investigated. The XRD results indicated that NiO films had cubic NaCl
structure and the films’ crystallinity appeared to be improved with increasing the substrate
temperature. Moreover, both the crystalline size and surface roughness of films were also
increased with increasing the substrate temperature, which, in turn, lowered the film’s
surface energy. In addition, the calculated surface energies were all about two orders of
magnitude smaller than the intrinsic surface energy of NiO, indicating that low surface
energy and the hydrophobic characteristics were originating mainly from extrinsic factors,
such as surface roughness. All NiO films exhibited transmittance ranging from 60% to 85%
in the visible wavelength range. The oscillating behavior seen in the transmittance spectra
was attributed to the interference effect and the optical energy gap of NiO films increased
from 3.18 to 3.56 eV with increasing the substrate temperature, presumably due to the
improved films’ crystallinity. From the nanoindentation results, it can be found that the
hardness and Young’s modulus of NiO films are increased from 15.7± 0.1 to 22.3 ± 0.6 GPa
and from 185.4 ± 20.2 to 227.2 ± 21.3 GPa, respectively, as the substrate temperature is
increased from 300 ◦C to 500 ◦C. Together with the fact of increased film crystalline size, it
is indicative that nanomechanical properties might have been more dominated by grain
boundary sliding mechanism than by the hindered dislocation activities. Finally, it is
concluded that substrate temperature plays a key role in controlling the microstructural,
surface morphological, optical, and nanomechanical characterizations of NiO films, as well
as their wettability properties.
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