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Abstract: The rapid growth in demand for portable and intelligent hardware has caused tremendous
pressure on signal sampling, transfer, and storage resources. As an emerging signal acquisition
technology, compressed sensing (CS) has promising application prospects in low-cost wireless sensor
networks. To achieve reduced energy consumption and maintain a longer acquisition duration
for high sample rate electromyogram (EMG) signals, this paper comprehensively analyzes the
compressed sensing method using EMG. A fair comparison is carried out on the performances of
52 ordinary wavelet sparse bases and five widely applied reconstruction algorithms at different
compression levels. The experimental results show that the db2 wavelet basis can sparse EMG signals
so that the compressed EMG signals are reconstructed properly, thanks to its low percentage root
mean square distortion (PRD) values at most compression ratios. In addition, the basis pursuit (BP)
reconstruction algorithm can provide a more efficient reconstruction process and better reconstruction
performance by comparison. The experiment records and comparative analysis screen out the suitable
sparse bases and reconstruction algorithms for EMG signals, acting as prior experiments for further
practical applications and also a benchmark for future academic research.

Keywords: compressed sensing; electromyogram; reconstruction algorithm; wavelet basis

1. Introduction

Electromyography (EMG) is a technique for evaluating and recording the electrical
activity produced by skeletal muscles [1]. Electromyography is performed using an in-
strument called an “electromyograph” to generate a record of electromyography. When
myocytes are activated by electricity or nerves, electromyography can detect the potential
that is generated. The signals can be analyzed to detect medical abnormalities, activa-
tion levels or recruitment sequences, or to analyze the biomechanics of human or animal
movements. In computer science, EMG is also used as a middleware for gesture recogni-
tion to allow physical actions to be input into a computer as a form of human computer
interaction [2]. The efficient acquisition, storage and transmission of electromyography
(EMG) data is important for emerging applications such as telemedicine. However, the
transmission and storage of EMG data is challenging due to limitations relating to Internet
speed and hardware resources. These problems have been effectively solved with the
emergence of wireless body sensor networks (WBSNs) [3–5].

Compressed sensing is widely implemented in the WBSN to reduce the power con-
sumption of the sensors and to increase the security of the data. Xu et al. presented a
compressed sensing-based approach to co-recognize human activities and sensor locations
in a single framework [6]. Kimia et al. proposed a new method for EMG data compression
using deep convolutional autoencoders (CAE) [7]. Shoaib et al. proposed a method to
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capture and detect EEG signals based on compressed perception, which reduced the energy
consumption during communication and computation [8]. Zhang et al. came up with a
method called block sparse Bayesian learning (BSBL) to solve the problem of compressed
sensing and applied it for long-distance EEG monitoring [9]. Imtiaz et al. proposed a
low-power MSP430 compressive sensing implementation, focusing mainly on the impact
of the sensor node architecture on the compression performance [10]. Liu et al. solved the
problem whereby EEG signals cannot be represented sparsely and shortened the computing
time of single-channel EEG signals in compressed sampling. An optimization model with
the l0 norm and Schatten-0 norm was proposed to enforce sparsity and low-rank structures
in the reconstructed multi-channel EEG signals [11]. Selin Aviyente applied a compression
sensing framework for EEG signal compression [12], and the Gauss random matrix was
utilized to compress the input signal in the measurement. In the reconstruction process,
a discrete cosine matrix was selected as a sparse basis and the EEG signal recovery was
completed by combining it with an orthogonal matching pursuit (OMP) algorithm [13].
Amir et al. [14] proposed a reconstruction scheme analysis framework, which employed
a Gaussian random matrix to compress the original signal. Then, different sparse bases
and several main reconstruction algorithms were combined separately. After this, they ex-
ploited the compressive sensing theory to analyze the refactored EEG signals and analyzed
the performances of various combinations in detail. Zhao et al. [15] studied and improved
the disadvantages of the high power consumption and large area of random dense binary
measurement matrices. They proposed the QCAC matrix and random sparse binary matrix,
and achieved a positive signal reconstruction effect while saving hardware computing
resources. Moreover, they implemented the two measurement matrices in hardware based
on a 65 nm CMOS processor. Emil Jovanov and Aleksandar Milenkovic designed the
infrastructure for a wireless body area network based on an intelligent motion sensor
for computer-aided physical rehabilitation [5]. In 2010, Hyunwoong Park put forward a
space–time block coding (STBC) scheme based on a double transmitter and single receiver.
They studied the influence of three communication channels on the body, through the
body, diffraction around the body, and reflection of the body, and composed a propagation
channel model of the body’s surface [16].

Mamaghanian et al. applied the hardware platform of a shimmer wireless body area
network to compare the compression performance for ECG based on a wavelet transform
and compressed sensing. They indicated that the compressed sensing of ECG signals
consumed less power and was suitable for the body area network with high real-time
requirements [17]. Zhang et al. exploited the intra-block correlation of ECG signals under
the framework of the compressed sensing theory and came up with a reconstruction
algorithm based on block sparse Bayesian learning. Compared with other reconstruction
algorithms, this algorithm has better ECG reconstruction performance and was beneficial
in the data analysis and diagnosis of body area network telemonitoring centers [18]. Dixon
et al. presented a 1-bit Bernoulli compressed sensing observation matrix for the dynamic
threshold method of ECG signals, which reduced the transmission power consumption of
body area network sensor nodes by increasing the compression ratio [19].

In this paper, we applied EMG compressed sensing on wireless body area networks.
A fixed measurement matrix and reconstruction algorithm were selected and the most
suitable wavelet base for the EMG signal was determined according to the reconstruction
quality of the EMG signal. Our research was based on the existing research results, adding
different sparse bases and reconstruction algorithms and evaluating the compression
sensing performance of the EMG signals. The contributions can be summarized as follows:
(1) The fixed measurement matrix (Bernoulli matrix) and the fixed BP reconstruction
algorithm were employed [20]. Fifty-two kinds of sparse wavelet bases were selected, and
the compression ratio range was set from 10% to 90%. Finally, after sparse decomposition
and reconstruction, the average PRD value for 500 segments of EMG signals for each
wavelet basis was calculated. From this, the most suitable wavelet basis for the EMG
signals was evaluated. (2) A fixed measurement matrix (Bernoulli matrix) and wavelet
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basis were applied. Five reconstruction algorithms were evaluated via PRD, along with
the time consumed. (3) The future development prospects were discussed and trends
were identified.

The remainder of this paper is structured as follows. The basic concepts of CS and
its application in WBSN are elucidated in the Methods section. In the results section, the
compressed sampling results based on the EMG signals are shown and compared in detail.
Finally, in the discussion section, the experimental results are summarized, the deficiencies
are put forward, and the future implementation plan is preliminarily formulated.

2. Materials and Methods
2.1. WBSN

As a communication network for the long-distance, real-time continuous monitor-
ing of a patient’s physical conditions, important links applied via the Internet of Things
(IoT) [21,22]. A WBSN is a wireless network for wearable devices [23–26]. It transmits
physiological signal data between patients and hospitals far away via wireless networks
based on wearable devices [27]. As a portable device, it has intimate connections with the
surface of the human skin [28]. Although the acquisition device is small, the application
management system in the data center and the user interface require a larger intelligent
device and greater support [29]. WBSNs became popular at the end of the 20th century.
The original idea was to connect individuals and surrounding devices based on a wireless
personal area network (WPAN). To cover a more expansive space, WPAN technology
is utilized as the gateway of the WBSN system so that the device placed in the human
body can be connected to the Internet. Benefiting from this, medical staff can read the
physiological data of remote patients in real time through the Internet.

As shown in Figure 1, there are five stages for the real-time monitoring and remote
transmission of human physiological signals.
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Figure 1. Real-time monitoring and remote transmission of human physiological signals.

Stage1: Physiological signal acquisition stage. Sensors for measuring ECG, EEG, EMG,
and other physiological signals are placed on the body’s surface or implanted under the
skin. The data collected by the sensors are sent to the master node (MN) following IEEE
standard 802.15.6. Then, the MN transmits the data to the local mobile devices (mobile
phones, tablets, laptops) through wireless media and the local processing unit transmits
the data to the next level.

Stage2: Wireless communication transmission stage. The further transmission of
physiological signal data is achieved through the access point, WIFI, or cellular base station.

Stage3: Internet transmission stage. In this stage, long-distance data transmission is
achieved through optical fiber technology.

Stage4: Data storage and analysis stage. The physiological signal data transmitted
by long-distance are stored and analyzed in this stage. After the analysis, the data are
classified and stored.

Stage5: Medical diagnosis and treatment stage. In this stage, the stored data are
transmitted to the medical and health institutions. The doctor diagnoses the patient’s
condition according to the remote output data and gives the treatment plan [30].
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Patient medical problems have caused various countries to bear many economic
expenditures in recent years. WBSNs can be employed as a feasible solution to reduce
medical expenses.

2.2. Compressed Sensing

Figure 2 shows the CS sampling process, in which the signal x to be collected is only
non-zero at k times (k is the sparse degree). To manage the information in x, it is projected
on a given set of sensing waveforms φ (that is to say, x is scented with a given set of
waveforms). The most common measurement matrices are the Gaussian random matrix
and the Bernoulli matrix, which do not correlate with the sparsest matrices. In addition,
the measurement matrix can also use deterministic matrices such as a polynomial matrix,
chaos matrix, and structured random matrix (e.g., the Toeplitz matrix).
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The Bernoulli matrix is selected as a fixed measurement matrix in this paper. It
constructs a matrix φ of size M × N in order that every element in φ independently obeys
the Bernoulli distribution:

Φi,j =

{
+ 1√

M
P = 1

2

− 1√
M

P = 1
2
=

1√
M

{
+1 P = 1

2
−1 P = 1

2
(1)

and a set of measures y, which is far less than the original length of the signal that
is obtained:

y = φx (2)

When compressible, the method can also estimate the items with a larger amplitude.
In practical applications, the signal x to be collected is usually not sparse, but in the
transformation coefficient on an individual basis it is sparse or compressible.

The EMG is not sparse in the time domain, so it is necessary to design a suitable
sparse transformation matrix to obtain the EMG signal projected onto the sparse matrix
representation. Considering the embedded hardware system used in the wearable EMG
monitoring device and the excellent performance of wavelets in signal compression [31],
the sparse representation of EMG signals under a discrete wavelet transform (DWT) will be
discussed. The Mallat decomposition of discrete sequences is performed for the myoelectric
signal X. We construct a discrete wavelet transform matrix, i.e., the sparse matrix used in
CS, as shown in Equations (3) and (4):

Gj+1(n) = G(n)Xj(n) = ∑∞
k=−∞ G(k)Xj(n− k) (3)

Hj+1(n) = H(n)Xj(n) = ∑∞
k=−∞ H(k)Xj(n− k) (4)

H(n) and G(n) are the high-pass and low-pass filter coefficient sequences correspond-
ing to the selected wavelet function for both G(n) and H(n) ∈ Rl×1. When the decompo-
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sition level j = 0, X0(n) is the EMG signal X to be compressed. After convolution, G1(n)
∈ R(N+L−1)×N . We remove the front L/2 = −1 line and the rear L/2− 1 line and select
even rows from the remaining N + 1 rows, giving a total of N/2 rows. Similarly, we select
N/2 rows from H1(n) and superimpose them to form a decomposed wavelet transform
matrix Ψ ∈ RN×N . The N/2 rows selected from H1(n) form the low-frequency part X1(n).
The multi-layer decomposed wavelet transform matrix can be gained by continuing the
iteration process according to Formulas (3) and (4).

A sparse basis needs to be exploited for sparse decomposition in compression mea-
surements. To acquire a sparse basis suitable for EMG signals, a total of 52 types of wavelet
bases in 6 wavelet functions are tested in this paper. They are haar, dbn, symn, coifn, bior,
and rbio:

x = ψθ (5)

The transformation coefficient θ is sparse, and a few coefficients contain almost all of
the energy. Combining Equations (2) and (5), the relationship between the perceptual data
and transform coefficients can be expressed as follows:

y = φx = φψθ (6)

If A (measurement matrix) = φψ, then:

y = Aθ (7)

Since Equations (2) and (7) have the same form and assumption, the transformation
coefficient can also be estimated according to the optimization method. Then, the signal
x to be collected can be estimated through transformation. The sparsity of x itself can
be regarded as the sparsity of x on the unit matrix, and the measurement matrix is the
perception matrix.

When matrix A satisfies RIP, sparse signals can be recovered by minimizing the l1
norm. The more uncorrelated the perception matrix (φ) and the transformation matrix
(ψ), the less sparse the signal that can be recovered [32]. Moreover, the random matrix’s
probability that it is not related to any fixed transformation matrix is exceptionally high;
that is to say, it is optimal to collect the unknown signal by collecting the random projection
coefficient of the signal. In addition, the sparser the signal, the less perceptual data are
needed to rebuild the original signal.

The compressed sensing method aims to restore all contents of the signal x through
the measure y, which is far less than the amount of collected signal data.

There are two conditions under which recovery is possible [33]. Firstly, the signal is
required to be sparse in a specific domain. The second one is incoherence, which is applied
through the isometric property, which is sufficient for sparse signals [34].

Solving x from Formula (8) is an underdetermined problem, but on the other hand,
the signal has only K unknown variables at unknown positions; that is, the signal has
only K + 1 degrees of freedom. Therefore, under certain conditions, when the number
of measurements exceeds the signal degrees of freedom, it can be recovered using some
non-linear methods.

Obviously, when the K + 1 column of the perception matrix φ is selected arbitrarily
and the linearity is independent, the signal with the sparsest characteristic found in all
cases satisfying y = φx is required, solving the following optimization problem:

min‖x‖0
subject to y = φx

(8)

where ‖x‖0 represents the zero norm of x; that is, the number of non-zero elements.
For the CS reconstruction, some greedy algorithms are proposed to reduce the amount

of computation. The greedy algorithms include the matching pursuit [35], compressive
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sampling matching pursuit (CoSaMP) [36], iteratively reweighted least squares (Irls) [37],
subspace pursuit (SP) [38], and stage-wise orthogonal matching pursuit [39] algorithms.

The OMP algorithm is a representative greedy algorithm. As shown in Algorithm 1,
its principle is to add the best column of each iteration to the estimation. Then, to achieve
orthogonality between the estimated value and the residual, the optimization operation
is implemented and the least square method is used in the subspace of the selected best
fitting columns [40].

Algorithm 1 Orthogonal matching pursuit (OMP)

Input: matrix φ, measurements y, sparsity K
Output: sparse reconstruction xK

1: r0 = y and Γ0 = ∅
2: for i = 1 . . . , K do
3: λi ⇐ argmaxj

∣∣∣〈ri−1, φj

〉∣∣∣
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Find best fitting column

4: Γ0 ⇐ Γi−1 ∪ λi

5: xi ⇐ argminx

∣∣∣∣∣∣ri−1 − φΓi x
∣∣∣∣∣∣2

2
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6: ri ⇐ ri−1 − φΓi xi
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Residual update
7: end for

In the fifth step of Algorithm 1, the least squares (LS) optimization problem will be
generated. QR decomposition (QRD) is applied to solve this problem. This process will be
decomposed into two matrices, the unitary matrix and upper triangular matrix, respectively
represented by Q and R. In the last step of the OMP iteration, a new iterative decomposition
is reused via QRD to calculate Q and R.

However, l0 is an NP hard problem [41], which can replace non-convex problems via
the solving convex. As a classical convex optimization method, the BP algorithm is often
employed for CS reconstruction. The L1 minimum norm is equivalent to the L0 minimum
norm under certain conditions, and the same solution can be obtained. Then, the above
Equation (8) can be transformed into the optimization problem under the minimum norm
of L1, as shown in Equation (9):

min‖x‖1
subject to y = φx

(9)

Under the condition of a restricted isometry property (RIP) [42], the minimum value
of l0 is equal to l1, and l1 can be found in polynomial time.

The theory of compressed sensing requires that the sensing matrix satisfy the RIP. For
any k-sparse vector θ, if δk ∈(0,1) is satisfied then:

(1− δk)‖θ‖2 ≤ ‖Aθ‖2 ≤ (1 + δk)‖θ‖2 (10)

Then, matrix A satisfies the RIP.
However, it is arduous to verify the RIP conditions. If confirmed, cross-correlation is

demonstrated as the equivalent condition of the RIP conditions. The measurement matrix φ
is uncorrelated with the sparse representation matrix ψ; that is, any one of φ’s rows cannot
be represented linearly by ψ’s columns, nor can any column of ψ be represented linearly
by φ’s rows. Specifically, the correlation between the measurement matrix φ and sparse
representation matrix ψ is defined as:

µ(φ, ψ) = max
∣∣〈φi, ψj

〉∣∣ = max|〈A(i, j)〉| = max

∣∣〈ai, aj
〉∣∣

‖ai‖2‖aj‖2
1 ≤ i ≤ j ≤ N (11)

In Formula (11), φ represents the measurement matrix and ψ is the sparse base. The
correlation of φ and ψ is expressed by µ(φ, ψ). Here, φi and ψj are row and column vectors
of φ and ψ, respectively. In addition, ai and aj represents the ith row and jth column of
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matrix A, respectively. The more uncorrelated the matrix φ and sparse matrix ψ, the smaller
the value of µ (φ, ψ), indicating the smaller the observation value that is required.

This paper is based on the existing compressed sensing theory for research. Although
our theoretical innovations are limited, this ingenious sampling method is used to discuss
the sparse basis and reconstruction algorithm of EMG signals in compressed sampling.
Through the use of different compression ratios, a fixed measurement matrix, and a large
number of calculations, the compressed sensing sparse basis and reconstruction algorithm
most suitable for EMG signal are obtained.

2.3. Description of the EMG Datasets

A variety of physiological signals of the human body are stored in the MIT-BIH
Polysomnographic Database [43], from which the EMG signals are extracted to analyze the
compressed sensing accurately. We select the data for 5 channels here (slp32, slp37, slp41,
slp45, slp48) and extract 100 fragments from the data for each channel, with 1024 points in
each fragment. The sampling frequency is 250 Hz.

2.4. Performance Indicator

Several performance indicators are applied in this paper: the compression ratio (CR),
percentage root mean square difference, and the time consumption.

2.5. Compression Ratio

Here, CR represents the measurement of the number of actual acquisition points
required to collect the original signal x, which stands for the ratio of the number of actually
collected signals to the number of original signals, along with the number of measurement
M needed to obtain the accurately reconstructed signal. If M represents the dimensions of
the measurement matrix and N represents the real length of the original signal x, CR can be
expressed as:

CR = 1− M
N

(12)

Since M is less than N, the value of CR is less than 1. Therefore, in actual measurements,
only a small amount of data is needed to obtain a large amount of plain text information.
In this paper, a total of 9 CR values are selected from 0.1 to 0.9 at equal intervals.

2.6. Percentage Root Mean Square Distortion

The percentage root mean square distortion (PRD) is an indicator of the difference
between the reconstructed signal X̂ and the original signal X, defined as:

PRD =
‖X̂− X‖2
‖X‖2

· 100 (13)

Lower PRD numbers represent better reconstruction performance. Another indicator
is the execution time, reflecting the reconstruction algorithm’s efficiency.

2.7. Sparse Basis

Since EMG signals are not sparse in the time domain, a sparse basis needs to be utilized
for sparse decomposition in the compression measurement. To acquire the sparse basis
suitable for EMG signals, a total of 52 types of wavelet bases in 6 wavelet functions were
tested in this paper. They were haar, dbn, symn, coifn, bior, and rbio, respectively.

2.8. Reconstruction Algorithms

The quality and efficiency of five kinds of commonly utilized reconstruction algorithms
were tested to recover the signal. The five reconstruction algorithms were OMP, BP, CoSaMP,
Irls, and SP.
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2.9. Hardware Platform

The experiment was run on a laptop with a 1.9 GHz Intel Core i7-8650u CPU, 16 GB of
memory, and a 512 GB hard disk. The program was run on MATLAB 2018b.

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Compressed Sensing with Different Kinds of Wavelet Bases

Fifty-two different kinds of wavelet bases were applied for the sparse decomposition of
EMG signals. The Bernoulli matrix and BP algorithm belonging to the convex optimization
were exploited as fixed measurement matrices and reconstruction algorithms, respectively.
Table 1 shows that the test effect, CR, and PRD values are inversely proportional. This
means that the reconstruction quality is positively related to the number of measurements.

Table 1. PRD of reconstructed signals based on different wavelet bases. Values are means ± SD.

Wavelet
CR

10% 20% 30% 40% 50% 60% 70% 80% 90%

haar 30.67 ± 9.64 44.71 ± 15.35 56.62 ± 19.77 67.72 ± 21.97 78.64 ± 21.76 89.84 ± 21.33 100.41 ± 20.97 111.34 ± 20.98 120.4 ± 21.71
db2 23.74 ± 7.82 35.66 ± 10.63 45.99 ± 12.71 55.71 ± 13.83 65.23 ± 13.93 74.68 ± 13.09 84.34 ± 11.21 94.2 ± 7.93 103.48 ± 3.77
db3 34 ± 13.6 45.17 ± 15.65 55.86 ± 18.73 66.26 ± 20.84 77.4 ± 20.99 88.59 ± 19.82 99.2 ± 18.65 109.18 ± 17.97 115.23 ± 14.19
db4 24.15 ± 7.61 36.33 ± 10.45 46.9 ± 12.67 56.74 ± 13.94 66.32 ± 13.87 75.88 ± 12.83 85.49 ± 10.6 95.25 ± 7.36 103.65 ± 3.57
db5 34.51 ± 13.95 44.91 ± 14.47 54.38 ± 16.07 63.69 ± 16.75 73.42 ± 16.39 83.56 ± 14.94 93.56 ± 13.43 104.01 ± 11.12 112.27 ± 9.95
db6 26.25 ± 5.08 39.05 ± 6.1 50.01 ± 6.96 60.13 ± 7.2 69.63 ± 7.34 78.71 ± 6.83 87.81 ± 5.66 96.87 ± 3.88 104.78 ± 1.8
db7 26.4 ± 4.98 39.31 ± 5.96 50.19 ± 6.92 60.12 ± 7.26 69.65 ± 7 78.77 ± 6.6 87.91 ± 5.4 96.76 ± 3.74 104.87 ± 1.59
db8 26.5 ± 5.15 39.23 ± 6.17 50.09 ± 6.9 60.22 ± 7.02 69.8 ± 6.9 78.99 ± 6.15 88.17 ± 5.45 96.97 ± 3.83 105.06 ± 1.38
db9 26.55 ± 4.99 39.41 ± 6 50.43 ± 6.77 60.41 ± 7.09 69.92 ± 6.84 79.2 ± 6.34 88.16 ± 5.32 96.98 ± 3.71 104.93 ± 1.49

db10 26.65 ± 5.08 39.52 ± 6.05 50.42 ± 6.92 60.55 ± 6.97 69.82 ± 6.88 79.18 ± 6.27 88.12 ± 5.57 97.13 ± 3.66 104.99 ± 1.51
sym2 25.7 ± 5.1 38.51 ± 6.02 49.29 ± 7.08 59.37 ± 7.65 68.93 ± 7.56 78.25 ± 7.06 87.46 ± 6.07 96.44 ± 4.25 104.82 ± 1.61
sym3 25.81 ± 5.31 38.49 ± 6.26 49.4 ± 7.19 59.53 ± 7.45 68.94 ± 7.54 78.17 ± 6.89 87.44 ± 6.05 96.35 ± 4.19 104.64 ± 1.82
sym4 25.87 ± 5.2 38.58 ± 6.31 49.38 ± 7.16 59.44 ± 7.48 68.92 ± 7.71 78.27 ± 6.9 87.46 ± 6.16 96.39 ± 4.49 104.54 ± 1.81
sym5 25.93 ± 5.16 38.61 ± 6.2 49.49 ± 7.1 59.41 ± 7.46 69.03 ± 7.55 78.2 ± 6.99 87.41 ± 5.92 96.44 ± 4.17 104.63 ± 1.86
sym6 25.93 ± 5.16 38.67 ± 6.21 49.56 ± 7.17 59.54 ± 7.44 69.04 ± 7.74 78.33 ± 6.83 87.57 ± 6.03 96.36 ± 4.53 104.61 ± 1.8
sym7 26.03 ± 5.32 38.79 ± 6.21 49.55 ± 7.03 59.68 ± 7.36 69 ± 7.58 78.42 ± 6.84 87.42 ± 6.05 96.53 ± 4.24 104.68 ± 1.71
sym8 25.99 ± 5.13 38.73 ± 6.14 49.64 ± 7.15 59.62 ± 7.38 69.07 ± 7.7 78.35 ± 6.79 87.63 ± 5.98 96.4 ± 4.47 104.67 ± 1.7
coif1 25.65 ± 5.12 38.39 ± 6.07 49.19 ± 7.01 59.22 ± 7.68 68.78 ± 7.61 78.06 ± 7.03 87.33 ± 5.92 96.49 ± 4.24 104.5 ± 1.77
coif2 25.83 ± 5.21 38.51 ± 6.23 49.25 ± 7.13 59.41 ± 7.49 68.9 ± 7.62 78.06 ± 7 87.35 ± 6.08 96.22 ± 4.35 104.54 ± 1.8
coif3 25.95 ± 5.14 38.82 ± 6.17 49.55 ± 7.07 59.63 ± 7.39 69.15 ± 7.3 78.34 ± 6.98 87.54 ± 5.61 96.71 ± 4.09 104.47 ± 1.94
coif4 26.01 ± 5.12 38.77 ± 6.18 49.54 ± 7.12 59.64 ± 7.42 69.16 ± 7.47 78.29 ± 6.77 87.53 ± 5.86 96.39 ± 4.32 104.69 ± 1.57
coif5 26.05 ± 5.1 38.89 ± 6.12 49.73 ± 6.89 59.84 ± 7.32 69.25 ± 7.17 78.59 ± 6.57 87.69 ± 5.56 96.57 ± 4.06 104.7 ± 1.64

bior1.1 25.38 ± 5.22 38.16 ± 6.3 48.93 ± 7.15 59.22 ± 7.62 68.59 ± 7.79 77.89 ± 7.23 87.16 ± 6.47 96.3 ± 4.47 104.3 ± 2.35
bior1.3 26.13 ± 5.24 39.08 ± 6.3 50.02 ± 7.15 60.3 ± 7.49 69.84 ± 7.63 79.06 ± 7.09 88.03 ± 6.27 97.12 ± 4.09 104.76 ± 2.07
bior1.5 26.74 ± 5.32 39.89 ± 6.35 50.99 ± 7.15 61.28 ± 7.4 70.8 ± 7.56 79.95 ± 6.96 88.81 ± 6.19 97.68 ± 3.98 105.06 ± 1.99
bior2.2 27.19 ± 5.32 40.77 ± 6.25 52.45 ± 7.26 63.25 ± 7.7 73.29 ± 7.6 83.16 ± 6.78 92.33 ± 5.58 101.39 ± 3.46 108.44 ± 1.31
bior2.4 27.01 ± 5.31 40.46 ± 6.25 51.98 ± 7.13 62.56 ± 7.57 72.54 ± 7.48 82.12 ± 6.77 91.22 ± 5.52 100.33 ± 3.73 107.45 ± 1.33
bior2.6 27.12 ± 5.33 40.6 ± 6.26 52.09 ± 7.05 62.61 ± 7.49 72.56 ± 7.4 82.17 ± 6.75 91.22 ± 5.54 100.28 ± 3.79 107.41 ± 1.44
bior2.8 27.28 ± 5.33 40.83 ± 6.25 52.32 ± 7.02 62.83 ± 7.45 72.76 ± 7.32 82.4 ± 6.71 91.43 ± 5.51 100.39 ± 3.81 107.48 ± 1.45
bior3.1 31.7 ± 5.32 47.76 ± 6.35 61.99 ± 7.2 75.45 ± 7.31 88.62 ± 6.63 101.05 ± 5.78 114.82 ± 5.26 128.26 ± 3.62 135.14 ± 1.27
bior3.3 30.81 ± 5.07 45.97 ± 6.38 59.09 ± 7.18 71.06 ± 7.51 82.48 ± 6.86 93.13 ± 6.18 103.41 ± 4.95 113.08 ± 2.79 118.76 ± 0.9
bior3.5 30.59 ± 5.12 45.37 ± 6.41 58.1 ± 7.21 69.95 ± 7.44 80.92 ± 6.9 91.26 ± 6.02 100.76 ± 4.87 110.2 ± 2.87 115.69 ± 0.84
bior3.7 30.52 ± 5.2 45.12 ± 6.41 57.72 ± 7.17 69.49 ± 7.41 80.36 ± 6.94 90.51 ± 6.07 99.96 ± 4.93 109.31 ± 2.89 115.01 ± 0.85
bior3.9 28.26 ± 5.08 41.86 ± 6.01 53.02 ± 7.04 63.32 ± 7.44 72.8 ± 7.2 81.82 ± 6.59 90.73 ± 5.4 99.52 ± 3.82 106.96 ± 2.08
bior4.4 27.66 ± 5.05 40.99 ± 5.95 52.06 ± 6.98 62.27 ± 7.29 71.89 ± 7.03 81.06 ± 6.43 90.17 ± 5.35 99.19 ± 3.77 106.92 ± 1.97
bior5.5 27.71 ± 5.07 41.03 ± 5.97 52.08 ± 6.95 62.32 ± 7.19 71.96 ± 6.89 81.11 ± 6.29 90.26 ± 5.25 99.28 ± 3.64 107.03 ± 1.92
bior6.8 27.83 ± 5.08 41.19 ± 6.01 52.25 ± 6.94 62.53 ± 7.13 72.17 ± 6.8 81.29 ± 6.2 90.45 ± 5.16 99.43 ± 3.53 107.15 ± 1.87
rbio1.1 51.95 ± 6.79 67.99 ± 5.93 78.33 ± 5.85 85.43 ± 5.45 91.67 ± 4.53 97 ± 4.04 102.15 ± 3.49 107.48 ± 3.11 110.34 ± 2.02
rbio1.3 35.01 ± 5.42 52.02 ± 5.99 64.7 ± 6.58 74.85 ± 6.3 83.53 ± 5.58 91.01 ± 4.74 98.25 ± 3.97 105.47 ± 3.28 110.4 ± 2.1
rbio1.5 32.77 ± 5.26 48.84 ± 6 61.35 ± 6.63 71.9 ± 6.64 81.07 ± 5.98 89.16 ± 4.99 96.97 ± 4.23 104.85 ± 3.29 110.48 ± 2.09
rbio2.2 32.44 ± 5.2 48.1 ± 6.06 60.4 ± 6.69 70.97 ± 6.71 80.14 ± 6.1 88.41 ± 5.18 96.51 ± 4.25 104.61 ± 3.34 110.57 ± 2.08
rbio2.4 32.4 ± 5.19 47.84 ± 6.13 60.06 ± 6.72 70.61 ± 6.73 79.78 ± 6.13 88.18 ± 5.24 96.38 ± 4.21 104.55 ± 3.35 110.63 ± 2.11
rbio2.6 26.28 ± 5.16 39.22 ± 6.13 50.06 ± 7.12 60.13 ± 7.62 69.82 ± 7.49 79.08 ± 6.87 88.16 ± 5.78 97.04 ± 4.05 104.8 ± 1.8
rbio2.8 26.57 ± 5.3 39.77 ± 6.33 50.96 ± 7.18 61.36 ± 7.69 71.29 ± 7.64 80.76 ± 7.05 89.85 ± 5.76 98.73 ± 4 106.28 ± 1.68
rbio3.1 26.19 ± 5.13 39.06 ± 6.13 49.83 ± 6.98 59.83 ± 7.46 69.44 ± 7.28 78.71 ± 6.7 87.85 ± 5.63 96.82 ± 3.94 104.92 ± 1.8
rbio3.3 28.26 ± 5.08 41.86 ± 6.01 53.02 ± 7.04 63.32 ± 7.44 72.8 ± 7.2 81.82 ± 6.59 90.73 ± 5.4 99.52 ± 3.82 106.96 ± 2.08
rbio3.5 27.66 ± 5.05 40.99 ± 5.95 52.06 ± 6.98 62.27 ± 7.29 71.89 ± 7.03 81.06 ± 6.43 90.17 ± 5.35 99.19 ± 3.77 106.92 ± 1.97
rbio3.7 27.71 ± 5.07 41.03 ± 5.97 52.08 ± 6.95 62.32 ± 7.19 71.96 ± 6.89 81.11 ± 6.29 90.26 ± 5.25 99.28 ± 3.64 107.03 ± 1.92
rbio3.9 27.83 ± 5.08 41.19 ± 6.01 52.25 ± 6.94 62.53 ± 7.13 72.17 ± 6.8 81.29 ± 6.2 90.45 ± 5.16 99.43 ± 3.53 107.15 ± 1.87
rbio4.4 51.95 ± 6.79 67.99 ± 5.93 78.33 ± 5.85 85.43 ± 5.45 91.67 ± 4.53 97 ± 4.04 102.15 ± 3.49 107.48 ± 3.11 110.34 ± 2.02
rbio5.5 35.01 ± 5.42 52.02 ± 5.99 64.7 ± 6.58 74.85 ± 6.3 83.53 ± 5.58 91.01 ± 4.74 98.25 ± 3.97 105.47 ± 3.28 110.4 ± 2.1
rbio6.8 32.77 ± 5.26 48.84 ± 6 61.35 ± 6.63 71.9 ± 6.64 81.07 ± 5.98 89.16 ± 4.99 96.97 ± 4.23 104.85 ± 3.29 110.48 ± 2.09
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3.2. Compressed Sensing with Different Kinds of Construction Algorithms

In this paper, we applied the PRD and execution time as performance indicators to
evaluate five kinds of reconstruction algorithms. In this test, the Bernoulli matrix and
coif5 wavelet basis were employed as the fixed measurement matrix and sparse basis,
respectively.

From the perspective of the deviation between the original and reconstructed signals
shown in Table 2 and Figure 3, the BP and Irls reconstruction algorithms were better than
the other three algorithms. To be more precise, the BP reconstruction algorithm has a better
recovery effect under all compression ratios.

Table 2. PRD values of the reconstruction signals for the different compression ratios (CRs) based on
the same wavelet basis. Values are means ± SD.

Method CR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OMP 48.24 ± 16.85 65.04 ± 21.35 79.3 ± 24.66 92.13 ± 25.64 104.56 ± 23.64 117.41 ± 20.89 128.26 ± 16.89 139.69 ± 11.11 146.37 ± 4.82
BP 23.87 ± 7.98 35.71 ± 10.75 46.1 ± 12.81 55.87 ± 13.86 65.31 ± 13.97 74.71 ± 13.07 84.48 ± 11.31 94.23 ± 7.95 103.51 ± 3.86

CoSaMP 55.61 ± 18.29 65.58 ± 21.42 77.07 ± 24.22 88.58 ± 25.93 101.44 ± 24.29 113.75 ± 20.46 123.59 ± 15.49 132.66 ± 10.19 132.89 ± 4.04
Irls 24.99 ± 8.44 37.53 ± 11.39 48.37 ± 13.65 58.42 ± 14.87 68.03 ± 14.85 77.49 ± 13.62 87 ± 11.47 96.1 ± 7.79 103.63 ± 3.59
SP 55.51 ± 17.55 62.37 ± 19.22 70.17 ± 20.76 78.89 ± 21.43 88.76 ± 20.44 98.88 ± 18.09 108.94 ± 14.9 119.03 ± 9.39 125.35 ± 4.43
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The execution times of the five reconstruction algorithms are shown in Table 3 and
Figure 4. There were significant differences among each algorithm.

The IRLS algorithm consumed the most time under all compression ratios as compared
with the other algorithms. When the CR increases from 0.1 to 0.9, the time consumed
increases by more than 100 times. The reconstruction speed of the BP algorithm was
the fastest under almost all compression ratios. When CR > 80%, the CoSaMP and SP
algorithms took about the same time as the BP algorithm.

Combined with the results in Tables 2 and 3 and Figures 3 and 4, providing a compre-
hensive evaluation of the reconstruction quality and execution time, the BP reconstruction
algorithm had superior reconstruction quality and high efficiency at all compression ra-
tios. Although the Irls algorithm also showed high reconstruction quality, the execution
efficiency was not satisfied. Conversely, the although CoSaMP and SP algorithms showed
excellent efficiency when the CR was over 0.8, the reconstruction quality was poor. There-
fore, considering these two factors, the BP algorithm was the most suitable for EMG signals
in practical applications.
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Table 3. Execution times (in seconds) of various reconstruction algorithms. Values are mean ± SD.

Method CR
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

OMP 2236.66 ± 574.21 1368.17 ± 300.14 849.29 ± 169.05 496.98 ± 96.43 275.77 ± 57.91 141.54 ± 41.09 65.38 ± 32.34 23.88 ± 17.25 21.01 ± 0.82
BP 24.35 ± 3.71 20.49 ± 3.18 19.55 ± 6.75 13.43 ± 1.62 10.68 ± 1.75 9 ± 2.73 6.8 ± 2 5.43 ± 1.51 3.89 ± 0.82

CoSaMP 722.35 ± 173.09 519.86 ± 130.66 401.89 ± 152.8 221.14 ± 64.39 134.06 ± 54.4 63.89 ± 29.86 26.77 ± 15.09 9.69 ± 5.96 1.9 ± 1.4
Irls 3207.79 ± 817.23 2405.05 ± 578.46 1548.56 ± 346.9 1086.58 ± 230.09 705.22 ± 120.33 423.7 ± 83.59 206.53 ± 34.87 94.26 ± 20.81 26.17 ± 9.02
SP 431.65 ± 112.13 397.19 ± 221.28 194.22 ± 61.99 128.29 ± 55.02 68.97 ± 35.96 36.75 ± 20.47 18.9 ± 12.11 4.48 ± 1.7 1.33 ± 0.87
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4. Discussion

The continuous and real-time monitoring of physiological signals play a significant
role in disease diagnosis. However, in the long-term signal monitoring and wireless
transmission of physiological signals, a large number of node resources will be required.
Although the storage requirements can be satisfied due to Moore’s law, the physiological
signal collection systems are also supposed to ensure the energy consumption efficiency.
As an effective post-acquisition processing method, CS can reduce the power consumption
and improve the physiological signal sampling efficiency significantly.

The experimental results indicated that via CS one can transmit and compress EMG
signals efficiently. The db2 wavelet base was the most suitable sparse basis for EMG
signals under various compression ratios and can be utilized as a sparse transform basis
for EMG. In addition, under most compression ratios, the BP algorithm provided better
reconstruction quality and higher reconstruction efficiency.

However, although the most suitable wavelet basis and reconstruction algorithm was
acquired for EMG compressed sensing, there was still a gap between the rebuilt signal
and the original one according to the PRD performance parameter. This implied that the
existing convex optimization and greedy reconstruction algorithms cannot reorganize the
information from the EMG signals well. A similar conclusion was also presented in [44].
Casson et al. used the BP reconstruction algorithm and cubic B-spline dictionary sparse
basis to conduct a compression sensing sampling test on EMG signals, which also showed
that the EMG signals could not be restored satisfactorily (the PRD values were above 50% in
all cases). In our study, although the results were not very satisfactory, compared with the
conclusions of Casson et al., when a suitable compression ratio is selected, the PRD value
will be reduced to less than 50%. In practical applications, the db2 and BP algorithms can
be used as the sparse basis and reconstruction algorithm, respectively, for the compression
sensing sampling of EMG signals, and EMG signals with minor errors can be obtained by
reducing the compression ratio.

In other words, the CS approach is not fully functional at present in terms of the
post-acquisition processing. Nevertheless, the wavelet basis most suitable for compressed
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EMG sensing was found through a calculation and analysis process. Our future work will
focus on EMG rebuilding process and deep learning applications in reconstruction.

5. Conclusions

This research aimed to evaluate the wavelet bases and reconstruction algorithms best
suited for the compressive sampling of EMG signals. From the analysis based on the
sampling quality and speed, it was concluded that the db2 wavelet basis provides a more
balanced performance, while the BP reconstruction algorithm can achieve high accuracy in
a short time.
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