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Abstract: MXenes with unique mechanical, optical, electronic, and thermal properties along with a
specific large surface area for surface functionalization/modification, high electrical conductivity,
magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates
for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered
much attention in the field of cancer therapy since they have shown suitable photothermal effects, bio-
compatibility, and luminescence properties. However, outstanding challenging issues regarding their
pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction
conditions, and clinical translational studies still need to be addressed. Herein, recent advances and
upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in
cancer therapy using MXenes have been discussed to motivate researchers to further investigate this
field of science.

Keywords: MXene-based systems; nanocomposites; cancer nanotherapy; photothermal therapy;
targeted drug delivery

1. Introduction

Today, the development of nanotechnology has resulted in the creation of several
multidisciplinary research domains, namely bionanotechnology, with special contributions
in biomedicine and cancer nanomedicine [1–6]. An assortment of nanoparticles and nanoar-
chitectures has been designed with satisfactory biocompatibility and targeting properties
for a wide range of biomedical and clinical applications; however, due to the stringent
regulatory necessities, only a handful of them have entered into clinical trials/studies.
Nevertheless, these materials have garnered widespread attention from scientists for their
deployment as anticancer nanocarriers and nanobiosensors [7–12].

Chiral peptide/protein-derived supramolecules with biological activities can assist in
prevention and treatment of various diseases, especially cancers [13]. Biomedicine entails
ground-breaking supplies and technologies for specific therapeutics. Traditional policies
are not in favor relative to modern medicine due to vital shortcomings, such as nonexact
targeting, as well as the absence of synergistic attributes, wherein the booming development
of nanotechnologies brings forth a fresh outlook to the biomedicine arena [14–16]. In this
context, the design of nanomaterials with therapeutic and diagnostic potential has been
widely noticed by researchers. For instance, two-dimensional (2D) hexagonal boron nitride
(2D h-BN) flatlands have garnered much attention due to the optical and physicochemical
properties, outstanding thermal/chemical constancy, and biocompatibility [17,18], showing
excellent potential in biomedicine [19].
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On the other hand, with the discovery of graphene [20], transition metal dichalco-
genides (e.g., TiS2, MoS2, and WS2) [21–23], black phosphorus nanosheets [24], layered dou-
ble hydroxides [25], graphitic carbon nitride [26], boron nitride [27], metal–organic frame-
works [28], and transition metal oxides [29], among others, a variety of advanced micro- and
nanosystems have been designed for cancer therapy. Recently, MXenes, 2D material com-
prising transition metal carbides, nitrides or carbonitrides, have captured widespread atten-
tion in photothermal therapy (PTT) in view of the high light-to-heat conversion efficiency,
elevated paramagnetic performance, and large specific surface area [30–32]. However,
MXene photothermal agents (PTAs) are unstable in aqueous/oxidative surroundings as
their terminal functional groups (–F, –OH, or –O) are vulnerable to oxidation and tend to ag-
gregate in physiological solutions; although, after suitable modification/functionalization,
the stability and properties of these structures can be improved [33].

Among the recently introduced materials, MXenes are two-dimensional (2D) transition
metal carbides and nitrides with a vast surface area and hydrophilicity, which have been
explored in biomedical engineering and medicine [34–36]. They have swiftly become
popular for a range of study domains due to their outstanding features since Yury Gogotsi
and colleagues synthesized the first family member in 2011 [37]. Although MXenes are a
relatively young family of 2D materials, the number of scientific articles connected to them
nearly doubles every year [30,38–41].

Two-dimensional MXenes are contemporary 2D transition metal carbides, which re-
semble graphene sheets comprising the formula Mn+1XnTx (e.g., Ti3C2Tx). Exfoliation of
the “A” layer from a “MAX” predecessor—where M, A, and X indicate the transition metal,
elements from IIIA or IVA, and N, respectively—can be used to make these materials,
depending on their situation and type of applications. Among widely developed methods
deployed for the manufacturing of MXenes comprise urea glass (e.g., Mo2C and Mo2N) [42],
chemical vapor deposition (e.g., Mo2C) [43], molten salt etching (e.g., Ti4N3Tx) [44], hy-
drothermal fabrication (e.g., Ti3C2Tx) [45], and electrochemical synthesis (e.g., Ti2CTx).
The wet etching method, in particular, may be utilized to create them in good quality
with largely hydrophilic properties [46]. MXenes and their derivatives can be applied for
photothermal and photodynamic cancer therapy [47]. These materials with unique optical
properties have been explored in the field of (bio)imaging and (bio)sensing [48–50]. On
the other hand, routinely applied anticancer drugs for chemotherapy may suffer from
low specificity/selectivity, high toxicity, off-target toxic effects, and inappropriate clear-
ance. Designing multifunctional systems with high biocompatibility, specificity/selectivity,
biodistribution, and bioavailability can help to improve the efficiency of cancer therapy
and tumor ablation. MXene-based micro- and nanosystems have been applied for tar-
geted delivery of anticancer drugs/therapeutic agents in cancer therapy after surface
functionalization/modification by bioactive/biocompatible agents (Figure 1) [51,52].

In addition, long-acting therapeutic anticancer drugs may cause possible toxic effects
on normal cells along with a low efficacy in cancer therapy [53–55]. Low bioavailability of
conventional chemotherapy, with some drawbacks, such as possible side effects, high dose
requirements, and multidrug resistance, have prompted researchers to find new solutions
based on drug delivery micro- and nanosystems with the benefits of higher solubility, spe-
cific targeting, high biocompatibility, selectivity, and reduced toxicity [56,57]. Conventional
organics with biodegradable attributes and strong biocompatibility have been extensively
studied for clinical applications, but their poor thermal and chemical stability and low
functionality are some of the obstacles limiting their clinical developments [58]. In this
context, MXene-based nanostructures have unveiled a variety of clinical and biomedical po-
tential owing to their unique physicochemical properties, such as ease of functionalization,
tunable structures, biosafety, and physiological constancy [59]. However, crucial aspects of
toxicity and biocompatibility ought to be further explored. The potential toxicity of MXenes
has been investigated throughout the embryonic and angiogenesis phases, wherein they
have revealed negative impacts during the early stages of embryogenesis [58]; about 46%
of MXene-exposed embryos died within 15 days [60]. MXenes were shown to impede the
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angiogenesis of the embryo’s chorioallantoic membrane after 5 days at the tested dosages.
When compared to the controls, several genes were deregulated in the liver tissues and
brain of embryos treated with MXene; nevertheless, further research and analysis are
warranted to comprehend the potential toxicity of MXenes [60,61]. The biosafety of MXenes
can be improved by applying suitable functionalization and hybridization techniques using
biocompatible and biodegradable agents (e.g., cellulose and chitosan) along with optimized
reaction/synthesis conditions.
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The key applications of MXenes in biomedicine comprise, among others, (bio)imaging,
tissue engineering, (bio)sensing, cancer therapy/diagnosis, and drug delivery [62,63]. Prop-
erties of MXenes can be improved by using suitable hybridization techniques, providing
MXenes with improved thickness and compactness of the silane film, uniformity, good
density, and fewer flaws [64,65]; wherever conductivity is essential for interaction with
electromagnetic waves, interference shielding may exploit appropriate magnetic dipoles.
Additionally, 2D MXenes ranging from metallic to semiconductor can detect adjustable
conductivity; 2D MXenes with hydrophilicity ought to be manufactured using cost-effective
methods [64]. Their layered structures, on the other hand, are likely to hinder the creation of
gaps, which may change their magnetic and electric characteristics. As a result, unfavorable
effects on the electromagnetic interference activity of composites made from MXenes are
not unlikely. This significant disadvantage could be resolved by synergistic interactions
amongst MXenes and conducting/magnetic materials [64,66].
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Studies on these materials expose the need of controlling their physicochemical char-
acteristics through surface charge engineering for novel biotechnological and biomedical
applications [67]. For cancer therapy and tissue-engineering purposes, MXene-based micro-
and nanosystems offer adjustable mechanical properties, excellent photothermal conver-
sion efficiency, targeting competence, biocompatibility, selectivity, and regulated drug
discharge [68]. For instance, composite hydrogels based on Ti3C2 MXene and cellulose
have been engineered to respond quickly to near-infrared (NIR)-stimulated features. These
manufactured hydrogels modified with doxorubicin (DOX) hydrochloride exhibited excep-
tional drug release acceleration and could be employed as nanoplatforms for intratumoral
cancer therapy [68].

2. Advanced MXene-Based Micro- and Nanosystems
2.1. Structural, Chemical, and Electronic Properties of MXenes

MXenes have functional groups such as F, OH, and O after its exfoliation from the
MAX phase where the O- and/or OH- terminated groups are the most stable, as F group
will be substituted with OH groups on rinsing and storing in H2O [69]. Xie et al. stated
that OH groups could be transformed into O terminations over high-temperature and/or
metal adsorption procedures [69]. In addition, O-terminated MXene could decompose
into bare MXene up on interaction with Mg, Ca, Al, or other metals [70]. Modeling is
crucial in designing MXenes with novel structures [71]. Surface groups are located above
the hollow sites among three near C atoms [72,73]. The precise configurations of surface
groups depend on both, their species and the MXene’s constituent materials [74]. MXenes
have many usage such as, electronic [75], dielectric [76], magnetic [77–80], elastic [81],
thermoelectric [82], and optical properties [83] as has been documented by computational
studies. Bare MXene, such as Tin+1Xn, are known to be metallic in behavior [83]. In terms of
X atoms, titanium nitrides exhibit more metallic properties than titanium carbides, simply
because the N atom possesses one more electron than the C atom [84]. In terms of the
chemical properties of MXenes, Naguib et al. reported that Ti3C2Tx are oxidized in air, CO2,
or pressurized water [85] wherein the oxidation results in the formation of anatase TiO2
nanocrystals embedded in amorphous carbon sheets (TiO2-C hybrid structure).

One of interesting topics in the progression of theranostic nanomedicines for in vivo
clinical studies is the finding of association among the physicochemical nature of the de-
signed structures and their connections with living organizations. Therefore, experimental
studies are necessary to assess the productivity, toxic effects, and their physio-chemical
properties. Comprehensive preclinical studies and the assessment of the biological interac-
tions of MXenes and their complexes in in vivo systems could support to find their limits
in the future [86].

MXenes are important due to their widespread applications as supercapacitors [87],
in electromagnetic interference shielding [88], optical and light detection [89], and even
in communication and biology [90]. The optical properties of MXenes have displayed the
possibility of producing electrodes [90], photonic devices and plasmonic applications [91].
Furthermore, biocompatible MXene (Ti3C2)-based composites (MnOx/Ti3C2) were applied
for cancer theranostics, nanoplatform for photothermal cancer/tumor nanotherapy by
photoacoustic imaging [92].

2.2. MXene-Based Biomimetic Plasmonic Method

An effective plasmonic-enhanced technique has been presented and used for biomimetic
photo-induced plasmonic assembly (NPD@M). Nb2C plasmon (MXene), Pt nanozymes,
DOX, and tumor cytomembrane make up the assemblage for targeted cancer therapy. The
hot-electrons created from MXene after homogeneous targeting and internalization into
cancer cells notably promote the catalase-like and oxidase-like functions of Pt nanozymes
to generate O2 and reactive oxygen species (ROS), combined with tumor-penetrating pho-
tothermal therapy. DOX is also released in acidic conditions, aided by O2 and ROS-induced
suppression of P-glycoprotein (P-gp)-mediated drug efflux [93]. These results demon-
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strated that MXene-augmented nanozyme therapy decreased the HeLa cell viability by
38.67% when compared to control cells; nanozyme catalytic activity was improved by the
hot-electron oscillations from Nb2C by NIR-II laser to kill tumors. NPD@M was inserted
into the body by the tail vein so that it could enter the tumor through the EPR effect
and tumor cytomembrane targeting while the NIR-II light illumination and photothermal
possessions expanded tumor vessels to improve the blood pressure to a drug eruption.
The nanozyme activity was boosted by the plasmon thermoplastic result. Using a high
concentration of H2O2 high (100 µM~1 mM) in the tumor results in down-regulation of
the hypoxia-inducible factor (HIF-1α). Concurrently, the heightened oxidase endorses
ROS production which reduces the mitochondrial energy source to P-gp glycoprotein,
while a membrane efflux pump recognizes the chemotherapeutic drugs for transporting
out of cells. This process counters multidrug resistance and recovers the chemotherapy
effectiveness. Collectively, biomimetic plasmonic assembly completes the tumor treatment
by irradiation of NIR-II, as a novel strategy to promote the nanozyme biocatalyst and
plasmonic application in tumors (Figure 2) [94].
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2.3. MXene/DOXjade Platforms

For synergistic cancer therapy, Ti3C2-PVP@DOXjade, a pH-responsive dual-therapeutic
compound based on deferasirox and DOX, was created wherein photo-irradiation with
Ti3C2-PVP@DOXjade displayed a pH-responsive iron chelation/PTT/chemotherapy anti-
cancer activity [95]. Cancer cells have a high requirement for iron with important roles in
cell proliferation, tumor growth, and metastasis thus rendering iron metabolism a promis-
ing therapeutic target. Unfortunately, existing iron-based therapy techniques are frequently
ineffective and have side effects. The prodrug combines deferasirox (ExJade®), a therapeuti-
cally authorized iron chelator, with DOX, a topoisomerase 2 inhibitor (DOX). DOXjade was
loaded onto ultrathin 2D Ti3C2 MXene nanosheets to create Ti3C2-PVP@DOXjade, which
allows DOXjade’s iron chelation and chemotherapeutic functions to be photo-activated
at tumor sites, additionally potentiating a robust photothermal effect with photothermal
conversion efficiencies up to 40%. Ti3C2-PVP@DOXjade promotes apoptotic cell death and
down-regulates the iron depletion-induced iron transferrin receptor, according to antitumor
mechanistic studies as iron chelation/photothermal/chemotherapy responds to the pH of
the tumor [95].

Two-dimensional ultrathin Ti3C2 MXene nanosheets were predicted to react with
DOXjade in this setting. The ensuing construct, known as Ti3C2-PVP@DOXjade, was
projected to have high photothermal efficiency [96]. Indeed, when exposed to NIR light at
808 nm inside the optical-therapeutic window (650–900 nm), Ti3C2 nanosheets included in
Ti3C2-PVP@DOXjade demonstrated photothermal conversion efficiencies up to 40% and
bestowed a good PTT performance [97,98]. Furthermore, Ti3C2-PVP@DOXjade flaunted a
sensitive tumor pH-responsive iron chelation/PTT/chemotherapy anticancer impact. To
remove the Al layer, Ti3AlC2 Max phase crystals were etched in an aqueous HF solution
to generate Ti3C2 which was treated with an aqueous tetrapropylammonium hydroxide
(TPAOH) solution and after agitation, the multilayer Ti3C2 nanosheets were formed. MX-
enes nanosheets and PVP (polyvinylpyrrolidone) were mixed in phosphate-buffered saline
to afford Ti3C2-PVP; notably, the DOXjade was produced via the modification of DOX
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to offer hydrazones [99]. In phosphate-buffered saline (PBS) at pH = 7.4, DOXjade was
loaded on Ti3C2-PVP under an argon atmosphere to afford DOXjade-loaded Ti3C2-PVP
(Figures 3 and 4).
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2.4. Ti3C2 Nanosheet-Based Camouflaged Bionic Cascaded-Enzyme Nanoreactor

The use of enzymes to generate ROS at tumor locations has emerged as a new tech-
nique for controlling intracellular redox states in anticancer therapy. The Ti3C2 nanosheet-
based camouflaged bionic cascaded-enzyme nanoreactor has been applied for combined
tumor enzyme dynamic treatment (EDT), phototherapy, and deoxygenation-activated
chemotherapy [100]. The deoxygenation-activated drug tirapazamine (TPZ) was loaded
onto Ti3C2 nanosheets, glucose oxidase (GOX), and chloroperoxidase (CPO) to furnish
Ti3C2-GOX-CPO/TPZ (TGCT) which was implanted into nanosized cancer cell-derived
membrane vesicles with high-expressed CD47 (meTGCT). The cascade reaction of GOX and
CPO, into tumor cells, might create HClO for the effective EDT. Simultaneously, additional
laser irradiation would speed up the enzymic-catalytic reaction rate and boost singlet
oxygen production (1O2). A local hypoxic environment combined with EDT-induced
oxygen depletion activates a deoxygenation-sensitive prodrug for treatment. Therefore,
the synergistic therapeutic benefits of tumor phototherapy, EDT, and chemotherapy are
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increased in meTGCT. This cascaded-enzyme nanoreactor affords a good method to bring
in anticancer treatment (Figure 5A) [100]. TGCT nanocascaded enzymes were created
through the reaction of GOX and CPO onto Ti3C2 nanosheets with TPZ drug loading
and the biomimetic alteration of CD47-overexpressed cancer cell membrane offer a bionic
cascaded-enzyme nanoreactor (as meTGCT). MeTGCT was affected by tumor cells and
the enzyme consumes glucose and oxygen in tumor areas to generate the lethal HClO.
Under NIR laser irradiation, Ti3C2 may create both, heat, and ROS, where heat can speed
up the enzyme-catalyzed reaction rate and ROS generation, exacerbating the hypoxic state
in the target tumor environment (TME). Then, as a hypoxia-activated prodrug, TPZ is
activated by reductase, causing DNA breakage and cell death, thus enhancing EDT and
phototherapy effects. As a result, hypoxia-activated chemotherapy may achieve magnified
synergistic effects in this camouflaged cascaded-enzyme nanoreactor, effectively inhibiting
tumor development [100] (Figure 5B).
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2.5. Few-Layered Nb2C (FNC) for Osteoclastogenesis Suppression Inhibited Inflammation
and Osteoclastogenesis

Implant-derived particulates, such as ultra-high molecular-weight polyethylene
(UHMWPE), activate the immune system to phagocytose particles, resulting in the produc-
tion of ROS [101]. ROS stimulates osteoclast genesis and causes macrophages to release
cytokines, which aid in the progression of osteolysis. The few-layered Nb2C (FNC) is an
antioxidant with the ability to reduce cytokine production and inhibit osteoclast genesis by
ROS adsorption. Furthermore, in a mouse calvarial model, local injection of a few-layered
Nb2C (FNC) reduces UHMWPE and induced osteolysis. As a result, it has been demon-
strated that FNC could be beneficial in the treatment of osteolytic bone disease encouraged
by excessive osteoclast genesis. In this process, the reaction of Nb2AlC, LiF, and HCl
provided bulk Nb2C (BNC) which was treated with tetrapropylammonium hydroxide
(TPAOH) to offer FNC. The ensuing product (few-layered Nb2C) was washed with DI
water, centrifuged, and dried. It was demonstrated that FNC was effective in scavenging
ROS for treating ROS-related diseases via FNC adsorption of ROS in the process of osteo-
clast genesis suppression in vitro. Furthermore, the findings displayed that osteolysis was
condensed in vivo when UHMWPE was stimulated (Figure 6) [101].
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2.6. Advanced Systems Based on Ti3C2 MXenes

Titanium carbide (Ti3C2) MXenes were developed by surface modification in the
presence of antioxidants (sodium ascorbate, SA, and dopamine, DA) to obtain
(DA/SA@Ti3C2 = DSTC) [33]. Antioxidants improved the MXenes stability by trapping
oxidants and the MXenes functionalization process with biotic molecules, therefore glucose
oxidase (GOx) and photosensitizer (chlorin e6 = Ce6 PS) were attached to the DSTC surface
through the carbodiimide link to provide Ce6/GOx@SDTC = CGDSTC). It was applied for
glucose deprivation and photodynamic therapy for the co-killing of cancer cells. Increasing
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the solution temperature by laser irradiation boosted the enzymatic activity of CGDSTC
nanosheets. These nanosheets exhibited cytocompatibility to HePG2 and HeLa cells; it
was established that 90% of cells were killed by glucose and laser irradiation through the
cooperative outcome between famine therapy and phototherapy. The possible mechanisms
of synthesized CGDSTC nanosheets are illustrated in Figure 7A [33]. Glucose-rich environ-
ments provide gluconic acid in the tumor by GOx, subsequently sensitizing the tumor cells
to photothermal properties by limiting the tumor glycolytic path. Photo irradiation with
808 and 671 nm lasers participates in tumor cell destruction by supporting Ti3C2- mediated
PTT and Ce6-mediated PDT properties; higher temperature produces tumor oxygen levels
alongside with GOx. Accordingly, synthesized CGDSTC nanosheets by starvation and
phototherapy, remove the tumor cells more safely. The enzyme (GOx) and photosensitizer
(Ce6) were sequentially conjugated onto the DSTC nanosheets via carbodiimide coupling
between the carboxyl groups and amine groups of DSTC nanosheets to attain CGDSTC
nanosheets with photodynamic and starvation properties (Figure 7B) [33].
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the effect of ROS adsorption. Subsequently, the inflammatory and osteoclast-specific genes were
down-regulated [101].

Through the fluorescence imaging, MXene-based multifunctional nanosheets were
developed to expand high cancer therapeutic efficacy via the cooperative effect. The
stability of Ti3C2 MXene was improved by surface modification with the antioxidants
such as sodium ascorbate (SA) and dopamine (DA) to offer DA/SA@Ti3C2 (abbreviated
as DSTC).

2.7. MXene Quantum Dot/ZIF-Based Systems for Anticancer Drug Delivery

Designing novel stimuli-responsive multifunctional structures for targeted drug de-
livery in cancer therapy has been studied [102,103]. For instance, zeolitic imidazolate
framework-8 (ZIF-8) with a large and precise surface expanse, encapsulates DOX and MX-
ene quantum dot (MQD) to furnish MQD@ZIF-8/DOX with high photothermal conversion
efficacy and ROS generation ability to provide excellent photothermal therapy and pho-
todynamic therapy effects. In addition, DOX was loaded into MQD@ZIF-8 nanoparticles
which released the DOX at pH 5.6. Multifunctional MQD@ZIF-8 drug delivery is illustrated
in Figure 8, where Zn2+ was immobilized on MQD as nucleation nodes. MQD@ZIF-8 com-
posites were synthesized in situ via the rapid reaction between Zn2+ and 2-MIM molecules.
The anticancer drug, DOX, was encapsulated in MQD@ZIF-8 where MQD served as PTA
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and PS in this system to realize combined PDT/PTT therapy, which rapidly converted
NIR light energy to ablative heat and generated ROS under UV laser irradiation to kill
cancer cells. Moreover, DOX release could be markedly increased under the tumor envi-
ronment. The MQD@ZIF-8/DOX nanocarrier can therefore achieve the effect of combined
chemotherapy and phototherapy during tumor treatment [102,103].
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delivery [97].

Multifunctional MQD@ZIF-8 drug delivery system was prepared by instantaneously
capturing MQD with phototherapeutic potential and the chemotherapeutic drug DOX in a
ZIF-8 environment. The MQD@ZIF-8 nanocarrier had a modest preparation and proficiently
linked pH with NIR dual responsiveness to excite the drug release. Through the cell test, it
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was illustrated that MQD@ZIF-8 had a greater biocompatibility, and MQD@ZIF-8 could
produce temperature and ROS around cells under 808 nm laser and UV irradiation for
killing HeLa cells, individually. Thus, MQD@ZIF-8 could be considered as a suitable
platform with superb tumor therapeutic potential.

2.8. Ionic Liquid-Exfoliated Ti3C2Tx MXene ((IL)-Ti3C2Tx MXene) Nanosheets in
Cancer Treatment

Ti3C2Tx MXenes with potential activity in cancer treatment were produced through
an ionic liquid (IL) stripping process; DOX was loaded into (IL)-Ti3C2Tx MXene to pro-
vide composites with pH-responsive behavior and photosensitivity with enhanced drug
release upon 808 nm laser irradiation [104]. These nanocomposites exhibited high chemical
stability and good biocompatibility. They could inhibit tumor growth using synergistic
photothermal therapy and chemotherapy; photoacoustic imaging has great potential in
cancer treatment (Figure 9) [104].
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using an IL-assisted exfoliating (red patterns) method for photoacoustic imaging-guided synergistic
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IL-supported exfoliation of the MXene phase could provide few-layer IL-Ti3C2Tx
Under 808 nm laser irradiation, the IL-Ti3C2Tx MXene nanosheets exhibited high chemi-
cal stability and robust near-infrared absorption, with suitable photothermal conversion
efficiency. The IL-Ti3C2Tx MXene nanosheets could be applied for targeted delivery of
DOX with pH-/photosensitivity; the drug release was enhanced in an acidic situation
under the laser irradiation (808 nm). These nanosheets displayed good photothermal
effects on 4T1 cells under 808 nm (in vitro) to obtain the decent photoacoustic image. Fur-
thermore, they exhibited appropriate antitumor properties (in vitro and in vivo). Thus,
these MXene-based systems can be considered for photoacoustic imaging and synergistic
photothermal/chemotherapy of cancer with high efficiency [104].

2.9. MXene@Au-Polyethylene Glycol Composites Drug Release

MXene@Au-polyethylene glycol composites have been developed as targeted drug
delivery systems with a high capacity for loading chemotherapeutic agents (DOX) [105];
these nanosystems exhibited both NIR laser-triggered and pH-responsive drug release
modes [106]. Owing to surface modification with thiol polyethylene glycol aldehyde
chains (SH-PEG-CHO) connected to the MXene by Au nanoparticles, the system showed
improved photothermal stability, biosafety, and histocompatibility during in vivo and
in vitro tests. In addition, based on the good photothermal conversion capability of both
Au nanomaterials and MXenes, these nanosystems exhibited synergistic photothermal
ablation and chemotherapy for tumor/cancer therapy. Their passively targeted release
properties also enhanced the cellular uptake of DOX at tumor sites, thus improving the
efficiency of the drug. Future explorations ought to move towards designing surface-
modified MXene-based drug delivery platforms with high drug-loading capacity, multiple
drug release modes, and synergistic therapy, offering new opportunities for targeted cancer
therapy and tumor ablation (Figure 10) [106].
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A variety of MXene-based micro-and nano systems have been designed for targeted
cancer therapy (Table 1).

Table 1. Different MXene-based systems for cancer therapy.

Formulations Targeted
Tissue/Organ Advantages/Benefits Biocompatibility

and Toxicity Ref.

Nb2C-Pt-DOX@M Skin

Biomimetic plasmonic
assembly completed the
tumor treatment by
irradiation of NIR-II, as a
novel strategy to promote the
nanozyme biocatalyst and
plasmonic application
in tumors.

Bioplasmonic
assembly of
biocatalyst

[94]

DOXjade-loaded
Ti3C2-PVP Skin

A pH-responsive
dual-therapeutic compound
based on federation and DOX,
was created wherein
photo-irradiation with
Ti3C2-PVP@DOXjade
displayed a pH-responsive
iron chela-
tion/PTT/chemotherapy
anticancer activity.

Good
biocompatibility

and lower
cytotoxicity

[95]
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Table 1. Cont.

Formulations Targeted
Tissue/Organ Advantages/Benefits Biocompatibility

and Toxicity Ref.

MeTGCT Skin

Under NIR laser irradiation,
Ti3C2 may create both heat
and ROS, where heat can
speed up the
enzyme-catalyzed reaction
rate and ROS generation,
exacerbating the hypoxic
state in the target TME.

Good
biocompatibility [100]

Few-layered Nb2C
(FNC) bone

Few-layered Nb2C (FNC)
reduces UHMWPE and
induced osteolysis.

Good
biocompatibility [101]

CGDSTC
nanosheets Skin

It was applied for glucose
deprivation and
photodynamic therapy for the
cokilling of cancer cells

Higher
stability and

biologically safe
under

nonstimulus
conditions

[33]

MXene quantum
dot/ZIF-based
systems

Skin

DOX and MXene quantum
dot (MQD) to furnish
MQD@ZIF-8/DOX with high
photothermal conversion
efficacy and ROS
generation ability

Good
biocompatibility,
used as a drug

delivery
platform.

[97]

Few-layer Ti3C2Tx
MXene nanosheets Skin

photoacoustic imaging
and synergistic
photothermal/chemotherapy
of cancer.

Good solubility,
nontoxicity [104]

MXene@Au-
polyethylene glycol
composites

Skin

Improved photothermal
stability, biosafety, and
histocompatibility during
in vivo and vitro tests.

Good
biocompatibility [106]

3. Conclusions and Perspectives

MXenes, with their intrinsic physicochemical features and superb biocompatibility,
have acquired a lot of interest in wide-ranging biological and biomedical applications. By
managing preparative constraints, external features could be modified for cancer therapeu-
tics and diagnostics. MXene-based micro- and nanosystems can be applied for targeted
delivery of anticancer drugs/therapeutic agents, with the advantages of low toxicity and
good biocompatibility. However, the improvement of biocompatibility, pharmacokinetics,
and biodegradability of these structures ought to be focused comprehensively; discovering
simple, cost-effective, and environmentally benign synthesis/functionalization approaches,
optimized synthesis/reaction conditions, and efficient hybridization uniting biocompati-
ble/biodegradable agents, are the key parameters in improving the properties and effec-
tiveness of MXene-based systems. The verification of successful absorption of therapeutic
chemicals from the circulation into the desired location is a key challenge in systemic
disposition. The vascular endothelial cell, which acts as an obstacle between organs and
blood, is one of the most important concerns. Endothelial cells’ cellular acceptance of
manmade nanosystems is thus critical for their biological and therapeutic applications.
MXene-based composites can be functionalized or modified utilizing appropriate functional
groups/agents to enhance their loading capacity, biocompatibility, and bioavailability. This
strategy can also be adopted to reduce undesirable/adverse side effects as well as probable
immune system reactions. MXene-based materials for targeted drug delivery in cancer
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therapy would continue their fast progress made in less than half a decade in the future at a
rapid pace. Hopefully, the analyses and outlook directions offered in this review can guide
scientists and engineers to focus on the development of MXenes and their derivatives for
targeted drug delivery and cancer therapy.
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