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Abstract: Fabrication of three-dimensional tissues using living cells is a promised approach for drug
screening experiment and in vitro disease modeling. To study a physiological neuronal function,
three-dimensional cell patterning and construction of neuronal cell network were required. In this
study, we proposed a three-dimensional cell drawing methodology in hydrogel to construct the
three-dimensional neuronal cell network. PC-12 cells, which were used as neuronal cell differentiation
model, were dispensed into a collagen hydrogel using a micro injector with a three-dimensional
position control. To maintain the three-dimensional position of cells, atelocollagen was kept at sol-gel
transition state during cell dispensing. As the results, PC-12 cells were patterned in the atelocollagen
gel to form square pattern with different depth. In the patterned cellular lines, PC-12 cells elongated
neurites and form a continuous cellular network in the atelocollagen gel. It was suggested that our
three-dimensional cell drawing technology has potentials to reconstruct three-dimensional neuronal
networks for an investigation of physiological neuronal functions.

Keywords: neuron; cell patterning; three-dimensional tissue; neuronal differentiation; hydrogel

1. Introduction

Neurons are composed of the nuclear periphery, which carries genetic information,
and dendrites and axons, which get/deliver electrical signals from/to other neurons.
Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are diseases that
reduce the quality of life, to decrease daily physical activities, and have become major
problems as society ages. The treatment of these neurodegenerative diseases relies on
drugs, still has been difficult to recover sufficient physiological functions. Recently, for
drug screening, drug discovery and in vitro diseases modeling, there exist approaches
called Lab-On-a-Chip and Organs-On-Chip, in which cells are organized two or three–
dimensionally to mimic physiological functions in vivo [1]. Studies on heart chips [2–6],
liver chips [7,8], kidney chips [9,10], pancreas chips [11,12], blood–brain barrier (BBB)
chips [13,14], have been already reported. There have also been approaches to mimic neural
networks in vitro by controlling the position of neurons and the direction of neurite growth.
Control of cell positioning and neurite outgrowth direction were enabled by cell culture
substrates containing microstructures or micropatterns. These microstructures could be
generated by soft lithography [15–18] and laser etching [19]. There also have been direct
cell patterning approach using microinjection of cells [20]. Although these approaches are
superior in mimicking neuron–neuron connections, they could not mimic and reconstruct
in vivo three-dimensional neuron network because these approaches could only control
two-dimensional structures.

Although it was reported that collagen hydrogels were suitable for three-dimensional
culture of neuronal cells [21–23], three-dimensional cell patterning in hydrogels could
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not be performed. Three-dimensional printing based on an inkjet technology [24–26]
enabled three–dimensional cell assembly. This approach was superior for accumulating
cells three–dimensionally to fabricate cell aggregates, however, were difficult to place cells
three-dimensionally inside scaffold materials for simulating a three-dimensional neural
network. Furthermore, 3D printing of living cells has risks to damage cells by high speed
and pressure dispensing from the inkjet nozzle.

In this study, we proposed a novel method for three-dimensional cell patterning in
hydrogel to reconstruct a neuronal network. To avoid cell damage during cell patterning
in hydrogels, micro injection tool was used for cell patterning. For fundamental study,
PC-12 cells simulating neuronal differentiation were patterned three-dimensionally in
collagen hydrogels. Verification of collagen gel types for cell patterning and evaluation of
three-dimensional neuronal network construction were evaluated.

2. Materials and Methods
2.1. Theree-Dimensional Cell Drawing System

To perform the three-dimensional patterning of cells in hydrogels, cell suspension
was injected into hydrogel with a three-dimensional position control of injector nozzle to
construct three-dimensional cell patterns. We named this novel cell patterning technique as
the “cell drawing technique”. Three-dimensional cell drawing system was developed using
a micro-injection system for cell suspension into hydrogel with three-dimensional position
control (Figure 1a). The micro injection of cell suspension was performed by an oil-filled
manual microinjector (CellTram 4 Oil, Eppendorf AG, Hamburg, Germany) with glass
micro-pipette. The glass micro-pipette was made from a 1-mm diameter glass capillary
(GD-1, Narishige, Tokyo, Japan) sharpened by a commercial puller (PC-10, Narishige,
Tokyo, Japan). The diameter of micro-pipette tip was approximately 90 mm. To control the
injection rate of cell suspension, the rotation of knob for microinjector was controlled by a
microscope focus controller (MSS-FC, Chuo Precision Industrial, Tokyo, Japan) connected to
a personal computer with a terminal software (Tera Term, open source). The cell suspension
was injected via glass micro-pipette into neutral collagen sol or gel on the metallic stage
whose temperature was controlled by circulating heating-cooling water (Figure 1b). The
three-dimensional position of metal stage was controlled by 3-axis motor driven stage
(Opto-Sigma, Tokyo, Japan) to “draw” the three-dimensional cell patterns. The motor
driven stages were connected to a personal computer with a commercial control software
(LabVIEW 2015, National Instruments, Austin, TX, USA).
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Figure 1. Micro-injection and three-dimensional position control system for three-dimensional
cell drawing. (a) Experimental setup consisting of micro-injector and 3-axis motorized stages, (b)
temperature control of system for collagen sol/gel.

2.2. Cell Culture

PC-12 cells (neuron-like cell line; Riken Bioresource Center, Tsukuba, Japan) was
used to reconstruct neuronal-like network in a collagen gel. PC-12 cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) with 10% horse serum (HS) and 10% fetal
bovine serum (FBS) to prepare sufficient cell number for the three-dimensional cell drawing
experiments. For the cell drawing experiments, the cells were suspended in a fresh culture
medium at a concentration of 1 × 106 cells/mL. After injection into the collagen gel, the
cells were cultured in DMEM + 10% HS + 10% FBS + 5 nM Nerve Growth Factor (mNGF
2.5S, Alomone Labs, Jerusalem, Israel) to induce neuronal differentiation.

2.3. Verification of Collagen Gel Types for Scaffold Material System

To determine an appropriate collagen gel type for the three-dimensional cell injection,
native collagen and atelocollagen were tested for the hydrogel material. Type I acid-soluble
collagen (IAC-30, Koken, Tokyo, Japan) and type I pepsin-solubilized collagen (IPC-30,
Koken, Tokyo, Japan) in acidic solutions at 3.0 mg/mL were used as native collagen and
atelocollagen, respectively. 2.4 mg/mL neutralized collagen solution was prepared from
the 3.0 mg/mL acidic collagen solution and poured into a f 100 petri dish to form a collage
gel with 2.0 mm of thickness. The neutralized collagen solutions in petri dishes were gelled
at 37 ◦C for 20 min on the metallic stage of cell-drawing system.

Following the preparation of collagen hydrogels in petri dishes, PC-12 cell suspension
was dispensed in the gel to draw two straight lines of different depth (Figure 2). At first,
the tip of glass micro-pipette was positioned at the depth of about 200 mm from the gel
surface. Secondly, the tip was moved horizontally to draw a 10 mm straight line with
dispensing cell suspension, descended for vertically for 500 mm, and moved horizontally to
draw a 10 mm straight line with dispensing the cell suspension. The rate of tip movement
was set at 500 mm/s and dispensing rate of cell suspension was set at 0.192 µL/s. After
cell drawing, the cell-patterned collagen gels were cultured for 4 days in the neuronal
differentiation medium. At the end point of culture, day 4, the difference in focal point
position of each cellular straight pattern and geometry of cellular patterns were evaluated
by a phase-contrast microscope (TE-2000, Nikon, Tokyo, Japan) attached with a focus
controller (MSS-FC, Chuo Precision Industrial, Tokyo, Japan).
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Figure 2. Schematic of micro-injection of PC-12 cells to draw two straight lines of cells with different
depth in a collagen gel.

2.4. Verification of Gelation Conditions during Three-Dimensional Cell-Drawing

From the results in verification of collagen gel type, the atelocollagen gel was used for
a scaffold material of three-dimensional cell drawing. In this section, the effect of gelation
condition on the cell drawing was evaluated.

Firstly, 2.4 mg/mL neutralized solution of atelocollagen was prepared as described in
Section 2.3. Before the three-dimensional cell drawing, the neutralized collagen solutions
were incubated at 25, 30, 35 ◦C for 20 min, respectively. Following the incubation, the
cell suspension was dispensed in the collagen sols or gels (depending on incubation
temperatures) to draw a square pattern with four sides of different heights.

As shown in Figure 3, the tip of glass micro-pipette was positioned in the depth of
1 mm from the gel surface. Next, the tip was moved along with x-axis for 500 mm (Line 1),
elevated along with z-axis for 200 mm, moved along with y-axis for 500 mm (Line 2),
elevated for 200 mm, moved along with x-axis for −500 mm (Line 3), elevated for 200 mm,
moved along with y-axis for −500 mm (Line 4), and descended for 600 mm to reach the
start positions. During the drawing of the square pattern, the tip was moved at the rate of
500 mm/s and the cells suspensions was injected at the rate of 0.192 µL/s.
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After the dispensing of cell suspensions in the collagen sol or gel, the cell-injected gels
were incubated at 37 ◦C for 30 min for fully gelation, and cultured in a similar condition as
described in Section 2.3. The geometry of cellular patterns was observed using a phase-
contrast microscope (TE-2000, Nikon, Tokyo, Japan).



Micromachines 2022, 13, 1866 5 of 12

2.5. Theree-Dimensional Cell Drawing of Neuronal Cells and Differentiation of PC-12 Cells

From the results of validation experiments for collagen gel types and gelation con-
ditions, the PC-12 cells were dispensed into the atelocollagen gel at 30 ◦C for 20 min.
The neuronal differentiation and neuronal network formation of PC-12 cells in the three-
dimensional pattern were evaluated.

To form the three-dimensional patten in the collagen gel, the tip of glass micro-pipette
was moved to draw the same square pattern described in Section 2.4. The movement
rate of tip was set at 500 mm/s and the injection rate of cell suspension were set at 0.096,
0/196, 0.48 mL/s to change cell concentrations in the drawn lines. After cell drawing, the
cell-patterned collagen gels were incubated at 37 ◦C for 30 min and cultured for 4 days
in the neuronal differentiation medium. The cellular patterns were evaluated using a
phase-contrast microscope (TE-2000, Nikon, Tokyo, Japan) and image-processing software
(ImageJ, National Institute of health, Bethesda, MD, USA).

For the fundamental validation of our proposed method, the construction of neu-
ronal cell network was evaluated from phase-contrast microscopic images. Neuronal
differentiation and network formation were evaluated by image-based analysis. Neuronal
differentiation of PC-12 cells could be evaluated by the neurite generation [27,28]. In this
study, the length of neurite, a, was defined and measured as the length of neurite connecting
the adjacent cell aggregates (Figure 4). The gap length of cellular patterns, g, was also
measured. Both measurements were performed in each side of square pattern. Rate of total
neurite length and continuity of cellular pattern, N and C, were calculated as follows;

N = ∑ an/L, C = 1 − ∑ gn/L (1)

where L is the length of side of square patterns.
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Figure 4. Evaluation of neurite formation of PC-12 cells and continuity of cellular pattern in a collagen
gel. Neurite length was defined as the length of neurites connecting to adjacent cell aggregates.

2.6. Statistical Analysis

Most of the data are representative of two to three individual experiments with similar
results. For each experimental group, five to seven samples (n = 5 or 10) were analyzed,
and each data point represents the mean and standard deviation.

3. Results
3.1. Effect of Collagen Gel Types on Three-Dimensional Cell Drawing

To validate appropriate collagen gel types, PC-12 cells were injected into two types
of collagen gel to form straight lines with different depth. First cellular line (bottom line)
was drawn at the depth of 1 mm from gel surface and second line (upper line) was at
the depth of 0.5 mm from the gel surface in both of collagen gel types; native collagen
and atelocollagen.
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The differences in focal position of these two lines was 483 ± 24 mm (n = 10) and
491 ± 24 mm (n = 9) in native collagen and atelocollagen gels, respectively (Figures 5 and 6).
From macroscopic view, straight lines were formed both in native collagen and atelocollagen
gels. However, at the microscale, the straight lines in native collagen gel were intermittently
drawn, and the cracks made by glass micropipette movement was observed (Figure 5).
On the other hand, the straight lines could be drawn both in upper and bottom layers in
atelocollagen gel (Figure 6). Furthermore, the width of cellular lines was different between
upper and bottom lines in the native collagen gel whereas the significant differences in
width were not observed in the atelocollagen gel (Figure 7).
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Figure 7. Width of cellular lines in collagen gels at (a) upper and (b) bottom lines. Mean ± S.D.,
n = 10.

3.2. Relationships between Gelation Condition and Maintenance of Cellular Pattern

To determine an appropriate gelation condition of collagen gel, the three-dimensional
cell drawing experiments were performed under different gelation temperature. At lower
temperature, 25 ◦C, the square pattern of cells was not maintained and cells were dispersed
during the cell injection in collagen gel (Figure 8a). The square patterns could be formed
and maintained in the collagen gels gelled at over 30 ◦C (Figure 8b,c). The square pattern
of cells could be formed without crack or scratch by the tip of glass micropipette at 30 ◦C,
whereas the cracks and scratches were observed in the pattern at 35 ◦C.
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Figure 8. Phase-contrast images of square pattern of PC-12 cells injected in atelocollagen sol or gel at
(a) 25 ◦C, (b) 30 ◦C, and (c) 35 ◦C. Scale bar = 1 mm.

3.3. Neuronal Differentiation and Network Construction of PC-12 Cells in Three Dimensional
Pattern

Finally, PC-12 cells were injected into an atelocollagen gel treated at 30 ◦C to form
a square pattern, and were cultured to induce neuronal differentiation. To evaluate cell
concentrations on neuronal differentiation and network formation, three injection rate of
cell suspensions were evaluated.

Cellular patterns could be formed at the injection late of 0.096 and 0.196 mL/s, whereas
cells were dispersed and width of cellular lines were larger at 0.480 mL/s (Figures 9–11).
The cells injected at 0.096 mL/s formed small aggregates and thinner lines compared to
those injected at other rates (Figure 9). The cells injected at 0.196 mL/s tended to form
continuous lines with small cell aggregates (Figure 10). The cells injected at 0.480 mL/s
dispersed to form thicker lines and formed small aggregates in each line (Figure 11). PC-12
cells in atelocollagen gel in all experimental conditions extended neurites with an increase
in the culture time for all experimental conditions.
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Figure 9. Phase-contrast images of square pattern of PC-12 cells injected at 0.096 mL/s in atelocollagen
gel. (a) Gross image, (b) enlarged images of (i) Line 1, (ii) Line 2, (iii) Line 3 and (iv) Line4 of square
pattern on day 7; (c) Neurite growth during the culture time.
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Figure 10. Phase-contrast images of square pattern of PC-12 cells injected at 0.196 mL/s in atelocolla-
gen gel. (a) Gross image, (b) enlarged images of (i) Line 1, (ii) Line 2, (iii) Line 3 and (iv) Line4 of
square pattern on day 7; (c) Neurite growth during the culture time.
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gen gel. (a) Gross image, (b) enlarged images of (i) Line 1, (ii) Line 2, (iii) Line 3 and (iv) Line4 of
square pattern on day 7; (c) Neurite growth during the culture time.

Rate of neurite length in each cellular line tended to increase with a decrease in the
depth of line within square pattern made at injection rate of 0.096 mL/s, whereas tended to
decrease in the pattern at the injection rate of 0.480 mL/s (Figure 12a). The rate of neurite
length in each line of square pattern was similar when the cellular pattern was made at the
injection rate of 0.196 mL/s. The rate of continuity in each cellular line tended to increase
with a decrease in the depth of line within square pattern made at injection rate of 0.096
and 0.480 mL/s (Figure 12b). The rate of continuity in each line of square pattern was also
similar when the cellular pattern was made at the injection rate of 0.196 mL/s.
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4. Discussion

Tissue engineering approaches have enabled three-dimensional cell culture to replicate
biological tissues in a human body. Various organs and tissues were replicated by culturing
cells on porous polymer materials or hydrogels as scaffolds. Organoid culture is also one
of the promising approaches to reconstruct micro biological tissues for drug screening
platform [1]. Organoid culture of neuronal cells has been performed as various forms:
sliced tissue culture, microfluidic culture, vascularized culture, etc [29]. These approaches
were superior for mimicking native neuronal structure in brain to study neuronal function
and diseases development. However, precise monitoring of the action potential propa-
gation was difficult in these neuronal organoid cultures because organoid cultures were
formed based on cell aggregates. To solve this problem, neuronal cell patterning methods
have been reported to observe the propagation of signal and action potential in neuronal
networks [18]. In the previous studies, neuronal cells were patterned in a two-dimensional
form, therefore three-dimensional cell patterning methodology to replicate physiologi-
cal neuronal cell condition was required. Our method proposed in this study showed a
potential to breakthrough this problem.

Firstly, we validated the appropriate scaffold material for three-dimensional cell
patterning. Collagen hydrogels have been used wifely for three-dimensional culture [30,31].
Acid-soluble collagen and atelocollagen were used to form hydrogels in this study. From
the results of this study, soft hydrogel, atelocollagen was appropriate for cell drawing with
injection into hydrogel without scratch marks (Figure 6). Furthermore, sol-gel transition
condition of atelocollagen could keep three-dimensional positions of cells injected by
glass micropipette without scratch marks using a precise temperature control for collagen
gelation (Figure 8). It was suggested that the position of cells was retained in collagen gel
without disturbing the cell pattern at near the sol–gel transition temperature of agarose gel.

The effect of cell concentration on the neuronal differentiation and construction of
cellular network in patterned lines were evaluated. PC-12 cells elongated their neurite in
the atelocollagen gel to form the cell networks in three-dimensional conditions. Under
low cell concentration, PC-12 cells formed small aggregates and elongated their neurites at
random direction without connecting with adjacent cells. Therefore, the rate of neurite grow
length along with patterned lines tended to show lower values. The cell-patterned lines
were intermittent because the injected cells formed small aggregates. The cells patterned
with higher concentration also showed lower value for the rate of neurite growth length,
however this might be due to different factors. The cells injected with higher flow rate
dispersed widely in the hydrogel and the patterned lines of cell population were disturbed
to form large cell aggregates. Therefore, the rate of neurite growth tended to show lower
values as compared to other injection rates. In the cell-patterned lines at medium cell
concentration, the neurite growth ratio tended to show higher values and did not change
depending on the difference in the depth of lines (Figure 12). The rate of continuity also
did not change depending on the line depth.

In this study, we used PC-12 cell as neuronal differentiation culture model to validate
our three-dimensional cell drawing technology. PC-12 cells have been used widely for
investigations about neuronal differentiation [27,28,32]. However, the PC-12 cells are
derived from rat pheochromocytoma with poor potentials to mimic electrical activities as
neurons. Therefore, to validate our proposed method for a three-dimensional neuronal
network construction, validation experiments using native neuronal cells with monitoring
a transition of active potential would be required. In addition, the possibilities of drawing
complex cellular pattern and connections of neuronal networks should be evaluated by
immunofluorescence staining. Although the requirement for validation experiments using
neuronal cells, our method enabled firstly to reconstruct three-dimensional neuronal cell
network in a hydrogel. Furthermore, our three-dimensional cell drawing method has a
potential to construct a complex neuronal network with neuroglia and schwann cells using
multi injection nozzles for cell drawing.



Micromachines 2022, 13, 1866 11 of 12

5. Conclusions

In this study, we proposed a three-dimensional cell drawing method for the construc-
tion of three-dimensional neuronal cell network. To pattern cells three-dimensionally in a
hydrogel, cell suspension was injected into atelocollagen under sol-gel transition state using
microinjector. The three-dimensional position of microinjector was controlled by 3-axis
motorized-stages. Based on the results of this study, the PC-12 cells could be patterned
three dimensionally in the atelocollagen gel. Furthermore, it was suggested that the PC-12
cell could be differentiated to elongate neurites and construct neuronal cell networks. Our
cell drawing technique has potentials to construct the three-dimensional neuronal cell
network simulating in vivo neuron functions.
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