
Citation: Čeponis, A.; Mažeika, D.;
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Abstract: This paper provides numerical and experimental investigations of a ring-shaped piezoelec-
tric 5-DOF robot that performs planar and angular motions of spherical payload. The robot consists
of a piezoelectric ring glued on a special stainless-steel ring with three spikes oriented in the radial
direction of the ring. The spherical payload is placed on top of the piezoelectric ring and is moved
or rotated when a particular excitation regime is used. An alumina oxide ball is glued at the end
of each spike of the steel ring and is used as contacting element. The spikes are used to transfer
vibrations of the piezoelectric ring to contacting elements and to induce the planar motion of the
payload. Additionally, three alumina oxide balls are glued on the top surface of the piezoelectric
ring and are used to generate rotational motion of the spherical payload by impacting it. Finally, the
top electrode of the piezoceramic ring is divided into six equal sections and is used to control the
direction of angular and planar motion of the payload. Numerical modeling of the robot showed that
vibration modes suitable for angular and planar motions are obtained at a frequency of 28.25 kHz
and 41.86 kHz, respectively. Experimental investigation showed that the maximum angular velocity
of the payload is 30.12 RPM while the maximum linear motion of the robot is 29.34 mm/s when an
excitation voltage of 200 Vp-p was applied and a payload of 25.1 g was used.

Keywords: piezoelectric robot; angular-planar motion; 5-DOF motion

1. Introduction

Mechatronic systems are used in modern engineering applications such as robots, med-
ical devices, high precision positioning systems as well as other fields where the demand
for motion systems with high accuracy is relevant. Accuracy is one of the main features of
mechatronic devices, however scalability and size become significant features because they
allow for the reduction of dimensions or the integration of them into a particular system.
The device must consist of a minimal number of components to reduce the size of the
system. Such a type of system allows for increased reliability, controllability, and accuracy
of the system. In addition, there is a demand for motion actuation systems that can provide
multi-degrees-of-freedom (MDOF) devices [1]. Usually, electromagnetic actuators and
motors are used for that purpose. However, such a system includes several single-degree
of freedom actuators used to achieve MDOF motion. The application of electromagnetic
actuators and motors for multi-degree-of-freedom systems with high accuracy has several
drawbacks, such as magnetization of payload or driven part, non-systemic motion errors
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because of interference with external magnetic fields, and limited miniaturization and inte-
gration possibilities [2–4]. Additionally, the control problem of electromagnetic actuators
is challenging because of complex dynamics, internal modeling uncertainties, external
disturbances, and high nonlinearity [2]. Electromagnetic actuators may have a compact
size, however, they are difficult to scale up, have high energy consumption, and produce
heat [3]. The application of several electromagnetic actuators and motors for multi-DOF
systems increases structural complexity, and the control of such systems becomes more
complicated [5,6]. Therefore, new precise motion devices must be developed to overcome
the aforementioned drawbacks.

Piezoelectric actuators and motors are one of the options that meet the requirements of
modern mechatronic systems. This type of actuator has a high resolution of motion, short
response time, and scalable design, they are magnetic field free, and can achieve MDOF
motion using a single actuator [4,7]. Moreover, piezoelectric actuators and motors are
gear-free and have a self-locking ability, therefore a simpler structural design of the system
can be developed [8]. In comparison with electromagnetic actuators, the most important
advantage of piezoelectric actuators is the ability to provide nanometer or sub-micrometer
resolution [9]. Control of the piezoelectric actuators is performed by the applied voltage
on particular electrodes and evaluation is made by measuring dynamic characteristics of
the system, such as displacement, velocity, or acceleration [10]. Flexible design principles
allow for the development of piezoelectric motors with single or dual rotors, or for the
implementation of motors with several stators [11,12]. However, it must be noted that
piezoelectric capacity is changed during the operation of the motor, which causes a severe
hysteresis to its input voltage-output displacement relationship, so motion control systems
must be implemented [4].

The most common design of MDOF piezoelectric actuators is based on different shapes
of beams, such as rectangular [13], cylindrical [14], or conical [15]. Usually, the operating
principle of piezoelectric actuators with different beam-type stators is based on bending
vibration modes or superposition of several modes including bending and longitudinal
modes. Despite the simple design, these actuators can provide up to 3-DOF angular motion
of spherical rotor while planar motion is not foreseen. Therefore, the development of
piezoelectric robots that can provide both motion types is highly relevant.

Hernando-Gracia et al. reported on a piezoelectric bidirectional planar motion robot [16].
The robot is based on a rectangular beam made from glass and two piezoceramic patches
placed at the ends of the beam. Four cylindrical beams are placed at the bottom of the
piezoelectric beam and operate as legs of the robot that transfer vibrations of the robot body
to the contact surface. The operation principle is based on the superposition of two bending
modes that generate traveling wave in the body of the robot. Two harmonic electric signals
with shifted phases are used for the excitation. The robot provides bidirectional motion with
a speed of up to 100 mm/s while an excitation voltage of 65 Vp-p is applied. However, the
authors did not foresee the steering option as well as the possibility to rotate the payload
that could be placed on top of the robot.

Deng et al. proposed a planar motion robot that is based on four legs driven by
two groups of piezo ceramic rings [17]. Each leg bends in vertical and horizontal directions
simultaneously when two groups of the piezoceramic rings are excited by applying different
excitation schematics and the planar motion of the robot is induced. This operation mode
ensures the possibility to obtain micrometer scale positioning for long distances. In addition,
the robot can operate in a swinging mode which ensures the possibility to obtain a nano-
metric resolution of the motion. Based on numerical and experimental investigations,
authors claimed that the robot can achieve a linear velocity of 3.65 mm/s and 3.52 mm/s in
X and Y directions, respectively, while an excitation voltage of 400 Vp-p and a mechanical
load of 19.4 kg was applied. It must be noted that the design of the robot has limited
scalability options and excitation of the angular motion of the payload was not foreseen.

Chen et al. reported on piezoelectric angular motion motor with two degrees of
freedom [18]. The design of the motor is based on two identical cross-type stators that
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are formed around the ring and placed in front of each other. A spherical rotor is placed
between stators. Eight piezo ceramic patches are placed at the ends of cross-type stators
and are used to excite B11 and B12 vibration modes of elastic rings and to rotate the spherical
rotor. The design and operation principle of the motor allows for achieving two 2-DOF
motions of the rotor. The motor achieves a rotation velocity of 769.7 deg/s while an
excitation voltage of 300 Vp-p is applied. The motor has a simple and scalable design and
can provide 2-DOF motion. However, the motor cannot provide planar motion of the rotor
and is limited to two degrees of freedom.

Yan et al. reported on three degrees of freedom rotary motor [19]. The design of
the motor is based on square shaped beam fixed at one end, while at the center of the
beam the cylindrical cavity is formed and is used to transfer vibrations of the stator to the
spherical rotor. The outside surface of the beam is covered by four piezo-ceramic patches.
The operation of the motor is based on the superposition of the second bending and first
longitudinal vibration modes of the stator. Vibrations of the motor are excited using three
harmonic signals with a phase difference of π/2. The motor provides angular motion of
the rotor about three axes while rotation direction is controlled using particular excitation
schematics. Experimental and numerical investigation showed that the motor can reach
up to 327 RPM rotation speed while the excitation voltage was 200 Vp-p. The design of the
motor is simple and well-scalable. However, it does not foresee the planar motion of the
payload and deeper integration of the motor with electronics.

Literature review showed that there are MDOF actuators and motors developed
up until now used to drive payload in the plane or obtain angular motion, however,
neither of them provide planar and angular motions simultaneously. This paper presents
a new design of the 5-DOF robot, the design of which is based on the results of previous
investigations [20].

2. Design and Operation Principle of the Robot

The proposed piezoelectric robot is composed of a ring-shaped passive layer made from
stainless steel and a piezoceramic ring (Figure 1). The top electrode of the piezoceramic
ring is divided into six segments and is used to control the direction of planar and angular
motion of the payload (Figure 2). The piezoceramic ring is glued on top of the passive layer
and is polarized along the thickness of the ring. The ring-shaped passive layer has three
spikes oriented in the radial direction of the ring. An alumina oxide ball is glued at the end
of each spike of the steel ring and is used as contacting element. The spikes are used to
transfer vibrations of the piezoelectric ring to contacting elements and to induce the planar
motion of the payload. Additionally, three alumina oxide balls are glued to the top surface
of the piezoelectric ring and are used to generate rotational motion of the spherical payload
about three axes. Dimensions of the piezoelectric robot are shown in Table 1. The robot has
a compact size, simple design, low profile, and good scalability. The total volume of the
investigated robot is 3.49 cm3 while the total weight of the robot without a payload is 6.15 g.

The operation of the robot is based on the excitation of two vibration modes, i.e., the
first bending mode of spikes and the third radial mode of piezoceramic ring. In order to
obtain the planar motion of the robot, a single harmonic signal with a frequency equal to
the natural frequency of the bending mode of the spike must be applied to the dedicated
segment of the electrode (Planar1–Planar3). As a result, the motion of the robot and payload
is generated. The motion direction of the robot is controlled by applying an electric signal
to different segments of the electrode.

Angular motion of the payload is generated when electrode segment
Angular1–Angular3 is affected by a harmonic signal with a frequency equal to the natural
frequency of the third radial mode of the piezoceramic ring. In this case, alumina oxide
contacting elements impacts payload, and the angular motion is generated. In order to
obtain the angular motion of the payload about a different axis, a particular segment dedi-
cated to the angular motion must be affected by an electrical signal. In addition, the passive
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segments of the piezoceramic ring must be short-circuited to avoid possible excitation of
parasitic vibrations of the passive contacting elements.
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Table 1. Geometrical parameters of the robot.

Parameter Value Description

R 10 mm The outer radius of the robot
r 7.5 mm The inner radius of the robot

SR 1 mm The spherical radius of alumina oxide contacts
H 4.5 mm Total height of the robot
h 2.75 mm Height of piezo ceramic ring
L 5 mm Length of spikes
Rs 1.25 mm The radius of spikes ends
α 60◦ Angular value of electrode segment
β 120◦ The angular value between spikes
γ 60◦ Angular value of top contacts

Special excitation schematics and a switching box are used to control the driving
signal (Figure 3). Configuration of the switching box used to control applied signals to the
particular electrode is shown in Table 2, where 1 and 0 denote active or passive segments
of the top electrode of the piezoceramic ring, respectively.
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Figure 3. Excitation schematics of the robot; 1—excitation signal source; 2—switching box dedicated
to controlling planar motion; 3—switching box dedicated to controlling angular motion.

Table 2. Control signals of the actuator.

Motion
Direction

Motion Type

Planar Angular
SW1 SW2 SW3 SW4 SW5 SW6

0◦ 1 0 1 1 0 0
120◦ 1 1 0 1 1 0
240◦ 0 0 1 0 0 1
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It can be seen that the motion control of the robot is performed by switching electric
signals between electrodes (Table 2). In addition, the control signals used in switch boxes
can be combined to obtain angular and planar motions at the same time. Additionally,
different algorithms used for planning planar and angular motion trajectories can be applied
to obtain synchronous or asynchronous motions of the robot and spherical payload [21].
Moreover, to obtain higher output forces or resolutions, the control algorithm can be set up
to use burst type or DC signals.

3. Numerical Investigation of the Robot

A numerical investigation was performed to indicate vibration modes suitable for
robot operation and investigate the electrical and mechanical characteristics of the robot.
The numerical model of the robot was built using Comsol Multiphysics 5.4 (COMSOL,
Inc., Stockholm, Sweden) with strict respect to geometrical characteristics shown in Table 1.
Material characteristics used to build the model are given in Table 3. Stainless steel DIN
1.4301 was used to build the passive layer of the robot and PIC181 (PI Ceramics, Lederhose,
Germany) piezoceramic was used for the piezoceramic ring (Figure 1). Finally, alumina
oxide characteristics were used to set up contacting elements placed at the ends of spikes
and on the top of piezoceramic ring.

Table 3. Materials properties used in the model.

Material Properties Stainless Steel DIN
1.4301

PI Ceramics
PIC181 Aluminum Oxide Ceramic

Density, [kg/m3] 8000 7800 3980
Young’s modulus, [N/m2] 193 × 109 7.6 × 1010 41.9 × 1010

Poisson’s coefficient 0.29 0.34 0.33
Isotropic structural loss factor 0.02 - 0.2 × 10−3

Relative permittivity - ε11
T/ε0 = 1200

ε33
T/ε0 = 1500

-

Elastic compliance coefficient [10−12 m2/N] - S11
E = 11.80

S33
E = 14.20

-

Elastic stiffness coefficient c33
D, [N/m2] - 16.6 × 1010 -

Piezoelectric constant d33 [10−12 m/V] - 265 -
Piezoelectric constant d31 [10−12 m/V] - −120 -
Piezoelectric constant d15 [10−12 m/V] - 475 -

Modal analysis of the robot was performed to indicate suitable vibration modes.
The payload was simulated as a mass, placed on top of the robot. The electrodes of the
piezoceramic ring were set to short circuit condition. No mechanical boundary conditions
were applied. Suitable modal shapes were found at the frequency of 28.32 kHz and
41.78 kHz (Figure 4).
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When analyzing the modal shapes of the robot, it can be seen that spikes of the ring
vibrate at the first bending mode at the frequency of 28.32 kHz. This mode will be used
for inducing the planar motion of the robot. The modal shape obtained at the frequency
of 41.78 kHz has dominated the third radial vibration mode of the piezoceramic ring and
will be used for rotating spherical payload. Moreover, it must be mentioned that the modal
shape used for planar motion also induces small vibrations of contact elements used for
angular motion located on the top of the piezoceramic ring. Similarly, the contacting
elements located on the spikes vibrate when the vibration mode used for angular motion is
generated. Therefore, the numerical analysis will be performed to analyze the ratio between
vibration amplitudes of the contacting elements used for planar and angular motion.

The next step of the numerical study was to calculate the impedance and phase
frequency characteristics of the robot. The results are shown in Figure 5. It was found that
the resonant frequency of vibrations used for planar and angular motion is 28.25 kHz and
41.86 kHz, respectively. The differences between natural and resonant frequencies are 7 Hz
and 8 Hz for planar and angular motions, respectively. Minor differences between natural
and resonance frequencies occur due to a mismatch in electrical boundary conditions during
calculations. However, the mismatches are minor and do not have a notable influence
on further calculations. Analyzing the results of impedance-phase characteristics in the
frequency domain it can be found that the damping of the robot is notable. It is affected by
a payload that was modeled as a distributed mass located on the top surface of the robot.
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Harmonic response analysis was performed to study displacement amplitudes of
contacting elements while electrodes used to generate planar or angular motion were
excited by harmonic signals. The ratio between vibration amplitudes of the active and
passive contacting element was investigated as well. Firstly, electrode Planar1 was af-
fected by the harmonic voltage of 100 Vp-p while other electrodes (Planar2, Planar3, and
Angular1–Angular3) were set to short circuit conditions. The results are given in Figure 6,
where the amplitudes of contact points vibrations in the frequency domain are shown.
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It can be seen that displacement amplitudes of contact vibrations located at the end of
the spike obtained by exciting Planar1 electrode reached the value of 7.49 µm or 74.9 nm/V.
On the other hand, it must be noted that the vibration amplitude of the passive spikes
is 2.29 µm or 22.9 nm/V and 2.26 µm or 22.6 nm/V. These displacements occur due to
vibrations transferred from the active electrode of the piezoceramic ring to the passive one
and can be named parasitic vibrations. The ratio between displacement amplitudes of active
and passive spikes is 3.3, so it will have a minor influence on the direction and accuracy
of planar motion. Vibration amplitudes of the contact points located on the piezoceramic
ring and used for angular motion have much smaller values and reach values in the range
of 0.37–0.38 µm or 3.7–3.8 nm/V. The difference between the vibration amplitudes of the
passive contacts related to planar and angular motions is approximately six times while the
difference between the vibration amplitude of active planar contact and passive angular
contacts is up to 20 times.

In order to analyze vibration amplitudes of the contact elements used for planar mo-
tions and their influence on remaining contacts, a numerical investigation was performed
while Planar2 and Planar3 electrodes were affected by excitation signals. A summary of the
results is given in Figure 7.
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Figure 7. Comparison of displacement amplitudes while electrodes Planar1–Planar3 are excited.

It can be seen that displacement amplitudes of contacts located at the ends of spikes
have similar vibration amplitudes when the corresponding electrode used for planar
motion is excited. The difference between amplitudes is around 10%. In addition, during
the excitation of planar motion, vibrations of passive spikes can be observed as well. The
difference between vibrations of active and passive spikes is 66.5% while the difference
between amplitudes of active spikes and passive contacts used for angular motion is up to
95%. Results show that during the excitation of planar motions the passive spikes can have
a minor influence on the motion direction of the robot. On the other hand, vibrations of
contacting elements used for angular motion also occurs during the excitation of planar
motion. Amplitudes of these vibrations are much smaller compared to vibrations of planar
contacts but they can influence the angular position of the payload. The errors of planar
and angular motion can be compensated using a motion control system.

To fully estimate the vibration characteristics of the contacts and their possible influ-
ence on the planar and angular position of the payload, the coupling ratio of vibration of
active and passive contacts was calculated. The coupling ratio is calculated as the ratio
between displacement amplitudes of contact elements located on the active and passive
electrodes. The results are given in Figure 8.
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It can be seen that coupling ratios between vibration amplitudes of planar and angular
contacts points when one of the planar electrodes is affected by an excitation signal varies
from 19 to 21. Therefore, vibrations for planar motion will have a minor influence on the
angular position of the payload. On the other hand, coupling ratios between vibration
amplitudes of contacts used to generate planar motion vary from 2.3 to 3.3. Therefore, it
can be found that vibrations of contacts related to planar motion could influence planar
motion accuracy and direction.

A numerical investigation dedicated to analyzing displacement amplitudes of contacts
used for the angular motion of the payload was performed. In addition, the vibrations of
passive angular and planar contacts will be analyzed. During the first numerical experiment,
the electrode Angular1 was applied by the harmonic electric signal of 100 Vp-p while the
remaining electrodes were set to short circuit condition. The results are shown in Figure 9.

Micromachines 2022, 13, x 11 of 20 
 

 

p while the remaining electrodes were set to short circuit condition. The results are shown 
in Figure 9. 

It can be seen that the vibration amplitude of contact located on the Angular1 elec-
trode reaches a value of 3.01 μm while contacts located on electrodes Angular2 and Angu-
lar3 have amplitudes of 1.16 μm and 1.2 μm, respectively. These displacements can be 
named parasitic vibrations because they can influence motion direction as well as the ac-
curacy of angular position. The differences between vibration amplitudes of active and 
passive contacts are up to 61.5%. In addition, it can be noticed that displacement peaks 
have slight drift, which occurs due to differences in electrical boundary conditions be-
tween electrodes, i.e., Angular1 is affected by excitation signal while Angular2 and Angu-
lar3 are set to short circuit conditions. Additionally, it can be found that contacts located 
at the ends of spikes vibrate with displacement amplitudes of 0.62–0.65 μm. The difference 
between displacement amplitudes of active angular and passive planar contacts is up to 
79% so the influence of passive contact vibrations will be minor and can be compensated 
via control and driving algorithms. 

 
Figure 9. Displacement—frequency characteristics of the robot when the voltage of 100 Vp-p is ap-
plied to electrode Angular1. 

Investigation of displacement amplitudes of contact elements located on Angular2 
and Angular3 electrodes was performed as well. Results are given in Figure 10. It can be 
seen that differences between displacement amplitudes of contacts used for inducing an-
gular motion do not exceed 7.66%. It shows that the angular motion of the payload in 
different directions will have similar characteristics. The difference between displacement 
amplitudes of passive angular contacts does not exceed 9.4%. It means that vibrations of 
passive contacts will have a minor influence on the angular positioning of the payload. 
Moreover, displacement amplitudes of contact points located at the ends of the spikes 
have almost the same amplitudes while the angular motion of the payload is generated. 

Figure 9. Displacement—frequency characteristics of the robot when the voltage of 100 Vp-p is
applied to electrode Angular1.

It can be seen that the vibration amplitude of contact located on the Angular1 electrode
reaches a value of 3.01 µm while contacts located on electrodes Angular2 and Angular3
have amplitudes of 1.16 µm and 1.2 µm, respectively. These displacements can be named
parasitic vibrations because they can influence motion direction as well as the accuracy
of angular position. The differences between vibration amplitudes of active and passive
contacts are up to 61.5%. In addition, it can be noticed that displacement peaks have
slight drift, which occurs due to differences in electrical boundary conditions between
electrodes, i.e., Angular1 is affected by excitation signal while Angular2 and Angular3 are
set to short circuit conditions. Additionally, it can be found that contacts located at the ends
of spikes vibrate with displacement amplitudes of 0.62–0.65 µm. The difference between
displacement amplitudes of active angular and passive planar contacts is up to 79% so the
influence of passive contact vibrations will be minor and can be compensated via control
and driving algorithms.

Investigation of displacement amplitudes of contact elements located on Angular2
and Angular3 electrodes was performed as well. Results are given in Figure 10. It can
be seen that differences between displacement amplitudes of contacts used for inducing
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angular motion do not exceed 7.66%. It shows that the angular motion of the payload in
different directions will have similar characteristics. The difference between displacement
amplitudes of passive angular contacts does not exceed 9.4%. It means that vibrations of
passive contacts will have a minor influence on the angular positioning of the payload.
Moreover, displacement amplitudes of contact points located at the ends of the spikes have
almost the same amplitudes while the angular motion of the payload is generated.
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Figure 10. Comparison of displacement amplitudes while electrodes Angular1–Angular3 excited by
excitation signal consistently.

The coupling ratio between vibration amplitudes of passive and active contacts was
calculated as well. The results are given in Figure 11. It shows that the coupling ratio
between active and passive angular contacts is around 2.6 while the ratio between contacts
of angular and planar motions is around 5. So, the generation of angular motion of the
payload has a minor influence on the planar positioning of the robot.
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Considering the results of the calculation it can be concluded that displacement
amplitudes of contacts are suitable for planar and angular motion generation. Moreover,
vibrations amplitudes of passive contacts are significantly smaller and will have a minor
influence on the disturbance of planar or angular motion direction.

A numerical study of motion trajectories of planar and angular contact points was
performed. For this purpose, a time-dependent study was used. Simulation time was
equal to one period of vibrations at the resonant frequency. Boundary conditions were
set the same as in previous cases. The excitation voltage of 100 Vp-p was applied to the
corresponding planar electrode Planar1 or angular electrode Angular1. The results are
shown in Figure 12.
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Figure 12. Motion trajectories of the contacting points located at the end of spike and driven by
Planar1 electrode (a) and motion trajectory of contact point located on top of Angular1 electrode (b).

It can be seen that the motion trajectory of contact located at the end of the spike has
an elliptical trajectory. The projection of the major axis of trajectory to the X axis is 8.7 µm
while the projection of the major axis to the Y axis is 13.25 µm. In addition, the projection
of the minor axis of motion trajectory to the X axis is 2.15 µm while the projection to the
Y axis is 4.11 µm. Considering the shape of the motion trajectory of contact, it can be stated
that the planar motion of the robot with payload will be generated during the excitation of
the Planar1 electrode.

Analyzing the motion trajectory of the contact point located on top of the Angular1
electrode it can be seen that it has an elliptical trajectory as well. The projection of the major
axis of motion trajectory to the X axis is 7.14 µm while to the Y axis is 5.86 µm. In addition,
the projection of the minor axis of motion trajectory to the X axis is 0.3 µm while the
projection to the Y axis is 0.63 µm. Considering the shape of the motion trajectory as well
as the length of the projections of the minor and major axis it can be stated that the angular
motion of the payload will be generated during the excitation of the Angular1 electrode.
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4. Experimental Investigation of the Robot

The prototype of the piezoelectric robot was made to perform an experimental inves-
tigation and validate the results of numerical modeling (Figure 13). The same materials
and dimensions of the robot were used for the prototype as it was used for the numerical
model (Tables 1 and 3). Planar and angular electrodes were divided into two equal sections
to have more flexible control and driving opportunities for the robot. However, an experi-
mental investigation was made by applying an excitation scheme as shown in Figure 3. So,
two smaller electrodes were paired for this purpose.
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Figure 13. Prototype of the robot; (a)—top view; (b)—bottom view; (c)—side view with
spherical payload.

Firstly, impedance–frequency characteristics of the robot were measured. SinePhase
impedance analyzer 16,777 k (SinePhase, Mödling, Austria) was used for measurement.
Electrical boundary conditions were the same as it was during numerical modeling.

It can be seen that the resonance frequency used for the planar and angular motion
of the robot was obtained at 28.45 kHz and 42.17 kHz, respectively (Figure 14). The
difference between modeled and measured frequencies is 130 Hz or 0.5% for planar motion
and 390 Hz or 1% for angular motion. The mistakes are caused by minor differences in
boundary conditions, material characteristics as well as manufacturing errors. However,
it can be stated that the results of numerical and experimental investigations are in good
agreement and further experimental investigations can be performed.
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Planar and angular velocities were measured as the next step of the experimental
investigation. For this purpose, an experimental setup was built (Figure 15).
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Figure 15. Schematics of the experimental setup; 1—computer; 2—signal generator with
two independent channels; 3—power amplifier; 4—oscilloscope; 5—laser displacement sensor for
planar motion measurements; 6— tachometer for angular motion measurements; 7—switch box for
planar motion control; 8—switch box for angular motion control; 9—the prototype of robot.

The experimental setup included a computer, a function generator WW5064 (Tabor
Electronics, Nesher, Israel), a power amplifier PD200X4 (Piezo Drive, Shortland, Australia),
an oscilloscope DL2000 (Yokogawa, Tokyo, Japan), a displacement sensor ILD 2300 (Micro-
Epsilon, Ortenburg, Germany), tachometer DT210 (Nidec-Shimpo, Tokyo, Japan) and
self-made switch boxes.

Firstly, the planar velocity of the robot was measured when electrode Planar1 was
affected by excitation voltages in the range from 80 Vp-p to 200 Vp-p with the step of
20 Vp-p. The frequency of the signal was set following impedance–frequency characteristics
(Figure 14). In addition, the measurement was performed by applying different masses of
spherical payloads, i.e., 6.8 g, 12.6 g, and 25.1 g. The results of the measurements are given
in Figure 16. It can be seen that a maximum planar speed of 29.11 mm/s was obtained
when the Planar1 electrode was excited by the voltage of 200 Vp-p and the mass of the
payload was 25.1 g. At these conditions, the maximum planar speed per one volt reached
0.145 mm/s/Vp-p. On the other hand, the lowest planar speed was obtained while the
Planar1 electrode was affected by an 80 Vp-p excitation signal with a payload of 6.8 g, and
as a result planar velocity of 4.12 mm/s or 0.05 mm/s/Vp-p. was obtained. In addition, it
can be stated that planar velocity has an almost linear dependence on excitation voltage.

To summarize the velocities of the planar motion of the robot, the same measurements
were performed with other electrodes as in the case of the Planar1 electrode. The summary
of maximum and minimum planar velocity is represented in Figure 17 when Planar2 and
Planar3 electrodes were affected by the excitation signal.
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Figure 17. Summary of minimum and maximum planar motion speeds while different payloads
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Minimum (Figure 17a) and maximum (Figure 17b) values of planar speeds were
obtained at a voltage of 80 Vp-p and 200 Vp-p, respectively. The differences between
minimum values of the planar speeds when the different payload is used and different
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electrodes are excited do not exceed 12%. Moreover, it can be seen that minimum planar
motion speeds depend on payload values. An increment of friction force between contacting
surfaces leads to higher planar velocity. On the other hand, the differences between maximal
values of the planar speeds when the different payloads are used and different electrodes
are excited do not exceed 14%. In general, it can be stated that planar motion velocity in
different directions and with different payloads depends on payload mass.

The next step of the experiment was dedicated to the measurement of angular ve-
locity. The same experimental setup was used as shown in Figure 15. Firstly, angular
velocity of the spherical payload was measured when electrode Angular1 was affected by
excitation voltages in the range from 80 Vp-p to 200 Vp-p with the step of 20 Vp-p. Three
spherical payloads were used for measurement, i.e., 6.8 g, 12.6 g, and 25.1 g. Results are
given in Figure 18.
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Figure 18. Dependence of angular velocity from excitation voltage when different payloads
are applied.

The lowest angular speed was obtained when a payload of 6.8 g was applied and
the excitation voltage was set to 80 Vp-p. The minimum angular speed was 4.27 RPM or
53.3 × 10−3 RPM/Vp-p. On the other hand, the highest angular speed of 29.58 RPM or
147.9 × 10−3 RPM/Vp-p was obtained when the Angular1 electrode was affected by the
voltage of 200 Vp-p and the payload was 25.1 g. Additionally, it can be stated that angular
velocity has an almost linear dependence on excitation voltage.

The same experiments were performed by exciting other electrodes, as was in the
case with the Angular1 electrode to summarize angular velocities in different directions.
Results are shown in Figure 19 when Angular2 and Angular3 electrodes were affected by
excitation signals.

Minimum and maximum values of angular motion were obtained at a voltage of
80 Vp-p and 200 Vp-p, respectively. Additionally, it can be noticed that minimal values
of angular velocity have differences that do not exceed 10% while maximum angular
velocity has differences that do not exceed 7%. So, it can be stated that angular velocity
will have almost the same dynamic characteristics in different directions. In addition, small
differences in planar and angular characteristics ensure the possibility to use simple control
and driving algorithms.
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Figure 19. Summary of minimum and maximum angular speed while different payloads are applied 
to the robot: (a)—summary of minimal angular speed; (b)—summary of maximum angular speeds. 
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Figure 19. Summary of minimum and maximum angular speed while different payloads are applied
to the robot: (a)—summary of minimal angular speed; (b)—summary of maximum angular speeds.

5. Conclusions

A new piezoelectric 5-DOF robot was developed and investigated that can provide
planar and angular motion. The robot has a simple and well-scalable design. Results of
the numerical investigation showed that the first bending mode of the spikes can be used
to obtain the planar motion of the robot and spherical payload. In addition, it was found
that the third radial mode of the piezoceramic ring is suitable to induce angular motion of
the payload in three different directions. Moreover, numerical investigations revealed that
the coupling ratio between vibration amplitudes of passive and active planar contacting
elements is up to 3.2 while the coupling between angular active and passive contacts is up
to 22. Additionally, similar coupling rations were indicated while the angular motion of
the payload are generated. However, to obtain high-accuracy motions, special control and
driving algorithms must be developed.

The experimental results showed that differences between calculated and measured
resonant frequencies are up to 7%. The robot can provide planar motion speed up to
29.34 mm/s while a 25.1 g payload is used and the voltage of 200 Vp-p is applied. A
maximum angular velocity of 30.12 RPM was achieved when a payload of 25.1 g was used
and a voltage of 200 Vp-p was applied. In addition, it was shown that differences in planar
and angular velocities in different directions obtained using different contact elements do
not exceed 14% when different payloads and voltages are used.
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