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Abstract: Aimed at the problem of filter divergence caused by unknown noise statistical characteris-
tics or variable noise characteristics in an MEMS/GNSS integrated navigation system in a dynamic
environment, on the basis of revealing the parameter adjustment logic of covariance matching adap-
tive technology, a fusion adaptive filtering scheme combining innovation-based adaptive estimation
(IAE) and the adaptive fading Kalman filter (AFKF) is proposed. By setting two system tuning
parameters, for the process noise covariance adaptation loop and the measurement noise covariance
adaptation loop, covariance matching is sped up and achieves an effective suppression of filter diver-
gence. The vehicle-mounted experimental results show that the mean square error of the combined
attitude error obtained based on the fusion filtering method proposed in this paper is better than 0.5◦,
and the mean square error of the heading error is better than 1.5◦. The results can provide technical
support for the continuous extraction of low-cost attitude information from mobile platforms.

Keywords: multi-sensor fusion; combined attitude measurement; fusion filter; covariance matching;
adaptive filter

1. Introduction

The development of multi-sensor data fusion technology is the key to realizing high-
precision real-time attitude estimation [1–3]. Because of the nonlinearity of the heading and
attitude system, its information fusion method is different from that of a linear system. At
present, the common solutions to nonlinear problems are based on a mathematical model
and described completely with conditional a posteriori probability, but actual nonlinear
system operation is extremely difficult. The practical solution to the nonlinear problem
is to linearize the mathematical model and approximate the sampling method, but these
approaches have disadvantages, such as the linearization method having different degrees
of truncation error, and the sampling approximation method having difficulty with guaran-
teeing numerical stability in principle [4–6]. A refined strong tracking unscented Kalman
filter (RSTUKF) is proposed in refs [7]. This RSTUKF adopts the strategy of an assumption
test to identify kinematic model errors and is developed to enhance UKF robustness against
kinematic model errors. However, when the dimension is greater than 3, the statistical
characteristics of the posterior distribution of some sigma points to nonlinear functions
will be lost, and the estimation accuracy of the system will be reduced. Ref. [8] rigorously
derives a novel adaptive CKF (Cubature Kalman filter) with fading memory for kinematic
modelling errors and a new robust CKF with emerging memory for observation modelling
errors, using the concept of Mahalanobis distance without involving artificial empiricism.
However, CKF will discard part of the approximation error, which makes the filtering not
meet the quasi consistency, so that it is unable to accurately estimate the true value of the
state. The indirect Kalman filter is often used in the data processing of nonlinear systems
because of its unique advantages, but it requires that the dynamic characteristics and noise
statistical characteristics of the system be known. In the actual working environment, by
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setting two system tuning parameters for the process noise covariance adaptive loop and
measurement noise covariance adaptive loop, the speed of covariance matching is accel-
erated, and the filter divergence is effectively suppressed. Affected by the measurement
quality such as the multipath and internal measurement noise of the instrument, it is easy
to cause the deterioration of the prior information setting, as well as a sudden change of the
carrier itself, and the inaccurate setting of the initial value of the filter will affect the setting
of prior information and lead to filter divergence. To solve this problem, one straightfor-
ward solution is to estimate the unknown noise statistics; Refs. [9,10] proposed the adaptive
UKF method and the CKF method based on the maximum likelihood (ML) principle. On
this basis, Ref. [11] proposes an adaptive UKF method combining the maximum likelihood
principle and moving horizon estimation. On the other hand, Refs. [12,13] establish the
random weighting estimations of system noise characteristics on the basis of the maximum
a posteriori theory, and further develop a new Gaussian filtering method and an adaptive
UKF method. On this basis, Ref. [14] combines the windowing and random weighting
concepts and presents an adaptive UKF method. These methods, to a certain extent, weaken
the filter divergence problem caused by unknown noise statistical characteristics.

There are also many adaptive filtering schemes. Theories and algorithms of random
weighting estimation are established for estimating the covariance matrices of observation
residual vectors and innovation vectors [15]. This can adaptively determine the covariance
matrices of observation error and state error. Ref. [16] took into account the systematic
errors of observation and kinematic models in the filtering process. This adaptively adjusts
and updates the prior information through the equivalent weighting matrix and adaptive
factor to resist the disturbances of systematic model errors on system state estimation,
thus improving the accuracy of state parameter estimation. Ref. [17] presented a new
adaptive square root unscented particle filtering algorithm by combining the adaptive
filtering and square root filtering into the unscented particle filter. This can inhibit the
disturbance of kinematic model noise and the instability of filtering data in the process
of nonlinear filtering. Ref. [18] proposed an adaptive UKF with noise statistic estimator.
This can estimate and adjust the system noise statistics online according to the covariance
matching technology, which enhances the adaptive ability of standard UKF.

On the other hand, typical adaptive filtering schemes mainly include innovation-based
adaptive filtering (innovation-based adaptive estimation, IAE) and fading adaptive Kalman
filtering (the adaptive fading Kalman filter, AFKF) [19–21]. Because of the characteristics of
adjusting the process noise covariance matrix and the measurement covariance matrix at the
same time, the IAE method makes the corresponding covariance matrix show a nonpositive
definite state in practical applications, resulting in filter divergence [22,23]. The traditional
AFKF method has the limitation that the scale factor cannot be determined according to
the dynamic environment and the accuracy of the observation model. Combined with the
complementary characteristics of the two, an adaptive filtering method combining modified
IAE and AFKF is proposed in this paper. By setting two system tuning parameters for the
process noise covariance adaptive loop and the measurement noise covariance adaptive
loop, the covariance matching speed is accelerated, and the filtering divergence is effectively
suppressed.

2. MEMS/GNSS Combined Attitude
2.1. Error State Equation

Inertial navigation and satellite navigation have complementary advantages. Inertial
navigation systems can provide rich navigation information and do not rely on external
equipment, but they also have some shortcomings such as error divergence, and cannot
provide time. Satellite navigation has the advantages of stable precision output and
providing time references, but the signal is vulnerable to environmental interference and
dynamic response lag [24–26]. Inertial/satellite tight integration can be used to estimate
the attitude parameters of the carrier in a specific environment [27,28]. Assuming that the
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real state is xt, the nominal state is x, and the error state is δx, the stochastic system model
under the error state is deduced. The three are satisfied:

xt = x⊕ δx (1)

In the form, ⊕ stands for generalized addition. For the MEMS/GNSS system model,
the real state space chooses quaternion qn

b , velocity vn, position pn, gyroscope dynamic zero
offset bg and accelerometer dynamic zero offset ba. The nominal state determines the state
vector of the Kalman filter:

xt =
[
(qn

b )
T (vn)T (pn)T (bg)

T (ba)
T
]T

(2)

The differential equations of attitude quaternion, velocity and position are as follows:
.
qn

b = 1
2 Ω(ω(t))qn

b.
vn

= an(t)
.
pn

= vn(t)
(3)

In the form, ω(t)= [ωx ωy ωz
]T represents the output angle rate of the gyroscope

in the ideal state, and an indicates that the output acceleration in the ideal state is projected
in the n-system.

There are still many random errors in the calibrated MEMS sensor. If the error is not
estimated and compensated, the attitude error will accumulate until the solution is invalid.
Therefore, the output of the MEMS accelerometer and gyroscope is modelled including
random error factors:

ωm(t) = ω(t) + bg(t) + ng(t)
am(t) = C(qn

b )(am(t)− gn) + ba(t) + na(t)
(4)

In the formula, C(qn
b ) represents the directional cosine matrix corresponding to the

quaternion qn
b ; gn represents gravity vector; ng and na represent the rate noise with zero

mean Gaussian white noise characteristics; bg represents the dynamic zero offset of the
gyroscope; and ba represents the dynamic zero offset of the accelerometer, which is driven
by the Gaussian white noise vectors nwg and nwa with zero mean.

.
bg = nwg.
ba = nwa

(5)

The nominal state is obtained by combining Formula (3) and Formula (5):

.
q̂

n
b = 1

2 Ω(ω̂(t))q̂n
b.

v̂
n
= C(q̂n

b )ân(t) + gn
.
p̂

n
= v̂n(t)

.
b̂g(t) = 03×1.
b̂a(t) = 03×1

(6)

where:
ân(t) = am(t)− b̂a(t)

ω̂n(t) = ωm(t)− b̂g(t)
(7)

Generalized addition ⊕ is defined as the arithmetic addition rule between the nominal
state and error state, which is used to deal with velocity error δvn, positioning error δpn,



Micromachines 2022, 13, 1787 4 of 14

gyroscope dynamic zero bias error δbg and accelerometer dynamic zero bias error δba. For
the quaternion error, the generalized error is explained by introducing error quaternion:

δq = qt ⊗ q̂−1 ≈ [ 1
2 δθT 1]

T (8)

The quaternion error δθ, velocity error δvn, positioning error δpn, gyroscope dynamic
zero bias error δbg and accelerometer dynamic zero bias error δba are selected to form a
15-dimensional error state vector:

δx =
[
(δθ)T (δvn)T (δpn)T (δbg)

T (δba)
T
]T

(9)

The error state model of a continuous stochastic system is obtained:

δ
.
x(t) = Fδx(t) + GW (10)

In the formula:

F =


−bω̂×c 04×3 04×3 −I4×3 04×3
−Cn

b bâ×c 04×3 04×3 04×3 Cn
b

04×3 04×3 I4×3 04×3 04×3
04×3 04×3 04×3 04×3 04×3
04×3 04×3 04×3 04×3 04×3



G =


−I4×3 04×3 04×3 04×3
04×3 04×3 Cn

b 04×3
04×3 04×3 04×3 04×3
I4×3 04×3 04×3 04×3
04×3 04×3 I4×3 04×3



W =


ng

nwg
na

nwa


The continuous time noise covariance matrix Q and measurement noise covariance

matrix R are calculated according to reference [29].
In practical applications, the Kalman stochastic model is generally derived in contin-

uous time, and the continuous-time system needs to be equivalent to the corresponding
discrete form. The deterministic system can be equivalently processed by Taylor expansion,
and the stochastic system needs to test whether it still satisfies the basic noise hypothe-
sis of the Kalman filter after equivalent processing. Taking the sampling interval of the
MEMS gyroscope as the discretization interval Ts = tk − tk−1, the approximate equivalent
discretization process of a continuous stochastic system is obtained:

Xk = Φk/k−1Xk−1 + Γk−1Wk−1 (11)

In the formula:
Xk = X(tk) (12)

Φk/k−1 = eF(tk−1)Ts

eF(tk−1)Ts = I + F(tk−1)Ts

+F2(tk−1)
T2

s
2!

+F3(tk−1)
T3

s
3! + . . .

≈ I + F(tk−1)Ts

(13)

Γk−1 ≈
[

I +
1
2

F(tk−1)Ts

]
G(tk−1) ≈ G(tk−1) (14)
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The discretization process of the system noise covariance matrix is as follows (15):

Qd =
∫ tk+Ts

tk

Φ(tk+1, τ)GQGTΦ(tk+1, τ)dτ (15)

The discretization process of the one-step prediction mean square error matrix is as
follows:

Pk/k−1 = Φk−1PkΦT
k−1 + Qd (16)

2.2. Measurement Equation

The measurement equation is in discrete form in most environments. Averaging the
measurement equation within the discretization interval is the essence of the discretization
continuous measurement equation. In the MEMS/GNSS integrated attitude estimation
scheme, select the difference between the velocity information v̂n

ins and position information
p̂n

ins calculated by the inertial navigation system, and the velocity information v̂n
gnss position

information p̂n
gnss calculated by the satellite navigation system:

Zk =

[
v̂n

ins − v̂n
gnss

p̂n
ins − p̂n

gnss

]
= Hkδxk + Vk (17)

In the formula, V represents the noise measurement vector and the measurement
matrix Hk uses the chain rule to calculate the partial derivative:

Hk ,
∂H
∂x̃

∣∣∣∣
x
=

∂H
∂x

∣∣∣∣
x

∂x
∂x̃

∣∣∣∣
x
= HxXx̃ (18)

In the formula, partial Hx =
[
06×3 I6×6 06×6

]
represents the partial derivative of

the measurement information to the whole state, and Xx̃ represents the partial derivative
of the state vector to the error state vector:

Xx̃ ,
∂x
∂x̃

∣∣∣∣
x
=

 Θ 04×6 04×6
06×3 I6×6 06×6
06×3 06×6 I6×6

 (19)

In the formula:

Θ =
∂q⊗ δq

∂θ
=

1
2


−q2 −q3 −q4
q1 −q4 q3
q4 q1 −q2
−q3 q2 q1

 (20)

2.3. Filter Reset

According to standard Kalman filtering theory, the estimated value of the error state
vector is iteratively updated. After the indirect Kalman filter is updated, the error state is
combined with the nominal state by using the generalized addition combination method
described in Formula (1), and the estimated value of the system state vector is obtained.
After the error state is injected into the nominal state, the error state and its covariance
matrix will be reset:

δx̂ ← 0
P← MPMT (21)

In the formula:

M =

[
I3 +

⌊
1
2 δθ̂×

⌋
03×12

012×3 I12×12

]
(22)

Based on Equation (22), more accurate results can be produced, but indirect Kalman
filtering is used in most cases, which usually simplifies the reset mode, that is, M = I.
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3. Parameter Adaptive Logic Adjustment

In the case of accurate modelling, the covariance matrix of innovation theory should
be approximately equal to the covariance of its statistical samples. In the case of inaccurate
modelling, the innovation variance mismatch is caused by the deviation of noise parameters
Qk and Rk. When the trace of the variance of the innovation statistical sample is much
larger than that of the covariance matrix of the innovation theory, a serious innovation
mismatch is generally considered to be caused by the gross error of the measurement
information, so the measurement should be isolated in time without updating the Kalman
filter measurement.

When the innovation mismatch is not serious, the covariance matching technique
which introduces the proportional coefficient to adjust the noise parameters Qk and Rk can
be used. When the covariance of the innovation statistics sample is near the theoretical
innovation covariance, it shows that the two covariances almost match. If the covariance of
innovation statistics is greater than its theoretical value, the noise parameter value needs to
be reduced, and if the actual covariance is less than its theoretical value, the noise parameter
value should be increased. The update method is as follows:

Qk = αQk Rk = βRk (23)

Qk = α−(k+1)Qk Rk = β−(k+1)Rk (24)

In the formula, α and β are the adjustment scale coefficients. Taking Equation (23) as
an example, the gain matrix Kk of the adaptive Kalman filter can be changed to:

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + βRk)
−1

(25)

Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Γk−1(αQk−1)ΓT

k−1 (26)

To measure the degree of innovation mismatch, the degree of mismatch (degree of
mismatch, DOM) is used to describe:

DOM =
tr(Ĉvk )

tr(Cvk )
(27)

Ĉvk represents the covariance of innovation statistics and Cvk represents the covariance
of theoretical innovation. When the DOM is approximately equal to the set threshold, that is,
the innovation statistical covariance based on the sampling sequence is approximately equal
to the theoretical innovation covariance, the noise parameters should remain unchanged.
When the DOM is larger than the set threshold, that is, the trace of the innovation statistical
covariance is larger than that of the theoretical innovation covariance, it is necessary to
increase the process noise statistics. When the DOM ratio is small, that is, the trace of the
innovation statistical covariance is smaller than that of the theoretical innovation covariance,
it is necessary to reduce the process noise statistics.

4. Adaptive Kalman Filtering Method Combining Innovation and Fading

By calculating the maximum likelihood estimation of the innovation variance, the IAE
method modifies the Kalman filtering gain directly from the actual innovation calculation
to improve the Kalman filtering robustness when the satellite navigation system measure-
ment changes greatly. By introducing the suboptimal scaling factor, the AFKF can reduce
the inertia of the filter by changing the ratio of system noise and measurement noise to
improve the tracking ability in a dynamic environment. By combining the complementary
characteristics of the two, a new adaptive scheme is proposed in this paper. In the scheme,
two system tuning parameters, the forgetting factor and the noise covariance scaling fac-
tor, are provided. When the filter reaches the optimal estimation, the actual innovation
covariance and the theoretical innovation covariance based on the sampling sequence
should be equal. This method has the advantages of high computational efficiency and
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good numerical stability, and can avoid losing the positive definiteness of the matrix in the
Kalman filtering cycle. According to the theoretical covariance matrix of the innovation
sequence, an adaptive scheme based on the covariance matching technique is obtained
by setting two system tuning parameters: the forgetting factor and the noise covariance
scaling factor.

C∗vk
= Hk(λpPk/k−1)HT

k + λRRk (28)

The change in covariance is basically determined by two parameters:{
P∗k/k−1 = λpPk/k−1

R∗k = λRRk
(29)

In the formula, λp and λR denote the forgetting factor and noise covariance scaling
factor, respectively. Moreover, considering that λp should not be less than 1, the calculation
process is obtained: 

(λp)ii= max(1
tr(Ĉvk )

tr(Cvk )
) i = 1, 2, . . . , m

(λR)jj =
tr(Ĉvk )

tr(Cvk )
i = 1, 2, . . . , n

(30)

Although both λp and λR are related to the covariance of innovation statistics, the
moving windows are Np and NR, respectively. Different filtering methods have different
factor settings. Reference [30] gives a specific description of the value. When performing
the process noise covariance adaptation, it is necessary to obtain the latest information
of the measurement noise intensity in advance; otherwise, innovation covariance matrix
deviation will occur due to the inability to detect the measurement noise correctly, resulting
in unreliable results. This problem can be avoided by using two different window sizes:
one for the process noise covariance adaptive loop and the other for measuring the noise
covariance adaptive loop.

According to the basic formula of the Kalman filter, the covariance matrix of the
measurement updating phase is obtained.

P∗k = (I − K∗k Hk)P∗k/k−1 (31)

The gain K∗k of the improved adaptive Kalman filter can be expressed as:

K∗k = P∗k/k−1HT
k (HkP∗k/k−1HT

k + R∗k )
−1

(32)

5. Experimental Results and Analysis

The test platform is shown in Figure 1, the inertial sensor and the satellite antenna
are fixed on the customized experimental platform, and the relative position relationship
between the sensors is known. The combination result of POS510 and GPS RTK is used
as the reference. The installation information of the rod arm is 0.022 quill 0.141 meme
0.282 (single bit: m). Low-cost inertial data are collected via MTi-G and NAV440 at a 100 Hz
sampling rate. Time alignment is carried out between systems through GPS.

5.1. Verification Experiment of Algorithm Feasibility

The data involved in this experiment are provided by MTi-G. The sampling frequency
of the MTi-G inertial measurement unit is set to 100 Hz. The experiment was carried out
on a sports field with a length of 400 m and a width of 300 m. The sensor was placed on
a trolley. At first, it moved irregularly, then it moved regularly along a straight line, and
finally it moved irregularly again. The motion trajectory is shown in Figure 2. The MTi-G
performance parameters are shown in Table 1.
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The 15-dimensional error vector is used as the state quantity of Kalman filtering,
and the relevant parameters are set as follows: the initial velocity error is 0.01 m/s, the
initial position error is 0.01m, the acceleration zero offset initial value is 0.3 m/s2, the gyro
zero bias initial value is 0.3◦/s, the accelerometer noise is σa = 0.5 m/s2, the gyro noise is
σg = 1◦/s, the accelerometer zero bias drive noise is σba = 10−5 m/s2, and the gyro zero
bias drive noise is σbg = 10−5◦/s.
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Table 1. Performance parameters of the inertial sensor.

Gyroscope Accelerometer

Full range ±1000◦/s ±18 g
Bias stability 10 ◦/h 40 µg
Noise density 0.01◦/s/

√
Hz 80 µg/

√
Hz

Nonlinearity 0.01 % 0.03 %
Full range ±1000◦/s ±18 g

Around the four data processing methods set below, the low dynamic attitude experi-
ments are carried out using the data collected by the MEMS/GNSS integrated system, and
the corresponding attitude estimation results are obtained for comparison.

Experiment 1: General NoBaro filter provided by Xsens Company.
Experiment 2: IAE Kalman filtering algorithm, innovation adaptive moving window

N is set to 20.
Experiment 3: AFKF filtering algorithm.
Experiment 4: The adaptive scheme of combining IAE and AFKF designed in this

paper, the mobile windows Np and NR are set to 20 and 30, respectively.
The results obtained by General NoBaro filtering are used as a reference to test the

relative accuracy from Experiment 2 to Experiment 4.
Combined with the analysis of Figures 3 and 4, we can see that when the accelerometer

and gyroscope data change, although Experiment 2 and 3 can slow down the degree
of innovation variance mismatch to some extent, the mitigation is not enough. In this
paper, a fusion adaptive scheme of IAE and AFKF is proposed, which can quickly achieve
covariance matching by setting two tuning factors, and the solution result is obviously
better than that of Experiment 2 and Experiment 3. Table 2 shows the statistical values
of the mean square error, maximum error, minimum error and average error of attitude
angle error, obtained by comparing the IAE method, AFKF method, fusion IAE and AFKF
adaptive method proposed in this paper with the reference data solution results.
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Figure 3. Accelerometer data and gyroscope data.

Through the analysis of Table 2, it can be seen that the mean square error of the attitude
angle is less than 0.5◦, the average error is less than 0.2◦, the mean square error of the
heading angle is less than 1.5◦, and the average error is less than 1◦. It is verified that
the proposed algorithm can provide scheme support for the continuous acquisition of
MEMS/GNSS attitude system parameters.
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Table 2. Attitude angle calculation error.

a. Attitude angle calculation error of IAE method

Roll Angle Pitch Angle Heading Angle

Mean square error 0.3180◦ −0.5892◦ −1.3980◦

Maximum error 3.7212◦ 2.7815◦ 8.5192◦

Minimum error −4.2544◦ −2.7833◦ −7.4890◦

Average error −0.2036◦ 0.3023◦ 0.8874◦

b. Attitude angle calculation error of AFKF method

Roll angle Pitch angle Heading angle

Mean square error 0. 4710◦ 0.2750◦ 1.3212◦

Maximum error 2.9892◦ 2.8896◦ 8.0192◦

Minimum error −3.9210◦ −3.1158◦ −7.8504◦

Average error 0.1138◦ 0.1484◦ 0.8249◦

c. Attitude angle calculation error of fusion IAE and AFKF adaptive method

Roll angle Pitch angle Heading angle

Mean square error 0.1180◦ 0.2471◦ 1.2633◦

Maximum error 1.9952◦ 2.3727◦ 4.8672◦

Minimum error −3.7170◦ −2.7108◦ −7.4280◦

Average error −0.0037◦ 0.1136◦ 0.8029◦

5.2. City Car-Borne Experiment in Urban Environment Experiment

On board test data will be collected on 7 June 2021. The model of car used in the
experiment is a Skoda Rapid Spaceback. The choice of driving path includes three charac-
teristics: open sky, urban block and urban canyon. The total length of the route is 13 km.
The vehicle is stationary for the first ten minutes. After starting, the average driving speed
is 50 km/h. In the complex urban environment, the satellite signal will be interfered to
varying degrees, and the satellite signal occlusion in the urban canyon environment is so
serious that it cannot even receive the satellite signal, which can be seen from the PDOP
value of Figure 5. The difference in measurement information quality can better verify the
performance of the fusion filtering algorithm proposed in this paper, based on the above
complex environment analysis combined with IAE and AFKF adaptive indirect Kalman
filtering scheme performance. The trajectory of the carrier is shown in Figure 6.
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The satellite navigation system provides the initial position and initial velocity of the
moving carrier during the experiment, and the inertial navigation system provides the
initial attitude information. For high precision inertial navigation, the horizontal alignment
in the initial alignment process can be completed quickly, and the azimuth alignment
process takes 5–30 min to complete. For an MEMS inertial navigation system, the initial
alignment process needs to be assisted by a satellite navigation system.

Accelerometer data and gyroscope data are shown in Figure 7. The attitude curve
obtained by the fusion filtering method proposed in this paper is shown in Figure 8. As seen
from the figure, in the complex program environment, the algorithm proposed in this paper
is still consistent with the high-precision reference change, to verify the absolute reliability
of the algorithm. The attitude error map is shown in Figure 9. By calculating its statistical
characteristics, it is found that the mean square error of the roll angle is 0.3018◦, the mean
square error of the pitch angle is 0.4756◦, and the mean square error of the heading angle is
1.4218◦. The comparison with the high-precision reference system shows that the mean
square error of attitude error is less than 0.5◦ and the mean square error of heading angle
is less than 1.5◦. Its absolute accuracy can provide technical support for the continuous
extraction of low-cost inertial/satellite heading attitude parameters.
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It is noteworthy that the variations in noise estimation are not presented here because
both experiments were in dynamic scenarios; the stimulated dynamical noises contain not
only the filter estimation errors, but also the outliers induced by the complex experimental
conditions. This was especially significant for the car-driving test in the urban environment,
where the road conditions affected the test data significantly. Therefore, the variations in the
noise estimations, i.e., the covariance components of the estimated attitude angles, did not
show an apparent convergency trend, as one expected in some low dynamic experiments.

6. Conclusions

This paper reveals the parameter adjustment logic of covariance matching adaptive
technology. Based on the existing problems of the IAE and AFKF methods, a new adaptive
filtering scheme combining the two methods is proposed. Two system tuning parameters
are set for the adaptive loop of process noise covariance and the adaptive loop of measuring
noise covariance to accelerate the speed of covariance matching. Vehicle experiments in
low dynamic open ground and high dynamic urban environments verify the performance
of the proposed algorithm in different scenarios. The experimental results show that the
mean square error of the horizontal attitude error is better than 0.5◦ and the mean square
error of the heading error is better than 1.5◦. The results can provide technical support for
the continuous acquisition of dynamic parameters.
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