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Abstract: The scenario is very important to smartphone-based pedestrian positioning services. The
smartphone is equipped with MEMS(Micro Electro Mechanical System) sensors, which have low
accuracy. Now, the methods for scenario recognition are mainly machine-learning methods. The
recognition rate of a single method is not high. Multi-model fusion can improve recognition accuracy,
but it needs to collect many samples, the computational cost is high, and it is heavily dependent on
feature selection. Therefore, we designed the DT-BP(decision tree-Bayesian probability) scenario
recognition algorithm by introducing the Bayesian state transition model based on experience design
in the decision tree. The decision-tree rules and state transition probability assignment methods
were respectively designed for smartphone mode and motion mode. We carried out experiments for
each scenario and compared them with the methods in the references. The results showed that the
method proposed in this paper has a high recognition accuracy, which is equivalent to the accuracy
of multi-model machine learning, but it is simpler, easier to implement, requires less computation,
and requires fewer samples.
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1. Introduction

With the rapid development of Micro Electro Mechanical System(MEMS)sensors, the
smartphone is equipped with an inertial measurement unit (IMU), barometer and mag-
netometer, which provide new and cheap approaches to smartphone-based pedestrian
positioning services. Now, it has penetrated all aspects of people’s lives. However, because
of the complex scenarios faced by the smartphone, obtaining a high-precision position
based on the smartphone is still a challenge. The complex scenarios include the diversity of
smartphone carrying modes, pedestrian movement modes, and the accuracy limitations
of smartphone built-in sensing, which are all factors that affect the accuracy of pedestrian
positioning. Contextual information is very important to the positioning system. It not only
affects the types of available signals, but also provides more information for positioning,
and provides an important basis for positioning methods, the selection of fusion algo-
rithms, and failure detection. Therefore, it is necessary to identify different scenarios and
choose different coping strategies for different scenarios to obtain high-precision pedestrian
positioning results.

At present, pedestrian motion mode recognition is mainly divided into two research
directions: one is based on image processing technology, which converts the input image
or video into feature vectors, and then recognizes the motion mode [1,2]. However, it is
easily infringes on personal privacy and relies heavily on light conditions [3]. The other is
based on various sensors, such as accelerometers, gyroscopes, gravimeters, barometers, etc.,
that collect sensor data, extract various features, and classifying features. Then, various
methods are used to recognize the movement pattern. Machine learning methods are
mostly used for motion pattern recognition based on sensors, such as support vector
machine (SVM) [4], k-nearest neighbor algorithm (KNN) [3], Gaussian naive Bayes (GNB),
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and artificial neural network (ANN). The average recognition success rate can reach more
than 80%. For example, Sun Bingyi et al. [5] proposed a behavior recognition method based
on the SC-HMM algorithm, which can classify up and down stairs and elevators with a
classification accuracy of more than 80%. Jin-Shyan Lee et al. [6] proposed a threshold-
based classification algorithm for carrying phone mode with an acceleration value, which
is very simple and easy to achieve. Qinglin Tian et al. [7] proposed a finite state machine
(FSM) to classify the smartphone mode with a classification accuracy of more than 89%.

Other scholars have tried to combine different models to improve recognition perfor-
mance. Liu Bin et al. [8] combined four typical methods: k-nearest neighbor algorithm,
support vector machine, naive Bayesian network, and the AdaBoost algorithm based on a
naive Bayesian network to create a human activity recognition model. The optimal human
activity recognition model was obtained through model decision-making, and the accuracy
reached 92%. Using support vector machine (SVM) and decision tree (DT), any combination
of motion state and mobile phone postures could be successfully identified [9] with an
average success rate of 92.4%. Other scholars combined convolutional neural network
(CNN) and long-term and short-term memory (LSTM) network to recognize walking,
sitting, and lying behaviors for wearable (tied-to-the-waist) devices, with a success rate of
over 96% [10,11]. In addition, some scholars used other methods to realize motion pattern
recognition, such as the implicit Markov model [12,13], the sensor data interception method
based on last bit matching [14], and the voting method [15]. Some scholars have also
studied the influence of window length on human motion pattern recognition, to choose
the optimal window length [16,17].

Ichikawa et al. [18] studied the ways people like to use mobile phones. The common
locations of mobile phones are trouser pockets, clothing pockets, hand-held and so on.
Scholars have explored various methods to identify the common locations, that is, to
identify the location of the mobile phone. Yang et al. [19] proposed PACP (Parameters
Adjustment-Corresponding-to-smartphone position), a method that is independent of
the smartphone mode. It uses the SVM (support vector machine) model to identify the
smartphone mode with an accuracy rate of 91%. Deng et al. [20] proposed to recognize
the location of mobile phones based on accelerometer features, and tested the recognition
results based on SVM, Bayesian network, and random forest. Noy et al. [21] used KNN,
decision tree, and XGBoost to test and compare, and showed that XGBoost has the best
recognition success rate. Wang [22] proposed a recognition method of the superimposed
model, which combines the six models of AdaBoost, DT, KNN, LightGBM, SVM, and
XGBoost to realize the location recognition of smartphones, and the recognition accuracy
can reach 98.37%.

In general, the methods for scenarios recognition mainly focus on machine learning
methods, such as SVM, CNN, KNN, etc. These methods have a low recognition accuracy
rate when recognizing based on raw data, and when recognizing based on sensor features,
they have a strong dependence on feature selection. The fusion of multiple models can
improve the recognition accuracy, increasing the complexity of calculations and requiring a
large number of samples. In addition, the calculation cost is large, and the choice of features
is heavily dependent.

To solve this problem, we designed a DT-BP (decision tree-Bayesian probability)
scenarios recognition algorithm by using a single model decision tree and a Bayesian state
transition model, which aims at motion mode and smartphone mode. This method is more
simplified, less computationally expensive, and less computationally complex, and can
obtain the same recognition accuracy as the multi-model machine learning method. The
contributions of this study are as follows:

• We designed a decoupling analysis method to analyze the relationship between e dif-
ferent kinds of scenario, so as determine the identification order. As the interactions of
different scenario are categorised, adverse effects on scenario recognition occur. There-
fore, a decoupling relationship analysis method was designed to decouple different
scenario categories and determine the sequence of scenario type identification;
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• We designed a DT-BP (decision tree-Bayesian probability) scenario recognition algo-
rithm by using a single model decision tree and a Bayesian state transition model,
which aimed at motion mode and smartphone mode. This method is more simplified,
less computationally expensive, and less computationally complex, and can obtain the
same recognition accuracy as the multi-model machine learning method;

• We designed the corresponding decision tree criteria and probability allocation method
for smartphone mode and motion mode. We carried out experiments for each scenario
and compared them with the methods in the references.

The rest of this paper is organized as follows: Section 2 introduces the presented
algorithm, including decoupling analysis, feature extraction and scenario recognition
algorithm. Section 3 shows the experimental setup, results and discussion. And finally,
Section 4 concludes the paper.

2. Methodology
2.1. Decoupling Analysis of Scenario Category

It is necessary to analyze the decoupling relationship of different scenario categories to
determine their independence and correlation. For example, if there are nk motion modes,
mk smartphone modes, there are nk× mk kinds of situations in any combination of the
two kinds of contexts. It is too complicated and redundant to identify all the combined
scenarios. And as the interaction of different scenario is categorized, adverse effects on
scenario recognition occur. Therefore, a decoupling relationship analysis method was
designed to decouple different scenario categories and determine the sequences of scenario
type recognition.

The decoupling of smartphone modes and motion modes needs to be analyzed in
three parts:

• The correlation coefficient of the same motion mode in different smartphone modes;
• The correlation coefficient of different motion modes in the same smartphone mode;
• The correlation coefficient between different smartphone modes and different motion

modes.

We used Pearson’s correlation coefficient to analyze the decoupling of the data. The
calculation formula of the correlation coefficient is as follows:

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
,
{

x = ∑n
i=1 xi/n

y = ∑n
i=1 yi/n

(1)

where r is the correlation coefficient, n is the length of the data, xi, yi which are two different
time series.

As the data sampling length in different situation is different and the data contains
the periodic behavior of pedestrian movement, it was necessary to establish a time-lag
series [23]. The sequence (X, Y) = {(xi, yi), i = 1, 2, . . . , n}, after moving forward and
backward by m sampling points is:

(Xt, Yt+m) = {(xi, yi+m), i = 1, 2, . . . , n−m}, 1 ≤ m < n, m ∈ N+

(Xt, Yt−m) = {(xi, yi−m), i = m + 1, m + 2, . . . , n}, 1 ≤ m < n, m ∈ N+ (2)

If the time-shift sequence is correlated, it must exist m0(1 ≤ |m0| ≤ n, |m0| ∈ N+) to
maximize the correlation coefficient of (Xt, Yt+m0).

To decouple different scenario categories, the following analysis method was used:

(1) To avoid dependence on feature selection, raw data were selected for data analysis;

To ensure a full analysis of different scenario categories, it was necessary to exclude
other factors as far as possible, such as pedestrian differences, smartphone brand differences,
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etc. Therefore, the window length n shall meet the pedestrian movement cycle, generally
0.5–1.2 s. The calculation method of window length n is as follows:

n > 2×
[

Tn

∆t

]
(3)

where Tn is the window period, generally bigger than 2 s. ∆t is the sampling period, which
depends on smartphone’s brand and model. [] means round numbers.

(2) To ensure the integrity of pedestrian motion cycle, the forward and backward sam-
pling points m should be selected as:[

0.5× Tn

∆t

]
+ 1 ≤ m < n (4)

(3) To ensure the analysis is not disturbed by abnormal data, the sliding window is used
to calculate the correlation coefficient r, which is < = ri(i = 1, 2, . . . , k), k = [N/n],
and N is the sampling length of data. The decoupling analysis correlation coefficient is

r =
1
k ∑k

i=1 ri (5)

(4) To analyze the decoupling correlation different scenario categories, we set r
(

xi,j, yu,v
)

= r. Where i and u represent the smartphone mode, j and v represent the motion
mode. yu,v and yu,v are two kinds of scenario. To obtain the analysis result we needed
to analyze three situations as follows:

i = u, j 6= v
i 6= u, j = v
i 6= u, j 6= v

(6)

The test results are shown in Table 1, which gives the correlation calculation results of
a total of nine scenarios composed of three motion modes and three smartphone modes.
The raw data include GNSS sensor, accelerometer, gyroscope, magnetometer, barometer,
and Bluetooth.

Table 1. Pearson correlation coefficients of different motion modes and different smartphone modes.

Wa US UE

Calling Texting Cloths
Pocket Calling Texting Cloths

Pocket Calling Texting Cloths
Pocket

Wa
Calling 0.77 - - - - - - - -
Texting 0.56 0.64 - - - - - - -

Cloths pocket 0.55 0.53 0.77 - - - - - -

US
Calling 0.35 0.18 0.21 0.68 - - - - -
Texting 0.27 0.34 0.25 0.55 0.80 - - - -

Cloths pocket 0.27 0.24 0.33 0.51 0.52 0.67 - -

UE
Texting 0.32 0.21 0.23 0.26 0.26 0.21 0.71 - -

Cloths pocket 0.21 0.33 0.28 0.18 0.33 0.25 0.52 0.86 -
Texting 0.21 0.25 0.35 0.22 0.15 0.31 0.65 0.55 0.72

Wa is Walking, US is upstairs, UE is up elevator.

According to the test results in Table 1, the decoupling correlation can be summarized
as follows: 

0.3 < r
(
xi,j, yu,v

)
< 0.4, when i = u, j 6= v

r
(
xi,j, yu,v

)
> 0.5, when i 6= u, j = v

r
(
xi,j, yu,v

)
< 0.3, when i 6= u, j 6= v

(7)
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From Formula (7) we know that the correlation between different motion modes has a
certain correlation under the same smartphone mode. In the case of different smartphone
modes, the correlation of the same motion mode is greater than 0.5. The correlation between
different smartphone modes and different motion modes was very low, and less than 0.3.
So, smartphone modes have little influence on motion mode recognition. On the contrary,
motion modes have a great influence on smartphone mode recognition.

According to the above analysis, during scenario recognition, we can recognize the
motion mode first. And when this is determined, the smartphone mode is recognized
secondly.

2.2. Feature Extraction

In this paper, we extracted features from different sensor data in both the time do-
main and frequency domain, respectively. The time-domain refers to the extraction of
the mathematical-statistical characteristics of the sensor measurement data in a certain
window length, such as variance, mean, amplitude, etc. The frequency domain refers
to the calculation of the Fourier transform and frequency domain entropy of the sensor
measurement data in a certain window length. Then, the features in the frequency domain
were extracted, such as dominant frequency, energy, frequency difference, etc.

As shown in Table 2, the time-domain features extracted from active sensors were
used in this paper. Where n1, n2, n3, n4, n5, n6 is the length of the data window, xi, yi, zi is
the sampling data, x is the mean value, i,j,k are the times at different sampling points, sk is
the value that the data in the window length n4 is greater and smaller than the threshold
value threzero, thre−zero.

Table 2. Feature extraction in time domain and frequency domain [24].

Feature Definition

First-order norm ‖x‖1 = |xi|
Peaks amax = max(xi), i = 1, . . . , n1
Wave amin = min(xi), i = 1, . . . , n1

Difference of Peaks and Wave amm = amax − amin
Mean x = 1

n 2∑n
i=1 xi

Variance σ2 = 1
n3

∑n3
i=1(xi − x)2

Amplitude svm =
√

x2
i + y2

i + z2
i

Zero-Crossing Rate p0 = sk
n4

,
{

sk = sk + 1, i f (xi > threzero)
s−k = s−k + 1, i f (xi < thre−zero)

Gradient dx = xk+i − xk

correlation coefficient rk = ∑
n5−k
i=1 (xi−x)(xi+k−x)

∑
n5
i=1(xi−x)2

Fourier Transform X(k) =
n−1
∑

i=0
x(i)Wki

n6
, k = 0, 1, . . . , n− 1, Wn6 = e−j 2π

n6

The height gradient value [25,26] is calculated by the raw data of barometer as:

dh = h− h0 = 18400·
(

1 +
t

273.15

)
·lg p0

p
(8)

where t is the temperature, and the unit is ◦C. p0 is the reference air pressure and p is the
output of the barometer.

2.3. Scenario Recognition Algorithm
2.3.1. Design of Scenario Recognition Algorithm Based on DT-BP

The decision tree (DT) establishes the nodes by exploring the high-value data features
in the overall data and constructs the branches of the tree according to the required research
contents. With repeatedly establishing the branch nodes, the classification results and
decision set contents are displayed with the tree structure [27,28]. The decision tree has
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the advantages of low computational complexity and is insensitive to missing content
in the middle. It can handle irrelevant feature data [29]. Decision trees also have short-
comings, such as low detection accuracy and the work needed for the preprocessing of
time-sequential data. In the actual environment, due to the complexity of the environment,
the different interference, the performance of different devices, the error accumulation of
the sensor itself, etc., the error in the identification process is so relatively large that the
usability is not high. To deal with this problem, we designed a context recognition method
based on the decision tree and Bayesian state transition probability (decision tree-Bayesian
probability, DT-BP).

Bayes theory is a common method in model decision-making. The basic idea is to
know the conditional probability density parameter expression and a priori probability,
convert the formula into a posteriori probability, and finally use a posteriori probability for
decision classification.

If P(A) is a priori probability or edge probability of A. the conditional probability of A
after the occurrence of B is P(A|B ), which is called the posterior probability of A. P(B|A )
is the conditional probability of B after the occurrence of A, which is called the posterior
probability of B. P(B) is the prior probability of B [30]. Then

P(B|A ) =
P(A|B )P(B)

P(A)
(9)

For the situation recognition in this paper, we suppose Ti as the situation category,
and Ti ∈ Γ(b1, b2, . . . , bu). Where U is the number of situations. We assume S f as the
feature quantity set, and S f = {a1, a2, . . . , aV}. Where V is the number of features. If the

features of S f all belong to Ti, the probability is P
(

Ti

∣∣∣S f

)
. When it is satisfied P

(
Tk

∣∣∣S f

)
=

max
i=1,··· ,K

P
(

Ti

∣∣∣S f

)
, it is considered S f ∈ Tk, which means the recognition is successful.

Therefore, we only need to calculate P
(

Ti

∣∣∣S f

)
to recognize context. The Formula (9) is

changed to:

P
(

Ti

∣∣∣S f

)
=

P(Ti)P
(

S f |Ti

)
P
(

S f

) (10)

To obtain the conditional probability of the scenario Ti, we need to calculate P
(

S f

)
,

P(Ti) and P
(

S f |Ti

)
.

The principle of probability allocation in this article: the number of features quantities
is V, and the probability of each feature quantity is the same, which means P

(
S f

)
is a

constant. So P
(

Ti

∣∣∣S f

)
is the largest when P(Ti)P

(
S f |Ti

)
is the largest. That is

P
(

Ti

∣∣∣S f

)
∝ P(Ti)P

(
S f |Ti

)
(11)

where P(Ti) is the state probability. Its value at the current moment is related to the
number of scenarios to be detected and the probability of the previous moment. It is
independently designed according to different scenario categories and the number of
scenarios U. P

(
S f |Ti

)
is the conditional probability of the feature vector S f , which is

obtained from DT rules. The obtaining algorithm designed in this paper is as follows:

P
(

S f |Ti

)
=

∑Ki
j=1 cj

Ki
(12)

where Ki represents the number of features related to the category Ti. cj is the judgment
value of each feature. If the judgment condition is met, it is cj = 1, otherwise is cj = 0.
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2.3.2. Recognition of Smartphone Mode Based on DT-BP

(1) Algorithm design based on decision tree

To realize the recognition of different smartphone modes, it is necessary to detect the
transformation process between different smartphone modes, which determines whether
the smartphone mode is transforming or fixed. When it is in the fixed position, the different
smartphone mode is determined. There are two parts of mobile phone location recognition:
transformation recognition and current location recognition. In this paper, we took six
common smartphone modes [18] as examples to design the specific decision tree, including
texting, calling, pants front pocket, clothes pocket, pants back pocket and hand swing, as
shown in Figure 1.
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Figure 1. The example of decision tree for smartphone modes recognition.

According to the data characteristic analysis and feature analysis, the variance of the
first-order norm of acceleration was used as the criterion for judging the position change of
the mobile phone. The first-level decision criterion for the decision tree is:{

i f var(ax) > Thre&var(ay) > Thre&var(az) > Thre, changing = 1
others, changing = 0

(13)

where Thre is the threshold. When changing = 1, the location is changing, otherwise it
is not.

When the position is fixed, it is necessary to determine whether there is periodic
oscillation, which means there are other periodic motions besides walking and swinging
with the pedestrian. We use the second main frequency amplitude of the acceleration
amplitude to determine it. The second-level decision criterion of the decision tree is:{

i f (Am f 2 > Threm f 2), per = 1;
others, per = 0

(14)

where Threm f 2 is the threshold. When per = 1, the position of the mobile phone has periodic
movement, otherwise it is not. If the smartphone location with periodic movement, the
judgment criterion is as follows:{

i f (Fm f > Threm f ), swpp = 1;
others, swpp = 0

(15)

where Threm f is the threshold. When swpp = 1, the position is pants pocket(pp), otherwise
it is swinging. As the features of the front pants pocket(fpp) and back pants pocket(bpp) is
similar, there is a new branch for them, and the decision criterion is:
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{
i f 1

M ∑M
i=1(ax− az) > Threqh, f pp = 1

others, bpp = 1
(16)

where M is the window length, Threqh is the threshold.
To recognize the fixed smartphone mode without periodic motion, we used the first-

order norm of acceleration, peaks, and wave as the features. The determination rule for
designing a fixed smartphone mode decision tree is:

text : |ax| < Thre1, |ay| < Thre1, azmin > Thre2
call : axmax < −Thre1, aymin > Thre2, |az| < Thre1
pocket : axmin > Thre2, aymax < −Thre1, |az| < Thre1

(17)

where Thre1, Thre2, Thre3 are thresholds.

(2) Probabilistic design based on DT-BP method

According to the design of the DT-BP method, we needed to design P(Ti) and
P
(

S f |Ti

)
to calculate the probability distribution principle. The number of scenarios

U is 7, including 6 smartphone positions and the change process. P(Ti) is designed as
shown in Table 3. According to the design of the decision tree, the number of features V is
10. The design of Ki in Formula (12) is as follows in Table 4.

Table 3. Smartphone mode transition probability allocation.

Changing Text Call Fpp Pocket Bpp Swing

Changing 1/7 1/7 1/7 1/7 1/7 1/7 1/7
Text 1/2 1/2 - - - - -
Call 1/2 - 1/2 - - - -
Fpp 1/2 - - 1/2 - - -

Pocket 1/2 - - - 1/2 - -
Bpp 1/2 - - - - 1/2 -

Swing 1/2 - - - - - 1/2

Table 4. Smartphone mode related feature quantity allocation.

Changing Text Call Fpp Pocket Bpp Swing

Ki 3 7 7 6 7 6 5

2.3.3. Recognition of Motion Mode Based on DT-BP

(1) Design of motion mode recognition algorithm based on decision tree

In this paper, the recognition algorithm is designed by taking the motion modes of
static, walking, turning, going upstairs and downstairs, escalator, and elevator as examples.
According to the analysis of the extracted features, the dynamic and static are distinguished
by the acceleration variance. We used positive and negative zero-crossing rates of accel-
eration air pressure gradients as the features of static, elevator and escalator recognition.
Dynamic motion includes walking on the ground, going upstairs, going downstairs and
turning. Walking, turning, going upstairs and downstairs are coupled movements, that
is, turning and going up and down stairs also have walking movements. Therefore, the
main work was to distinguish turning and going up and down stairs from walking. The
amplitude of angular velocity is used to recognize turning. We used the auto-correlation
coefficient, Fourier dominant frequency, and elevation gradient to recognize going up and
down stairs and walking, as shown in Figure 2.



Micromachines 2022, 13, 1865 9 of 14

Micromachines 2022, 13, x FOR PEER REVIEW 9 of 15 
 

 

Table 4. Smartphone mode related feature quantity allocation. 

 Changing Text Call Fpp Pocket Bpp Swing 
iK  3 7 7 6 7 6 5 

2.3.3. Recognition of Motion Mode Based on DT-BP 
(1) Design of motion mode recognition algorithm based on decision tree 
In this paper, the recognition algorithm is designed by taking the motion modes of 

static, walking, turning, going upstairs and downstairs, escalator, and elevator as exam-
ples. According to the analysis of the extracted features, the dynamic and static are distin-
guished by the acceleration variance. We used positive and negative zero-crossing rates 
of acceleration air pressure gradients as the features of static, elevator and escalator recog-
nition. Dynamic motion includes walking on the ground, going upstairs, going down-
stairs and turning. Walking, turning, going upstairs and downstairs are coupled move-
ments, that is, turning and going up and down stairs also have walking movements. 
Therefore, the main work was to distinguish turning and going up and down stairs from 
walking. The amplitude of angular velocity is used to recognize turning. We used the 
auto-correlation coefficient, Fourier dominant frequency, and elevation gradient to recog-
nize going up and down stairs and walking, as shown in Figure 2. 

 
Figure 2. The example of decision tree for motion modes recognition. 

The process of motion mode recognition based on the decision tree method is as fol-
lows: 

a). If ( )var a  is greater than the threshold aThre , it is considered dynamic, other-
wise, it is static. 

b). When it is static, it is necessary to distinguish between static and elevator and 
escalator. We use the zero-crossing rate of acceleration amplitude as judgment, and the 
judgment criterion is: 

( ) ( )( )
( ) ( )( )

1, &

1, &
0,

el k el k el

el k el k el

el

flag if p a Thre p a Thre

flag if p a Thre p a Thre

flag otherwise

+ + − −

− + + −

 = > <
 = − > <
 =

 (18) 

where k aa svm g= − , asvm  is the amplitude of acceleration and g is the acceleration of 
gravity. ( )kp a+  and ( )kp a−  is the positive and negative zero-crossing rate. elThre+  
and elThre−  are the zero-crossing judgment threshold. If 0elflag ≠ , it is going up or 
down elevator. 

Figure 2. The example of decision tree for motion modes recognition.

The process of motion mode recognition based on the decision tree method is as
follows:

(a) If var(a) is greater than the threshold Threa, it is considered dynamic, otherwise, it is
static.

(b) When it is static, it is necessary to distinguish between static and elevator and escalator.
We use the zero-crossing rate of acceleration amplitude as judgment, and the judgment
criterion is: 

f lagel = 1, i f (p+(ak) > Thre+el&p−(ak) < Thre−el)
f lagel = −1, i f (p−(ak) > Thre+el&p+(ak) < Thre−el)
f lagel = 0, otherwise

(18)

where ak = svma − g, svma is the amplitude of acceleration and g is the acceleration
of gravity. p+(ak) and p−(ak) is the positive and negative zero-crossing rate. Thre+el
and Thre−el are the zero-crossing judgment threshold. If f lagel 6= 0, it is going up or
down elevator.

(c) When the motion is the elevator, we judge whether going up or down. If f lagel = 1
and the previous state is not the elevator, the state is going up elevator. If f lagel = 1
and the previous state is the elevator, the state is going down elevator. If f lagel = −1
and the previous state is not the elevator, the state is going down elevator. If f lagel =
−1 and the previous state is the elevator, the state is going up elevator.

(d) If f lagel = 0, it is further recognized whether it is an escalator, and the recognition
criteria are as follows:

f lages = −1, i f (p+(dbro) > Thre+es&p−(dbro) < Thre−es)
f lages = 1, i f (p−(dbro) > Thre+es&p+(dbro) < Thre−es)
f lages = 0, otherwise

(19)

where dbro is the pressure gradient, p+(dbro) and p−(dbro) are the positive and
negative zero-crossing rates of the pressure gradient. Thre+es and Thre−es are the
thresholds. When f lages = 0, it is the static state. If f lages = 1, the escalator is going
up. If f lages = −1, it is the elevator is going down.

(e) When pedestrians are in a dynamic state, we mainly distinguish turning, stairs,
and walking. The angular velocity amplitude is used to recognize turning. When
svmw > Threw, it is turning.

(f) We use the auto-correlation coefficient and Fourier transform to distinguish stairs and
walking. The auto-correlation coefficient at the offset k = 2 and k = 4 as the judgment
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value, and the main frequency of the Fourier transform as the judgment condition.
The criterion is as follows:{

f lagst = 1, i f
(
|Ra(2)| > |Ra(4)|&Fa > Thre f a

)
f lagst = 0, otherwise

(20)

where Ra(2) is the correlation coefficient of the acceleration amplitude offset k = 2. Fa
represents the main frequency of the Fourier transform. Thre f a is the main frequency
judgment threshold. If f lagst = 1, it is up and downstairs, otherwise it is walking on
level ground.

(g) When pedestrians are going up and down the stairs, we use the height gradient value
to make judgments. The criterion is as follows:{

f lagh = 1, i f (dh > Threh)
f lagh = −1, i f (dh < Thre−h)

(21)

where Threh and Thre−h are the judgment thresholds of the height gradient. If f lagh =
1, it is going up the stairs. If f lagh = −1, it is going down the stairs.

(2) Probabilistic design based on DT-BP method

For the nine motion modes in the above example, the probability P(Ti) of each state in
the DT-BP method is determined according to the previous state. The transition probability
between each motion mode is shown in Table 5. According to Figure 2 and the decision tree
rules, the number of features V is 12, as shown in Table 6 for the design Ki in Formula (12).

Table 5. Motion mode transition probability allocation.

Static Wa US DS UE DE UC DC Turning

Static 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 -
Wa 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
US 1/4 1/4 1/4 - - - - - 1/4
DS 1/4 1/4 - 1/4 - - - - 1/4
UE 1/3 1/3 - - 1/3 - - - -
DE 1/3 1/3 - - - 1/3 - - -
UC 1/3 1/3 - - - - 1/3 - -
DC 1/3 1/3 - - - - - 1/3 -

Turning 1/5 1/5 1/5 1/5 - - - - 1/5

Wa is Walking, US is upstairs, DS is down stairs, UE is up elevator, DE is down elevator, UC is up escalator, DC is
down escalator.

Table 6. Motion mode related feature quantity allocation.

Static W US DS UE DE UC DC Turning

Ki 5 5 6 6 4 4 6 6 2

3. Experimental
3.1. Experimental Setup

To understand the effectiveness and limitations of our proposed Scenario recognition
algorithm, we conducted an implementation on Android to collect data. During the
experiment, we collected data using an Android smartphone (Huawei mate 8, whose
parameters are shown in Table 7), which was equipped with a three-axis accelerometer and
a three-axis gyroscope. We evaluated the proposed method in six common smartphone
modes (texting, calling, pants front pocket, clothes pocket, pants back pocket and hand
swing) and nine natural motion modes (static, walking, turning, upstairs and downstairs,
up escalator, down escalator, up elevator and down elevator). The threshold of smartphone
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mode and motion mode in the experimental are shown in Table 8. We compared the
proposed algorithm with state-of-the-art algorithms.

Table 7. Huawei mate 8 smartphone sensor and related parameters.

Sensors Type Parameters

GNSS sensor – Support GPS, A-GPS, GLONASS and BDS

accelerometer LSM330 Sensitivity: 0.0095768068 m/S2;
Measurement Range: 78.4532012939 m/S2

gyroscope LSM330 Sensitivity: 0.0012217305 rad/s;
Measurement Range: 34.9065856934 rad/s

magnetometer AK09911 Sensitivity: 0.0625 µT;
Measurement Range: 2000 µT

barometer AirPress sensor Rohm,
BM1383

Sensitivity: 0.0099999998 hPa;
Measurement Range: 1100 hPa

Bluetooth – 4.2 + BLE

Table 8. The threshold of smartphone mode and motion mode.

Smartphone Mode Motion Mode

Threshold Number Threshold Number

Thre 2 Threa 1.5
Threm f 2 1.5 Thre+el 0.9
Threm f 10 Thre−el 0.05
Threqh 1 Thre+es 0.9
Thre1 6 Thre−es 0.05
Thre2 6 Thre f a 14
Thre3 8 Threh 0.1

Thre−h −0.1

3.2. Experimental Results of Smartphone Mode Recognition

To test the algorithm of smartphone mode recognition, we collect text, calling, front
pants pocket, back pants pocket, clothes pocket, and hand-held positions, respectively.
There was a total of 9901 epoch data, including 568 epoch data in the changing, 2691 epoch
data in texting, 1236 epoch data in calling, 2095 epoch data in the front pants pocket
1512 epochs in the back pants pockets, 1561 epochs in clothes pocket and 238 epochs in
swing.

The accuracy of smartphone mode recognition is shown in Table 9. The recognition
accuracy was calculated with the following formula:

err =
Numreco

Numtrue
× 100% (22)

where Numreco is the number of epochs where the state recognition result is the same as the
state to be recognized. Numtrue is the actual number of epochs in the state to be recognized.
The results were similar to Table 9 in many tests. The average recognition accuracy was
99.06%, the lowest accuracy was 96.48%, and the recognition accuracy of all positions was
greater than 96%. The main reason is that the smartphone mode changing was followed by
various fixed smartphone modes. The error of various smartphone modes will be reflected
in the smartphone mode changing.

The comparison of the recognition accuracy of the algorithm in this paper with other
different algorithms [20,31] is shown in Table 10. From the table, the random forest has
the highest accuracy when texting and calling. DT-BP has the highest success rate in
hand-held. The average accuracy in this paper is slightly higher by 0.5%. Compared with
other methods based on machine learning, the DT-BP proposed in this paper has a slightly
higher recognition accuracy, and takes 0.51 s in total, while the random forest takes 8.34 s.
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The algorithm in this paper greatly reduces the operation time and ensures the recognition
success rate.

Table 9. Smartphone mode recognition results.

Changing Text Call Fpp Pocket Bpp Swing

Changing 96.48% 0.18% 0 0 2.64% 0 0.70%
Text 2.04% 97.96% 0 0 0 0 0
Call 1.13% 0 98.87% 0 0 0 0
Fpp 0.29% 0 0 99.71% 0 0 0

Pocket 0 0 0 0 100% 0 0
Bpp 0.40% 0 0 0 0 99.6% 0

Swing 1.68% 0 0 0 0 0 98.32%

Table 10. Comparison of smartphone mode recognition accuracy for different methods.

Text Call Pocket Swing Average

DT-BP 97.2% 98.0% 99.77% 98.32% 98.32%
SVM 97.96% 95.8% 95.2% 98.1% 96.765%

Bayesian Network 94.5% 97.2% 92.2% 93.6% 94.375%
Random Forest 99.0% 98.2% 97.1% 96.9% 97.8%

3.3. Experimental Results of Motion Mode Recognition

We collected static, walking, up and down stairs, elevator up and down, and escalator
up and down data, respectively, to test DT-BP. There was a total of 6789 epoch data,
including 3239 epochs in static, 2005 epochs in walking, 173 epochs in up the stairs,
165 epochs in down the stairs, 317 epochs in up the elevator, 319 epochs in down the elevator,
145 epochs in up the escalator, and 426 epochs in down the escalator. The recognition
accuracy was calculated by the Equation (22).

The accuracy of motion recognition is shown in Table 11, which was similar to many
tests. The average recognition accuracy of DT-BP was 97.3%, and the lowest was 88.73%,
which is down escalator. The main reason is that there is a parallel stage of the escalator
when getting on the escalator and preparing to get off the escalator. During this period,
the speed is uniform. It is difficult to recognize as the speed is submerged in the noise of
acceleration. The accuracy of the elevator going up and down and turning is the highest,
mainly because the acceleration change characteristics are obvious in these states. Since
the intermediate transition state of each motion process is static, it will be considered static
when detecting errors in the other eight states. Therefore, there will be more states of
detecting errors at rest.

Table 11. Motion mode recognition results.

Static W US DS UE DE UC DC Turning

Static 96.10% 2.07% 0.27% 0.24% 0 0.03% 0.03% 1.25% 0
W 0.17% 99.83% 0 0 0 0 0 0 0
US 0 0 100% 0 0 0 0 0 0
DS 0 0 0 100% 0 0 0 0 0
UE 0.95% 0 0 0 99.05% 0 0 0 0
DE 1.88 0 0 0 0 98.12% 0 0 0
UC 6.46% 0 0 0 0 0 93.54% 0 0
DC 11.27% 0 0 0 0 0 0 88.73% 0

Turning 0 0 0 0 0 0 0 0 100%

To further analyze DT-BP proposed in this paper, it is compared with other algo-
rithms [9,10,32–34], as shown in Figure 3. The recognition accuracy using a single machine
learning model was relatively lower. For example, SVM and KNN are both more than
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80%. The recognition success rate using multiple models will significantly improve with in-
creases in algorithm complexity and calculation cost. The accuracy of DT-BP is the same as
the method of machine learning using multiple models, and the computational complexity
and computational cost are significantly reduced.
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4. Conclusions

At present, the methods for scenario recognition are mainly machine-learning methods.
The recognition accuracy of a single model is not high. Multi-model fusion can improve
recognition accuracy. However, the computational cost is high, and it is heavily dependent
on feature selection. We mainly focused on two types of contexts: sports mode, and mobile
phone location to design a DT-BP recognition algorithm by introducing the Bayesian state
transition model based on experience design into the decision tree. It is more simplified
and easier to implement and has less computation and lower computational complexity. In
addition, it can obtain the same recognition accuracy as the multi-model machine learning
method.
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