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Abstract: Length-based separation of DNA remains as relevant today as when gel electrophoresis was
introduced almost 100 years ago. While new, long-read genomics technologies have revolutionised
accessibility to powerful genomic data, the preparation of samples has not proceeded at the same
pace, with sample preparation often constituting a considerable bottleneck, both in time and difficulty.
Microfluidics holds great potential for automated, sample-to-answer analysis via the integration
of preparatory and analytical steps, but for this to be fully realised, more versatile, powerful and
integrable unit operations, such as separation, are essential. We demonstrate the displacement and
separation of DNA with a throughput that is one to five orders of magnitude greater than other
microfluidic techniques. Using a device with a small footprint (23 mm × 0.5 mm), and with feature
sizes in the micrometre range, it is considerably easier to fabricate than parallelized nano-array-
based approaches. We show the separation of 48.5 kbp and 166 kbp DNA strands achieving a
significantly improved throughput of 760 ng/h, compared to previous work and the separation of
low concentrations of 48.5 kbp DNA molecules from a massive background of sub 10 kbp fragments.
We show that the extension of DNA molecules at high flow velocities, generally believed to make the
length-based separation of long DNA difficult, does not place the ultimate limitation on our method.
Instead, we explore the effects of polymer rotations and intermolecular interactions at extremely high
DNA concentrations and postulate that these may have both negative and positive influences on the
separation depending on the detailed experimental conditions.

Keywords: microfluidic separation; deterministic lateral displacement; long DNA sample preparation;
high throughput; concentration effects

1. Introduction

There is renewed interest in fractionation of long DNA molecules due to the devel-
opment of sequencing techniques that support long read lengths, notable single-molecule
real-time (SMRT) sequencing from PacBio and nanopore systems from Oxford Nanopore
Technology. “Long” DNA refers to the upper length limit of standard gel electrophoresis,
approximately 20 kbp. For sequencing applications, long read lengths enable detection of
large structural variations [1], and open up the analysis of plant genomes that has been
limited by current technology [2].

The SMRT system from PacBio is based on a polymerase that is located in a zero-mode
waveguide where it feeds the DNA while fluorescently labelled bases are detected as
they are incorporated. The read length depends on the lifetime of the polymerase and is
typically 5–10 kbp [3]. The nanopore technology, on the other hand, does not have that
type of inherent limit on maximum read length. Instead, the purity and the composition
of the sample determine the resulting read length. The longest reported read length that
we could find in the literature was 2.3 Mbp [4], but for standard sequencing applications,
10–30 kbp is typically reached [5].
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It is, therefore, essential to maximize the proportion of the DNA of interest in the
sample that will be sequenced. Conventional approaches, such as a modern variant of
Pulsed-Field Gel Electrophoresis (PFGE), e.g., BluePippin from Sage Science, work well
but take significant time to process. For example, it takes up to ten hours for a 50 kbp size
selection [6].

Instead, microfluidic alternatives have been demonstrated to offer significantly faster
preparations of the DNA samples. The first microfluidic alternative to PFGE was initially
introduced by Volkmuth and Austin [7]. It was further refined in a device consisting
of a hexagonal array where the DNA was moved electrophoretically by a field pulsing
in two directions [8] to accomplish the separation of Bacterial Artificial Chromosomes
(BACs) within 15 s. Another approach was based on entropic traps and Ogsten sieving,
performing a similar sorting in 15 min [9]. Deterministic lateral displacement (DLD) is
another approach which has been demonstrated as being able to sort the DNA quickly.
DLD relies on the repeated bifurcation of flow streams around obstacles in a microfluidic
array [10]. The result is that, while small particles follow the flow, larger particles are
laterally displaced through the interaction with the pillars and can be collected downstream
in a separate reservoir. The main advantage of these microfluidic approaches is their high
speed and their amenability to continuous and automated operation.

However, an important general limitation of microfluidics is its low throughput (see
Table S3 of the Supplementary Materials for an overview of devices for DNA separation).
For example, DLD relies on the steric displacement of particles with finite size. At very low
shear rates, the DNA maintains a blob-like conformation, thereby behaving as a particle
with a radius on the order of its radius of gyration that, in turn, is dependent on its
length. At higher shear rates, the DNA is stretched out, appearing as a thin rod with a
diameter that is independent of its length and this is generally understood to prevent
any sorting [7,10,11]. One approach to increase throughput at low shear rates is to couple
many devices in parallel [11,12], but this is costly and requires that the fluidics through
all devices are carefully matched. Another alternative is to suppress the extension of
the DNA in the shear flow. This has been done using depletion forces with a carefully
tuned concentration of polyethylene glycol (PEG) [13] that condenses the DNA, effectively
increasing its shear modulus.

In this work, we will address the limitation in throughput by a simple method based
on DLD separation of high concentrations of the DNA at high flow velocities. We show
that it is possible to displace long DNA molecules despite their considerable extension at
these flow velocities and propose some possible mechanisms for our findings.

2. Materials and Methods
2.1. Device Design

In DLD, particles are sorted based on a threshold that is typically referred to as the
critical diameter, Dc. It is estimated using an empirically derived expression by Davis [14]
based on a best fit model to data using hard, spherical particles:

Dc = 1.4 · G · N−0.48 (1)

where G is the gap between the pillars, N is the period and 1/N = tan θ, where θ is
the displacement angle for a device array with equal row–row distance and lateral pillar
separation. The period is N = λ/∆λ, where λ is the pillar center–center distance and ∆λ is
the row shift.

A schematic of a DLD unit cell is seen in Figure 1A. It displays the designs of the two
devices used in this work. All experiments are performed in a device (device #1) where
G = 2.8 µm and N = 50, giving Dc = 0.60 µm except where otherwise stated. All relevant
array parameters for both devices are found in Table S1.
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Figure 1. High-throughput long DNA separation in a microscale DLD array at ultra-high flow ve-
locity. (A) Schematic of DLD unit cell with relevant array parameters. (B) Separation of 166 kbp 
(green, 8 µg/mL, C/C* ≈ 0.53) and 48.5 kbp (red, 24 µg/mL, C/C* ≈ 0.62). Time-averaged (1 min) 
micrographs show the inlet (top) and outlet (bottom) of the array at the highest run pressure drop 
(3 bar, u ≈ 34 mm/s). The measured sample inlet flow rate at this pressure was 24 µL/h, correspond-
ing to a sample throughput of 760 ng/h. The samples have been stained with YOYO-1 (green) and 
YOYO-3 (red). (C) Lateral inlet and outlet distributions at different flow velocities (corresponding 
to a range of Deborah numbers 1.1 × 10  to 5.7 × 10  for 48.5 kbp DNA and 9.5 × 10  to 5.0 × 10  for 166 kbp DNA). The curves have been normalized so that the areas of the distributions 
(inlets or outlets) are the same. The running buffer was 0.9× TE. Note that the presented overlap 
concentrations, C*, are calculated for the samples independently and not based on a combined effect 
of the two samples. The scale bar is 100 µm. A video showing the raw data for the highest applied 
pressure (3 bar), for the two DNA components, can be found in the Supplementary Materials, see 
Video S1. 

The arrays in our devices are designed with an aspect ratio of 1:N (width:length) so 
that particles that follow the full displacement angle 𝜃 are displaced from one side of the 
array (at the entrance) to the opposite side of the array (at the exit). Inlet and outlet distri-
butions are plotted normalized to the device width, with the sample entering at the zero 
side and being displaced towards 1. 

2.2. Device Fabrication 
The devices were designed using the layout editing software L-Edit 16.02 (Tanner 

Research, Monrovia, CA, USA). The devices were fabricated in polydimethylsiloxane 
(PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) with a glass substrate using stand-
ard replica moulding [15]. The master mould was made in SU-8 2015 (MicroChem, New-
ton, MA, USA) using UV-lithography (Karl Süss MJB4, Munich, Germany) with a photo-
mask from Delta Mask (Delta Mask, Enschede, The Netherlands). Directly following the 

Figure 1. High-throughput long DNA separation in a microscale DLD array at ultra-high flow
velocity. (A) Schematic of DLD unit cell with relevant array parameters. (B) Separation of 166 kbp
(green, 8 µg/mL, C/C* ≈ 0.53) and 48.5 kbp (red, 24 µg/mL, C/C* ≈ 0.62). Time-averaged (1 min) mi-
crographs show the inlet (top) and outlet (bottom) of the array at the highest run pressure drop (3 bar,
u ≈ 34 mm/s). The measured sample inlet flow rate at this pressure was 24 µL/h, corresponding to a
sample throughput of 760 ng/h. The samples have been stained with YOYO-1 (green) and YOYO-3
(red). (C) Lateral inlet and outlet distributions at different flow velocities (corresponding to a range
of Deborah numbers 1.1× 102 to 5.7× 103 for 48.5 kbp DNA and 9.5× 102 to 5.0× 104 for 166 kbp
DNA). The curves have been normalized so that the areas of the distributions (inlets or outlets) are
the same. The running buffer was 0.9× TE. Note that the presented overlap concentrations, C*, are
calculated for the samples independently and not based on a combined effect of the two samples.
The scale bar is 100 µm. A video showing the raw data for the highest applied pressure (3 bar), for
the two DNA components, can be found in the Supplementary Materials, see Video S1.

The arrays in our devices are designed with an aspect ratio of 1:N (width:length)
so that particles that follow the full displacement angle θ are displaced from one side of
the array (at the entrance) to the opposite side of the array (at the exit). Inlet and outlet
distributions are plotted normalized to the device width, with the sample entering at the
zero side and being displaced towards 1.

2.2. Device Fabrication

The devices were designed using the layout editing software L-Edit 16.02 (Tanner
Research, Monrovia, CA, USA). The devices were fabricated in polydimethylsiloxane
(PDMS, Sylgard 184, Dow Corning, Midland, MI, USA) with a glass substrate using
standard replica moulding [15]. The master mould was made in SU-8 2015 (MicroChem,
Newton, MA, USA) using UV-lithography (Karl Süss MJB4, Munich, Germany) with a
photomask from Delta Mask (Delta Mask, Enschede, The Netherlands). Directly following
the UV-lithography, the mould was coated with an anti-sticking layer of 1H,1H,2H,2H-
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perfluorooctyltrichloro-silane (ABCR GmbH & Co. KG, Karlsruhe, Germany). PDMS
structures were cast and access holes were punched, followed by air plasma (Zepto, Diener
electronic GmbH & Co. KG, Ebhausen, Germany) treatment to activate PDMS and glass
surfaces. Finally, the devices were bonded to glass substrates. Cover slides of 170 µm
thickness (#1.5H) were used to enable imaging with a high NA oil immersion objective.

2.3. Sample Preparation

DNA samples, ladder DNA (0.25 kbp–10 kbp, GeneRuler 1 kbp, Thermo Fischer
Scientific, Waltham, MA, USA), 5 kbp DNA sample (NoLimits, Thermo Fischer Scientific,
Waltham, MA, USA), bacteriophage lambda DNA (λ DNA, 48.5 kbp, Life Technologies,
Carlsbad, CA, USA) and bacteriophage T4 DNA (T4GT7, 165.6 kbp, Nippon Gene, Tokyo,
Japan) were stained for 2 h at 50 ◦C using YOYO-1 Iodide (491 ex/509 em, Thermofisher
Scientific, Waltham, MA, USA) or YOYO-3 Iodide (612 ex/631 em, Thermofisher Scientific,
Waltham, MA, USA) at a 10:1 DNA base pair-to-dye molecule ratio. The stained DNA
samples were stored at 4 ◦C for a maximum of one week before use. The DNA ladder is
composed of 14 lengths (in kbp): 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8 and 10. The
running buffer consisted of either 1× Tris EDTA (1× = 10 mM Tris-HCl and 1 mM EDTA,
pH 8), or 5× Tris EDTA and 3% betamercaptoethanol (BME), or Milli-Q® water. To prevent
non-specific sticking of the DNA or dye molecules to the channel walls, Pluronic® F-127
(MW~12,500 Da) was added to both the running buffers and the samples to a concentration
of 10 µg/mL or 0.001% (w/v, final concentration). All solutions except the DNA samples
and the dye solutions were filtered through 0.2 µm pore filter before mixing. The λ DNA
samples were kept at 65 ◦C for 10 min to remove concatemers followed by rapid cooling in
an ice bath. A complete list of the samples that we used in our experiments, their buffers and
some of their physical properties can be found in Table S2 of the Supplementary Materials.

In the experiments, two ionic strengths of the buffer were used (6.1 mM and 43.6 mM,
1× Tris-EDTA (TE) and 5× TE and 3% BME, respectively). At first, we used the higher ionic
strength to improve homogeneity of the fluorescent staining (as showed by Nyberg et al. [16]).
Note that the ionic strengths of the samples differed slightly from the buffers in the sheath
flow. However, as the sheath flow and sample flows were mixed, these differences are
decreased. We used salt at dramatically different concentrations to increase the difference
of the two T4 DNA samples in terms of C/C* in order to explore the effect of extreme
values of C/C*, see Figures 3C and 4. Due to the swelling of the polymer at low salt, C/C*
is increased for a given DNA concentration.

2.4. Fluidics

Flow was generated in the device using nitrogen at different overpressures applied
at the inlets with an MFCS-4C pressure controller (Fluigent, Paris, France) for pressures
up to 1 bar and a custom-built manifold for pressures between 1 bar and 3 bar. Flow was
measured using a flow sensor (Flow rate platform with flow unit S, Fluigent, Paris, France)
that was connected to the outlet reservoir. The outlet reservoirs were kept at ambient
pressure. The devices were cleaned by rinsing with the running buffer for 10 min each time
prior to running the sample. The measured ambient temperature was 21.8 ± 0.3 ◦C.

2.5. Microscopy

All images were acquired using an inverted Nikon Eclipse Ti microscope (model
TI-DH Nikon Corporation, Tokyo, Japan) with an electron-multiplying (EMCCD) camera
(iXon 897-DU Andor Technology, Belfast, Northern Ireland) and SOLA light engineTM
(6-LCR-SB, Lumencor Inc, Beaverton, OR, USA) with FITC or Cy5 filter cubes. Objectives
2× (Nikon Plan UW, NA 0.06, Field of View (FoV) of 4096 µm), 10× (Nikon Plan Apo λ,
NA 0.45, FoV of 819 µm) and 100× (Nikon Plan Apo VC, Oil Immersion, NA 1.4, FoV of
82 µm) were used and videos were captured at 10 to 201 frames per second. For dual-colour
imaging and polarization microscopy, an Optosplit (Cairn Research Ltd., Kent, UK) was
used with the appropriate filter sets.
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The plotted lateral distributions of the DNA are based on integrating the fluorescence
intensity at the inlet and outlet regions. They have been normalized so that the total area
under each curve is the same for each flow velocity for each experiment. In this way they
can be interpreted as probability distributions. The full lateral range (0 to 1) corresponds to
the full width of the microfluidic channel. See Section S3 of the Supplementary Materials
for more details on the image processing.

3. Results

We demonstrate high throughput of long DNA displacement and separation in micro-
scaled DLD devices at flow velocities that are extremely high relative to those previously
reported (tens of mm/s compared to tens of µm/s, see the full comparison together with
details of differing flow velocity measurement approaches in Table S3 of the Supplementary
Materials). Our method works well for dilute sample concentrations and can be enhanced
at higher concentrations. We speculate that the interaction of individual DNA molecules
plays an important role in the concentration dependence of the performance of our devices,
see discussion section. Therefore, we specify all DNA concentrations relative to the overlap
concentration, C/C* [17]. C* depends on the contour length, L, as C* ∝ L(1−3ν) ≈ L−0.8,
where ν is the Flory exponent, ν = 0.5877 [18]. The presence of polymers in a solution
can have a large effect on rheological properties, indeed typically also for DNA. The
relative importance of viscoelastic behavior under various flows of polymer solutions is
often quantified by the Weissenberg or Deborah numbers. Here, the Deborah number is
selected over the Weissenberg number since it better describes elastic responses to transient
deformations, such as those experienced by the DNA molecules as they flow through a pillar
array [19]. We give estimates of the Deborah number (De = τZimm/τf low = τZimm · u/L),
where L is the array pitch, u is the mean flow velocity, τf low = L/u is the observation time
and τZimm is the Zimm relaxation time for a given length of the DNA [20] for the results
presented below. We give the Deborah number for all our results except those involving
very short DNA where the Zimm relaxation time is not applicable.

We present our results as follows. First, we demonstrate successful separation of
two long DNA species as well as separation of DNA mixtures of relevant molecular sizes.
Secondly, we show how the DNA of different lengths and concentrations is displaced as a
function of flow velocities in the DLD array. Finally, we investigate important details of the
separation to better understand the performance and the basis for the separation.

3.1. Isolating Two Long DNA Populations from Each Other

We demonstrate high-throughput separation using a mixture of T4 phage (166 kbp)
and λ phage (48.5 kbp) DNA samples, see Figure 1B. At the highest tested pressure, 3 bar, the
mean flow velocity, u, is approximately 34 mm/s and the sample throughput approximately
760 ng/h. u is calculated using the measured flow rate, Q, and the cross-sectional area at
the narrowest gaps in the arrays, A, as u = Q/A. Based on the outlet distributions given
in Figure 1C, it is possible to select the position of the outlet channels carefully in order to
optimize any collected samples based on the requirements for size, purity and recovery that
are necessary for each particular application, see Figures S4 and S5 and Section S5 of the
Supplementary Materials. For example, for two equally wide outlets where u = 34 mm/s,
the purity rate of the 166 kbp sample in a rightward outlet would be 97% and the recovery
rate 70%. Based on the observed outlet distributions, it is clear that close to 100% purity can
be attained if the cut-off is moved towards greater displacement. Of course, this is at the
cost of a decrease in recovery rate. We achieve this degree of separation despite instabilities
observed in the sample stream, see Video S1 of the Supplementary Materials.

3.2. Isolating Long DNA from a Background of Short DNA

To mimic a situation withg a DNA of length of interest against a background of short
DNA, we demonstrate the separation of λ phage DNA (48.5 kbp) at different concentrations
from a DNA ladder (0.25 kbp to 10 kbp) at a fixed relatively high concentration.
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The shorter DNA sample represents a high concentration (100 µg/mL) of unwanted
DNA fragments while the long DNA represents long-read samples to be purified. Note
that the concentration of the short fragments is well below the overlap concentration
(C∗10 kbp ≈ 140 µg/mL, calculated for the ionic strength of the sample after mixing with the
sheath flow (1× TE)) of the longest fragment length (10 kbp) so that we expect negligible
overlap effects from the high concentration of the shorter fragments. We show the effect
of the long DNA concentration on the separation in Figure 2. We have employed a dual-
colour imaging setup and stained the two samples with different dyes for simultaneous
imaging of the two samples. For the dilute sample (C ≈ 3.7 µg/mL or C/C* ≈ 0.07), a high
degree of separation is achieved up to approximately 1.7 mm/s and partial separation at
approximately 4.2 mm/s, see Figure 2A.
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Figure 2. Separation of long DNA (48.5 kbp) from short DNA (0.25 kbp to 10 kbp) as a function
of three long DNA concentrations. The short DNA concentration was set constant at 100 µg/mL
while the long DNA concentrations were (A–C) 3.7 µg/mL (dilute, C/C* ≈ 0.070), 117 µg/mL and
230 µg/mL (C/C* of approximately 2.6 and 4.1, respectively, both semidilute). Images were collected
simultaneously in two colours. The curves have been normalized so that the areas of the distributions
are the same across each panel. Note that the salt concentrations differ slightly between the three
samples. However, these differences become insignificant as the buffer in the sheath flow is of the
same salt concentration between the runs, see Table S2 of the Supplementary Materials. A video
showing the raw data for the lowest and the highest applied pressures, for the two DNA components
and for the three different concentrations of the λ phage DNA can be found in the Supplementary
Materials, see Video S2.

For higher concentrations of the target λ DNA, both samples displayed similar tra-
jectories and no separation could be achieved, see Figure 2B,C. Interestingly, while no
displacement occurred at higher flow velocity for the dilute sample, displacement was
achieved at all flow velocities tested for the concentrated samples, even at the highest
flow velocity.

We observe that the high concentration of λ DNA influences the distribution of the
short DNA which may be a possible effect of hydrodynamic molecule–molecule interactions
or entanglement as discussed in Section 4 below.

3.3. Displacement of DNA as a Function of Length and Concentration

To investigate the potential of separation and increase in concentration, we observe
the displacement behaviour of individual DNA specimens of three lengths (5 kbp, 48.5 kbp
and 166 kbp) at lower and higher concentrations as a function of flow velocity.
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A general observation is that the short, 5 kbp DNA is not at all displaced, see Figure 3A,
irrespective of concentration and flow velocity. However, higher flow velocities decrease
any effect of diffusion.
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Figure 3. Displacement of 166 kbp, 48.5 kbp and 5 kbp DNA. We characterize outlet distributions
comparing low and high concentrations of differently long DNA. The presented data represent
averages of several experiments. (A) 5 kbp distributions with two dilute samples (32.7 µg/mL or
C/C* ≈ 0.083, dashed line, and 327 µg/mL or C/C* ≈ 0.64, solid line). (B) 48.5 kbp at dilute (6 µg/mL
or C/C* ≈ 0.065, dashed line) and semidilute (117 µg/mL or C/C* ≈ 1.4, solid line) concentrations.
Note that an additional peak emerges for the semidilute sample at 8.4 mm/s and 17 mm/s. (C) 166 kbp
with two dilute samples (2.3 µg/mL or C/C* ≈ 0.064, dashed line, and 23 µg/mL or C/C* ≈ 8.8, solid
line). (D) Dilute samples from panel (A–C) plotted together. The stated flow velocities are the average
mean flow velocities between the two samples in the same plots. The flow velocities correspond to
Deborah numbers in the range 9.6 to 5.6× 104. The curves have been normalized so that the areas
of the distributions are the same across each panel. Note that the salt concentrations differ slightly
between the samples. However, these differences become insignificant as the buffer in the sheath flow
is of the same salt concentration between the runs (except the high concentration 166 kbp sample
where water was introduced to the buffer inlet), see Table S2 of the Supplementary Materials.
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For the longer DNA, 48.5 kbp and 166 kbp, larger concentrations make the displace-
ment more robust to increases in flow velocity. As the flow velocity is increased, the
displacement does not decrease as much for higher concentrations as for lower concentra-
tions. However, higher concentration for the intermediate-sized DNA, 48.5 kbp, decreases
the initial displacement even at low flow velocities, see Figure 3B, but then this displacement
exhibits a lesser relative change compared to the low-concentration case.

In Figure 3C, the separate behaviours of the three independently run samples are
shown together. They have different trajectories for a mean flow velocity, as high as at least
2.6 mm/s, which corresponds to a throughput of approximately 2 µL/h or 75 ng/h.

3.4. Limitations of Flow Velocities and Concentrations

While Figure 3 shows the average outlet distributions, Figure 4 illustrates the detailed
behaviour of the flow of the DNA samples in one experiment for the long DNA, T4
phage DNA (166 kbp), at the higher concentration (23 µg/mL, C/C* >> 1, in a 0.26× TE
buffer) compared to the lower concentration (2.3 µg/mL, C/C* << 1, in a 4.9× TE buffer).
Here, the different buffers are used to enhance the difference in C/C*. Two important
observations can be made regarding the behaviour of the higher concentration. Firstly,
the overall displacement is larger across the range of flow velocities tested (Figure 4A
bottom row) and the sample stream is more focused. Secondly, at sufficiently high flow
velocities O(1) mm/s), we observe instabilities in the stream of the displaced DNA. These
instabilities take the form of variations in the lateral position of the sample stream over
time, see Figure 4A, and in the concentration of the DNA along the length of the displaced
sample stream, see Figure 4B,C and Video S3 of the Supplementary Materials. Note that,
despite these variations, we can still obtain a significant displacement of the sample that
can be leveraged for separation.
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Figure 4. Displacement of 166 kbp long DNA corresponding to the data shown in Figure 3C. (A) Ky-
mographs at the array outlet for dilute and semi-dilute samples of 166 kbp long DNA (2.3 µg/mL or
C/C* ≈ 0.064 in 4.9× TE buffer, and 23 µg/mL or C/C* ≈ 8.8 in 0.26× TE buffer) for four pressure
values (10 mbar, 100 mbar, 1 bar and 2 bar, from left to right). The sample streams are stable for the
dilute sample and at 53 µm/s and 630 µm/s for the semidilute sample. However, they are highly
unstable and undulating at 8.2 mm/s and 17 mm/s. The brightness and contrast settings have been
enhanced independently for each image. The exposure times are 100 ms. The horizontal and vertical
scale bars are 200 µm and 15 s, respectively. (B,C) displays fluorescence micrographs of the array for
the 23 µg/mL sample at u = 17 mm/s (De = 2.2× 104). (B) shows a pulsing sample stream at the
array inlet whereas (C) shows a single wave peak close to the array outlet. The video corresponding
to panel (B) can be found in the Supplementary Materials, see Video S3. Scale bars are 500 µm and
100 µm for panels (B,C), respectively.
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3.5. Influence of Periodicity

To test the importance of periodicity, N, we investigated the performance of long DNA
(T4 DNA, 166 kbp) displacement with a device developed for previous work with N = 20
(device #2), instead of N = 50 (device #1), with which the main experiments have been
conducted. We selected a device with a gap size so that the critical diameter was kept
approximately the same (0.60 µm and 0.74 µm for device #1 and #2, respectively, calculated
using Davis’ equation, see Equation 1). We compared the critical diameters to the estimated
radius of gyration of T4 DNA, ~1.4 µm and the corresponding diameter of 2.8 µm. The
concentration was kept low (2.3 µg/mL) to minimize any concentration-dependent effects
that could have been of different magnitude in the two devices. See Figure 5 for the
lateral outlet distributions with the two devices. While the long 166 kbp sample could be
fully displaced at flow velocities up to 160 µm/s, and partially displaced at speeds up to
4.1 mm/s in device #1, there was not even partial displacement at 170 µm/s for device #2.
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Figure 5. Difference in displacement performance due to the periodicity, N, of the pillar array for
device #1 (N = 50) and #2 (N = 20) for 166 kbp long DNA (2.3 µg/mL or C/C* ≈ 0.15) in a running
buffer of 0.9x TE. Device #1 exhibits a much larger degree of displacement at high mean flow velocity
compared to device #2 (u1 and u2 are given for device #1 and #2, respectively). Deborah numbers
range from 7.1× 101 to 5.9× 103 in device #1 and from 8.6× 101 to 8.8× 103 in device #2. The curves
have been normalized so that the areas of the distributions are the same for each device. Because the
two arrays have different widths, the lateral positions are relative and not absolute as for the other
figures. See Section S1, Supplementary Materials for more details on the device designs.

3.6. Dynamics of the Conformation of the DNA

A simplified understanding of DNA separation in DLD is that the DNA maintains an
approximate spherical conformation with a radius corresponding to the radius of gyration.
Based on this, it is natural to expect any stretching of the DNA to be detrimental to the
sorting. When imaging individual DNA molecules moving through the array while being
displaced, we can observe that the molecules do not assume any spherical shapes; instead,
they exhibit rich conformational dynamics, see Figure 6. Furthermore, they are stretched
out at higher applied pressures, see Figure 7, under which we can clearly observe that they
are displaced, based on Figures 3C and 4A, as well as the fact that the Region of Interest
(ROI) is placed at the particular outlet part which can be reached only by displacing DNA.
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greater N in the pillar array, see Figure 5, and larger pillars compared to previous work. 
We use a longer device providing longer residence times and more contact for lift forces 
and rotational effects.  

The throughput is ultimately limited by viscoelastic effects occurring at high concen-
trations and flow velocities. Hydrodynamic molecule–molecule interactions and entan-
glement may influence the group behaviour of molecules at high concentration, leading 

Figure 6. Dynamics of dilute 166 kbp long DNA strands (C = 0.01 µg/mL, 5× TE buffer). We
show motion of three individual molecules at the end of the device and laterally displaced (A–C)
u ≈ 21 µm/s (De = 2.7 × 101). The images show the evolution of the shape of the molecules at
different time scales. The frames are sequential but with different temporal gaps. The exposure
time was 19.3 ms. The videographs corresponding to the panels can be found in the Supplementary
Materials, see Video S4. Flow is left to right. Time stamp unit is seconds. Scale bar is 10 µm.
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Figure 7. Extension of dilute 166 kbp long DNA (C = 0.01 µg/mL, 5× TE buffer). We show the
extension of four individual molecules at four different mean flow velocities (De of 2.7× 101, 1.2× 102,
8.9× 102 and 6.3× 103) at the end of the device and laterally displaced. The exposure times were
19.3, 3.00, 4.36 and 3.17 ms for the micrographs top to bottom. Flow is left to right. Scale bar is 10 µm.

4. Discussion

We can displace long DNA at unprecedented flow velocities and throughputs. We
believe the main factor that lets us achieve this is a smaller displacement angle, i.e., a
greater N in the pillar array, see Figure 5, and larger pillars compared to previous work.
We use a longer device providing longer residence times and more contact for lift forces
and rotational effects.

The throughput is ultimately limited by viscoelastic effects occurring at high concentra-
tions and flow velocities. Hydrodynamic molecule–molecule interactions and entanglement
may influence the group behaviour of molecules at high concentration, leading to both
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increased and decreased displacement under different, specific conditions. We explore the
limits in concentration and flow velocity, and show that these effects may be deleterious
for separation.

4.1. High Throughput

We demonstrate a working separation throughput up to 24 µL/h or 760 ng/h of λ
DNA and T4 DNA. The effective volumetric throughput is approximately two orders of
magnitude higher than previous DLD separation work of long DNA, whereas the sample
throughput is approximately three orders of magnitude higher. While the main aim of our
work is to increase the throughput, we can also compare the time it takes from loading
until the first separation takes place, approximately 0.7 s for λ-DNA and T4 DNA at 3 bar
(residence time of the array at 34 mm/s in a 22.9 mm long array), compared to the 15 s stated
for previous work with on-chip pulsed-field electrophoresis [8]. See the full comparison in
Table S3 of the Supplementary Materials. The high throughput makes it possible to collect
the separated species in a high enough concentration for genetic analysis in a very short
time. Others have chosen a different approach towards high throughput by massively
parallelizing nanoDLD devices (up to 31,160 arrays in parallel [21]). While this method
seems to work well, such parallelization is highly complex, expensive and limited to labs
with advanced fabrication facilities. Our method, on the other hand, requires only a single
device which is fabricated with standard soft lithography.

4.2. High Concentration

At concentrations above the overlap concentration (C/C* >> 1), the displacement of
T4 molecules is seen to increase for low flow velocities (Figures 3C and 4A). At higher
flow velocities, instabilities are seen as variations in the degree of displacement over time
(millisecond time scale) and in the local concentration of the DNA along the sample stream
(length scale 0.5 mm), see Figure 4. Based on our low Reynolds numbers (upper limit
estimated at Re~0.1 using density and viscosity for water, together with the centre-to-
centre distance of the pillars), we believe that these observed effects have their origins in
entanglement and viscoelastic phenomena that become influential at high concentrations.
What is more, hydrodynamic molecule–molecule interactions play an increasing role at
higher concentrations and, while we are below the average sample concentrations at which
topological entanglement becomes prevalent, local increases in the concentration, on the
scale of the pillars and gaps, together with non-adiabatic deformations of single and groups
of molecules, may well lead to entanglement.

Entangled or strongly hydrodynamically interacting molecules could act together
as a “super-molecule” with a larger effective group size than individual molecules. This
mechanism would be dynamic, with the super-molecules existing only transiently, but
still, on average, leading to increased separation. These effects could contribute to the
broadening of the short DNA fragment streams seen in Figure 2B,C as the concentration
of λ DNA is increased. Here, the longer λ DNA fragments might be carrying the shorter
fragments with them as they displace.

Well-defined flows are essential for the functioning of DLD separations. Deviations
from laminar flow, such as those due to vortex formation in flows with a significant inertial
component, have been shown to negatively affect separations. Dincau et al. showed a
worsened separation efficiency at moderate Re (4 < Re < 34) for angled airfoil-shaped pillar
arrays. Interestingly, with a neutral-angled airfoil pillar which avoided vortex formation,
the particle trajectories were only shifted and not broadened [22]. In flows of polymers,
the build-up of elastic forces, as molecules follows highly curved streamlines, has been
shown to lead to spatial and temporal flow fluctuations even at low Re [23]. It is likely
that such mechanisms are at play here in our high-concentration separations and they
place constraints on the maximum concentrations and flow velocities that can be used
depending on the device, sample and the application. Viscoelastic effects that might
influence displacement are discussed below.
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4.3. Displacement Mechanism

In the following, we discuss mechanisms that we identify as potential contributors to
the lateral displacement of the DNA.

Polymers are known to elongate from a coiled conformation as a response to a shear or
elongational flow. In pillar arrays, such as in DLD devices, the flow is a combination of both
shear and elongational flow. High shear and elongational rates have been reported to reduce
the effective size of the polymers in DLD, which causes them to follow a zig-zag trajectory
rather than a displacement trajectory. Chen et al. found that when polymers elongate to a
sufficient degree so that their short axis is shorter than the critical size, they will follow a
zigzag trajectory and stop displacing [13]. They were unable to displace T4 DNA in their
DLD devices unless they used a carefully tuned concentration of polyethylene glycol (PEG)
to gently compact the DNA. Note that, with the compaction, they were only able to displace
the DNA molecules up to 40 µm/s (compared to our flow velocity of up to 34 mm/s for T4
DNA displacement). Wunsch et al. found, contrary to our results, that, when the pillar gap
reaches the micrometre scale, DNA displacement is not observed even with a relatively low
flow velocity [11]. In contrast, we show that, despite considerable elongation, it is possible
to displace long DNA molecules in devices with micrometre-scale gaps.

We can estimate the flow velocity utransition at which the De ≈ 1 and where molecules
are expected to elongate [24] as utransition ≈ De·L/τZimm. For the molecules that are dis-
placed (48.5 kbp and 166 kbp), we have with L = 10 µm and τZimm ≈ 1 s, utransition ≈ 10 µm/s.
All of our experiments are performed at u > utransition and we can, therefore, expect elonga-
tion to be present at various degrees for all measured pressures.

We ascribe our remarkable separation performance to several factors. The larger
gaps between pillars in our device (much larger than the persistence length of the DNA,
50 nm to 100 nm, depending on the salt) allow for a greater range of dynamic molecular
conformations compared to devices with nanoscale gaps. As described by Smith and
Chu [24], when a molecule is stretched suddenly in an extensional flow at a rate that
exceeds its relaxation rate, it can adopt a range of nonequilibrium conformations. In our
case, not only the large De but also the complexity of the flow field through the pillar array,
which is far from simple extensional flow, lead to a rich variety of molecular conformations.
Because the molecules are long in comparison to the pillar size and pitch, they can span
multiple pillars and gaps, and experience forces along their lengths that vary greatly
in degree and direction. The long DNA molecules are able to form multiple blobs in
the areas of low flow velocity between rows of pillars that are connected with stretched
segments of the molecule (Figures 6A and 7 top panel). The molecules also become stretched
perpendicular to the flow direction (Figures 6B and 7 middle panel). Long molecules have
space to rotate (Figure 6C). DNA molecules are known to continuously rotate in a shear
flow [25]. Indeed, such rotation is visible in Figure 6 and in Video S4 of the Supplementary
Materials. The rotation will most likely increase the likelihood of displacement as it has been
demonstrated for cell clusters [26], as well as what we previously observed for bacteria [27]
and parasites [28] that were sorted based on their shape. While it is difficult to ascertain
the exact contributions of these effects to the enhanced displacement of the molecules, they
show that the molecules are being influenced by the entire flow field between the pillars
and even across multiple pillars/gaps simultaneously. This indicates that a description of
the displacement mechanism of long polymers in micrometre-scaled DLD devices cannot
be fully captured via the assumption that the molecule behaves like a prolate ellipsoid with
a short axis that monotonically decreases with increased shear rates.

Possibly based on the role played by the rich dynamics of the DNA as it moves
between the pillars, we find that the effect of N might not be well described for the DNA
by the Davis equation, see Equation (1). The Davis equation has been empirically derived
and describes clearly the effect of gap size and displacement angle (θ = tan−1 (1/N)) on the
critical size of a DLD array for hard spheres. The effects of the gap size, G, on the sorting
of the DNA in DLD has been explored previously [11]. To investigate the effect of the
periodicity, N, we performed a preliminary test by comparing two devices with similar
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Dc but with very different N. The device used for the bulk of the work presented here has
G = 2.8 µm, θ = 1.1◦, N = 50 and an approximate Dc = 0.60 µm (Dc similar to those employed
in previous work (~0.7 µm for [10])). We were able to compare the displacement of the DNA
in this device to that in a device designed by us for other work where G = 2.24 µm, θ = 2.9◦,
N = 20 and an approximate Dc = 0.74 µm. While we might expect a small difference in the
displacement of molecules at varied flow velocities due to the small difference in Dc, we
actually find that the device with N = 20 is only able to displace T4 DNA on the order of
tens of micrometres per second while the device with N = 50 can displace T4 at millimetres
per second as shown in Figure 5. The large disparity between these results is surprising.
Since the diameter of the molecules (twice the radius of gyration) is 2.8 µm and the critical
diameters in both devices are, while slightly different from one another, much smaller
than this, one would expect them to perform more similarly. Modifications to the Davis
equation that help to predict the behaviour of the DNA and other non-spherical, non-rigid
particles would be very useful during the designing of future devices. While further studies
are required, the preliminary results presented here indicate that N will be an important
parameter to explore. What is more, for a given Dc, larger N allows for larger G, which
means that devices are less prone to clogging,

There are also other effects that may contribute to a length-dependent displacement.
We also cannot exclude the possibility that various lift forces (entropic, hydrodynamic and
elastic) also play a role. Close to the channel wall, the number of possible conformations
is lower. Thus, entropic effects lead to migration away from the wall on the scale of the
radius of gyration. The hydrodynamic wall lift force, Fw, will push the DNA away from
the wall due to its flexibility [29]. The elastic lift force also pushes the DNA away from the
wall, as has been shown for the DNA in microchannels [30] and for particles in viscoelastic
media in DLD arrays [31]. The elastic lift force is predicted to increase with the polymer
concentration and flow velocity [32].

Some effects act to reduce the displacement. In curved streamlines, the hoop stress
causes the polymers to move in the radial direction [33]. Diffusion of the particles has also
been shown to reduce the displacement effect [34], but we expect that to be a problem
only for short molecules and for low flow velocity, which is not very relevant for the
experimental conditions that we have explored.

4.4. DNA Fragmentation by Hydrodynamic Shearing

Flow across a constriction at high flow rate has been shown to result in chain scission
of long DNA [35–38]. To test whether there is any significant hydrodynamically induced
fragmentation, we collected the resulting sub fractions from a device at the highest run
pressure and ran the samples again. While the original sample contained a considerable
portion of shorter fragments, after collecting the deflected sample and running it a second
time, no shorter fragments were observed. The results can be found in Section S4 of the
Supplementary Materials.

While we did not observe significant fragmentations, even at the highest run pressures,
it is possible that longer molecules or higher pressures could lead to fragmentation. The
constriction shape [35] and length [37] have been shown to affect the fragmentation. A
gradual increase in the extensional rate and small constriction lengths, as occurring in our
devices, has been shown to reduce the fragmentation significantly. While a certain sample
loss is manageable, significant hydrodynamic fragmentation sets an upper limit on flow
velocity and, consequently, that of the throughput. Finally, photodamage of the DNA must
be taken into account for those cases where the separation is monitored using fluorescence
microscopy.

Using larger gaps has been shown to reduce the hydrodynamic fragmentation of long
DNA [36]. By using micrometre-scaled gaps instead of hundreds of nanometres (e.g., used
in nanoDLD [11]) we reduce the shear rate and, consequently, increase the throughput by
approximately 100-fold. Using microscale devices also reduces the chances of clogging,
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which can otherwise be a considerable problem when working with complex samples such
as lysate.

5. Conclusions

We are able to achieve lateral displacement of DNA at an unprecedented flow velocity
of 34 mm/s and throughput of 760 ng/h. In contrast to the prevailing view in the literature,
we show that at such high flow velocity, the DNA molecules are extended and, thus, the
separation is not dependent on the radius of the coiled conformation.

We accomplish throughputs high enough to produce large enough samples for stan-
dard analysis techniques in a short time period. This applies to applications involving
the separation of long DNA from short DNA, as well as applications involving increasing
the concentration of existing DNA samples. We fabricate the devices using standard soft
lithography without the need for complicated nanofabrication or parallelization. The high
throughput, together with the simplicity, makes the technique practical and accessible in
both industrial and academic settings.

We show that separations can be improved by increasing the concentration but that this
can ultimately also lead to various elastic flow instabilities under some conditions that can
be deleterious to the separation. However, further investigations are needed to elucidate
the detailed dependence of the flow properties, the sorting capabilities as a function of the
concentrations and the compositions of the DNA solutions used. Furthermore, it would be
interesting to increase the applied pressures to beyond the 3 bar that our setup was capable
of delivering to probe the ultimate limit of the sorting.

Devices with larger array periodicity N (for a given Dc) are better at displacing long
molecules at high flow velocities. For a given Dc, further increasing N means larger gaps,
reduced clogging, lowered fluidic resistance and potentially further increases in throughput.
However, the reduced angles mean longer devices are needed to achieve the same spatial
separation. Future work will explore further improvement in device functionality via the
optimisation of N. In this way, ultimate limits can be identified and optimal conditions can
be selected for each specific application (separation of long molecules with varied length
at high concentration and separation of rare long molecules from a large background of
short fragments).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13101754/s1, Text describing experimental details and Videos S1–S4.
Figure S1: Schematic of DLD designs. Figure S2: Visualisation of typical inlet and outlet distributions.
Figure S3: Re-run of a 166 kbp long sample (T4 DNA). Figure S4: Estimated purities as a function of
relative lateral position of cut-off. Figure S5: Estimated recoveries as a function of relative lateral posi-
tion of cut-off. Table S1: DLD array parameters for the two devices that were used. Table S2: Overview
of DNA samples used. Table S3: Reported performance indicators for displacing (with DLD) or
sorting long DNA (≥48.5 kbp) in microfluidic pillar arrays. Table S4: Reported DLD parameters com-
paring our devices with devices from previous work. Video S1: Low magnification (10×) fluorescence
videographs of high-throughput separation of 48.5 kbp and 166 kbp. Video S2: Low magnification
(10×) fluorescence videographs of separation of long (48.5 kbp) from short DNA (0.25 kbp to 10 kbp).
Video S3: Low magnification (2×) fluorescence videograph of an undulating sample trajectory of long
DNA (166 kbp) at 23 µg/mL (0.26× TE buffer). Video S4: High-magnification (100×) fluorescence
videographs of the migration of 166 kbp long DNA strands at 90 µm/s (20 mbar). References [39–41]
are cited in the supplementary materials.
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